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Abstract

We prove an approximate max-multiflow min-multicut theorem for bounded treewidth
graphs. In particular, we show the following: Given a treewidth-r graph, there exists a
(fractional) multicommodity flow of value f , and a multicut of capacity c such that f ≤ c ≤
O(ln(r + 1)) · f . It is well known that the multiflow-multicut gap on an r-vertex (constant
degree) expander graph can be Ω(ln r), and hence our result is tight up to constant factors.
Our proof is constructive, and we also obtain a polynomial time O(ln(r+1))-approximation
algorithm for the minimum multicut problem on treewidth-r graphs. Our algorithm proceeds
by rounding the optimal fractional solution to the natural linear programming relaxation of
the multicut problem. We introduce novel modifications to the well-known region growing
algorithm to facilitate the rounding while guaranteeing at most a logarithmic factor loss in
the treewidth.

1 Introduction

Given an undirected graph with edge capacities and k source-sink pairs, the maximum multi-
commodity flow problem asks for the maximum amount of (fractional) flow that can be routed
between the source-sink pairs. Multicommodity flow problems (and its variants) have been
studied extensively over the last five decades and find extensive applications in VLSI design,
routing and wavelength assignment etc. [ZJM+00].

A natural dual to the maximum multicommodity flow problem is the minimum multicut
problem. Given an edge-capacitated graph with k source-sink pairs, a multicut is a set of edges
whose removal disconnects all the source-sink pairs, and the capacity (or value) of the cut is
the sum of capacities of the edges in it. The value of any feasible multicommodity flow is at
most the capacity of any feasible multicut. The ratio of the values of the minimum multicut
and maximum multicommodity flow is called the multiflow-multicut gap. Minimum multicut is
NP-Hard to compute, even in very restricted settings such as trees [GVY97]. More precisely,
it is known to be equivalent to the vertex cover problem in stars with unit weights [GVY97],
which implies that it is APX-Hard.

There is a rich literature on proving bounds on the multiflow-multicut gap. Perhaps the
most famous of them is the max-flow min-cut theorem of Ford and Fulkerson [FF09], which
states that the value of the minimum multicut is equal to the maximum (integral) flow when
k = 1. Hu [Hu63] extended the result of Ford and Fulkerson to show that the multiflow-multicut
gap is 1 even when k = 2. There are many other special cases where the multiflow-multicut gap
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is 1, for example when G is a path, but in general it can be arbitrarily large. Garg, Vazirani,
and Yannakakis [GVY96] proved a tight bound of Θ(ln(k + 1)) on the multiflow-multicut gap
for any graph G. If G is a tree, then the multiflow-multicut gap is exactly 2 [GVY97].

For Kr minor-free graphs, Tardos and Vazirani [TV93] used the decomposition theorem of
Klein Plotkin and Rao [KPR93] to prove a bound of O(r3) on the multiflow-multicut gap. This
bound was subsequently improved to O(r2) by Fakcharoenphol and Talwar [FT03], and then
to O(r) by [AGG+14]. Given any natural number n, there exist graphs on n vertices such that
the multiflow-multicut gap on them is Ω(ln(n+ 1)) [GVY96]. This also implies a lower bound
of Ω(ln(r + 1)) for graphs which do not contain Kr as a minor. It is conjectured by [AGG+14]
that this lower bound is tight (in fact they state their conjecture in terms of small diameter
padded-decompostion and is slightly more general):

Conjecture 1. Multiflow-multicut gap for Kr-minor free graphs is Θ(ln(r + 1)).

Since treewidth r graphs do not contain Kr+2 as a minor, the above mentioned results also
imply an upper bound of O(r) for treewidth r graphs. In fact, [AGG+14] show that their
techniques can be extended to prove a bound of O(log r + log log n) for treewidth-r graphs. A
lower bound of Ω(ln(r+1)) on the multiflow-multicut gap for graphs of treewidth r follows form
the discussion above. In this work, we show that Conjecture 1 is true for graphs of bounded
treewidth, which forms an important subclass of minor-free graphs. In particular, we show that
the multiflow-multicut gap for graphs of treewidth r is Θ(ln(r+ 1)). Our proof is constructive,
and we also obtain a polynomial time O(ln(r + 1)) approximation algorithm for the minimum
multicut problem on graphs of treewidth-r.

Theorem 2. Let G = (V,E) be a treewidth-r graph with edge capacity c : E → R≥0 and
(si, ti), 1 ≤ i ≤ k be a set of source-sink pairs. Then there exists a polynomial time computable
multicommodity flow of value f and a multicut of value c such that f ≤ c ≤ O(ln(r + 1)) · f .

2 Preliminaries

Let G = (V,E) be a simple undirected graph with edge capacities c : E → Z≥0. Let (si, ti) be
the source-sink pairs. Let P be the set of all paths in G between a source and its corresponding
sink. A multiflow f : P → R≥0 is feasible if for every edge e ∈ E, the total flow on all paths
containing the edge,

∑
P :e∈P fP , is at most the capacity of the edge, c(e). For a path P ∈ P,

we refer to fP as the value of flow on P . A maximum multiflow is a feasible flow f which
maximises

∑
P∈P fP . A multicut is a set of edges E′ ⊆ E such that every P ∈ P contains at

least one edge in E′. Equivalently, a multicut is a set of edges whose removal disconnects every
source-sink pair. Since a multicut contains an edge of every path in P, the value of any feasible
multicut is at least the value of any feasible multiflow. The ratio of the minimum multicut to
the maximum multiflow is called the multiflow-multicut gap.

A cut S ⊆ V is a partition of the vertex set (S, V \ S). Let δE(S) denote the edges in E
with exactly one endpoint in S. We will usually drop the subscript E if it is clear from the
context. We may also subscript by the graph and say δG(S). For a subset E′ ⊆ E let c(E′) be
the total capacity of edges in E′. Given a graph G = (V,E) with edge-length l : E → R≥0, we
denote the length of the shortest u, v path in G (w.r.t l) by dG(u, v), where we may omit the
subscript G if it is clear from the context. Similarly for a set S we use dG(u, S) or d(u, S) to
denote the shortest path between u and S. Whenever we say distance between two vertices we
mean the distance d ie. the shortest path distance w.r.t to l. For graph G = (V,E) and V ′ ⊆ V
we will use G− V ′ to denote the graph induced in G by V \ V ′. For a vertex s and value α, we
use BG(s, α) to denote the set of vertices that are a distance of at most α from s. Also, for a
vertex set S we use BG(S, α) to denote the set of vertices that are a distance of at most α from
S. We call BG(S, α) as the ball of radius α centered around S in G. We will omit the subscript
G when it is clear.
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A graph G = (V,E) is said to have treewidth at most r if there exist subsets S1, S2, . . . , Sm of
the vertex set V called bags and a tree T with S1, S2, . . . , Sm as vertices such that (i) |Si| ≤ r+1
for i ∈ [1,m] (ii) for each (u, v) ∈ E, there exists a j ∈ [1,m] such that u, v ∈ Sj (iii) for each
v ∈ V , the subgraph induced by Tv = {Sj | v ∈ Sj} on T is connected. It follows from
the definition that trees have treewidth-1 and any graph on n vertices has treewidth at most
n. [FHL05] gave a polynomial time algorithm that computes a bag decomposition of width
O(r ·

√
ln(r + 1)), if G has a treewidth of at most r. We use the above algorithm to compute a

bag-decomposition of size O(r ·
√

ln(r + 1)). Since all our guarantees are a logarithmic function
of the bag-decomposition size, this approximation does not have any asymptotic effect on our
guarantees. For the sake of presentation, from now on we assume that the tree decomposition
of the graph is given to us.

3 Linear Programming Formulation for Mulicut

We first describe an integer programming formulation for the minimum multicut problem. For
every edge e ∈ E, we have a variable x(e), which indicates if the edge is picked in the cut. We
want to disconnect every path between the source-sink pairs, therefore we have a constraint
saying that at least one edge must be picked on every path between a source-sink pair. Let
d(u, v) denote the distance between the vertices u and v by setting the length of each edge
e ∈ E to be equal to x(e). We drop the integrality constraints to obtain a linear programming
(LP) relaxation for the multicut problem. The dual of the multicut LP is exactly the maximum
multicommodity flow problem [GVY96]. In particular, we have a non-negative flow variable fP
for each P ∈ P, and capacity constraints for each edge.

min
∑
e∈E

c(e)x(e)

d(si, ti) ≥ 1 for 1 ≤ i ≤ k

0 ≤ x(e) ≤ 1 for e ∈ E

max
∑
P∈P

fP∑
P :e∈P

fP ≤ c(e) for e ∈ E

fP ≥ 0 for P ∈ P

Even though there are an exponential number of constraints, it is well known that the
optimal solution to the above LPs can be computed in polynomial time [GVY96]. We refer
to the optimum solution to the above LP as the minimum fractional multicut and maximum
(fractional) multicommodity-flow. By the strong duality theorem, the minimum fractional mul-
ticut is exactly equal to the maximum multicommodity flow that can be routed between the
source-sink pairs. If we can construct a multicut with value at most α ≥ 1 times the minimum
fractional solution, we obtain an α-approximation algorithm for the minimum multicut prob-
lem. Furthermore, since the value of any feasible multicut is at least the value of the minimum
fractional multicut, we also obtain the following approximate max-flow min-cut theorem:

max-multicommodity-flow ≤ min-multicut ≤ α ·max-multicommodity-flow

Garg, Vazirani and Yannakakis [GVY96] gave a region growing algorithm to obtain a multicut of
value at most O(ln(k+1)) times the minimum fractional solution. The region growing algorithm
was first introduced by Leighton and Rao [LR99] in the context of sparsest-cut problem. Our
algorithm also builds upon this idea. We next describe the algorithm by [GVY96] in more
detail.

4 Region Growing Algorithm

As before, suppose we are given a graph G = (V,E) with edge capacities c : E → R≥0.
Furthermore, we also have a length function on the edges l : E → R≥0. Recall that for S ⊆ V ,
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B(S, t) denotes the set of vertices whose distance from S is at most t. We call B(S, t) the ball of
radius t centred around S. Let VolG(S, t) be the volume of the edges contained inside the ball
B(S, t), defined as follows

VolG(S, t) = Vol(S, 0) +
∑

(u,v)∈E,
u,v∈B(S,t)

c(u, v) · l(u, v) +
∑

(u,v)∈E,
u∈B(S,t),v /∈B(S,t)

c(u, v) · (t− d(S, u)) (1)

Here, Vol(S, 0) is the initial volume at S and can be chosen to be any positive real number. We
also define Vol′ to be the volume without the initial volume ie.,

Vol′G(S, t) = VolG(S, t)− Vol(S, 0).

Let CG(S, t) be the total capacity of the cut edges going across the set B(s, t). More formally,

CG(S, t) =
∑

(u,v)∈δ(B(s,t))

c(u, v)

In the above definitions, the subscript G may be omitted when the graph is clear from context.
Given a, b ∈ R≥0, we will use r ∼ U(a, b) to denote the fact that t is chosen uniformly at random
in the interval (a, b). [GVY96] showed that if t ∼ U(a, b), then the expected value of C(S, t)
can be bounded in terms of Vol(S, t).

Lemma 3. E
t∼U(a,b)

(
C(S, t)

Vol(S, t)

)
≤ 1

b− a
· ln
(
Vol(S, b)

Vol(S, a)

)
.

Since there are at most n distinct balls B(S, t) for any S ⊆ V , the above also implies the
existence of a polynomial time computable t0 ∈ [a, b) such that

C(S, t0) ≤
1

b− a
· ln
(
Vol(S, b)

Vol(S, a)

)
· Vol(S, t0) (2)

We will refer to this as the region growing lemma 1. [GVY96] use the region growing
lemma to construct a multicut as follows. First they find an optimal solution to the linear
programming relaxation for the multicut, say {x∗e}e∈E , and set l(e) = x∗(e). The algorithm
picks edges into the multicut as follows: if there exists a component containing an (si, ti) pair,
then choose t ∈ [0, 1/2) as guaranteed by the region growing lemma and include the edges in
δ(B(si, t)) into the multicut. Since the diameter of the graph induced by vertices in B(si, t) is
at most 1, it does not contain any source-sink pair. Hence, we can safely remove the vertices in
δ(B(si, t)) from the graph and iterate on the rest of the graph. The algorithm terminates when
no connected component contains an (si, ti) pair. Note that the algorithm picks at most k cuts
using region growing. They set the initial volumes Vol(si, 0) = V ∗/k for i = 1, 2, . . . , k, where
V ∗ =

∑
e∈E c(e) · x∗(e). Using the region growing lemma, the cost of the solution can then be

bounded by O(ln(k + 1)) · V ∗.

5 Multicuts and Small Diameter Decomposition

Let G = (V,E) be a graph with edge capacities c : E → R≥0 and edge lengths l : E → R≥0. A
subset of edges E′ ⊆ E is called a small diameter decomposition of G if all the components
of G′ = (V,E\E′) have diameter strictly less than 1 with respect to the distance dG (notice that
the distance is not in G′)2. The cost of the decomposition is the sum of all the edge capacities

1we follow the presentation in Section 8.3 of the book by Williamson-Shmoys [WS11]
2this is also known as the weak-diameter decomposition
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in E′, ie. c(E′). Note that the small diameter decomposition corresponds to a feasible multicut
when the length of edges correspond to a feasible (fractional) solution to the linear programming
relaxation of the multicut. If G has treewidth at most r, then we will give a polynomial time
algorithm to find a small diameter decomposition whose cost is O (ln(r + 1)) ·

∑
e∈E c(e) · l(e).

This will give us an O (ln(r + 1))-approximation algorithm for the minimum multicut problem,
and also imply a bound of O (ln(r + 1)) on the multiflow-multicut gap for graphs with treewidth
at most r. We first show that if there exists a set S ⊆ V of at most r vertices such that for every
vertex v ∈ V , there exists a u ∈ S such that d(u, v) ≤ 1/4, then there exists a small diameter
decomposition with cost O(ln(r + 1)) ·

∑
e∈E c(e) · l(e). This lemma will serve as an important

building block in our algorithm for graphs of bounded treewidth.

Lemma 4. Let G = (V,E) be a graph with edge capacities c : E → R≥0 and edge lengths
l : E → R≥0. Let S ⊆ V be such that |S| ≤ r and for all u ∈ V , d(u, S) ≤ 1/4. Then
there exists a small diameter decomposition of G with cost at most 1/8 · ln(r + 1) · F , where
F =

∑
e∈E c(e) · l(e).

Proof. We may assume w.l.o.g. that S has size exactly r. Let S = {s1, s2, . . . , sr}. We will
use the region growing lemma to give such a decomposition. We will have r iterations, and
after each iteration, we will construct a new graph Gi = (Vi, Ei) and a set of vertices Si. The
vertices in Si will have the property that dG(u, Si) ≤ 1/4 for each vertex u ∈ Vi and |Si| = r− i.
Initially, we set G1 = G and S1 = S. In iteration i, we use the region growing lemma in the
graph Gi to pick a ball centered at si ∈ Si with radius ti ∈ [1/4, 1/2) such that:

C(si, ti) ≤ 4 · ln
(
Vol(si, 1/2)

Vol(si, 1/4)

)
· Vol(si, ti)

We set Vol(si, 0) = F/r and let Fi = Vol(si, ti)−Vol(si, 0). Since Vol(si, 1/2) ≤ F+Vol(si, 0) =
F + F/r and Vol(si, 1/4) ≥ Vol(si, 0) ≥ F/r, we have

C(si, ti) ≤ 4 · ln(r + 1) · Vol(si, ti) ≤ 4 · ln(r + 1) · (Fi + F/r).

We include all the edges in δ(B(si, ti)) ∩ E in our small diameter decomposition. We then go
on to construct a new graph Gi+1 = (Vi+1, Ei+1) by first removing the vertices in B(si, ti) from
Gi. If some sj ∈ Si \ {si} is contained in the set B(si, ti), then we (re-)introduce the vertex
sj to Gi+1 and connect it to every other vertex u ∈ Vi \ B(si, ti) by an edge of capacity 0 and
length dG(sj , u). It is easy to observe that in Gi+1, we have a set Si+1 = {si+1, . . . , sr} of r− i
vertices such that dG(u, Si+1) ≤ 1/4 for all u ∈ Vi+1.

We run the above procedure on all the vertices in S. Since every vertex of G is at a distance
of at most 1/4 from at least one of the vertices in S, and we pick a ball of radius at least
1/4 from each of the vertices in S, each vertex of G is a part of at least one of the B(sj , tj).
Also, each vertex in B(sj , tj) is at a distance of strictly less than 1/2 from sj and hence any
pair of vertices in B(sj , tj) has a distance less than one. Hence, each vertex is contained in
a connected component with diameter at most one (w.r.t. dG), and we have a feasible small
diameter decomposition. Using the fact that

∑r
i=1 Fi ≤ F , the total cost of the small diameter

decomposition can be bounded by:

r∑
i=1

C(si, ti) ≤ 4 · ln(r + 1) ·
r∑
i=1

(
Fi +

F

r

)
= 4 · ln(r + 1) ·

(
F +

r∑
i=1

Fi

)
≤ 8 · ln(r + 1) · F

6 Graphs of Width r

To simplify the presentation, we will work with a class of graphs that is slightly more general
than graphs of treewidth r.
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Definition 5. Graphs of width r: A graph G = (V,E) is said to have width r if there exists
a partition S = {S1, S2, . . . , Sm} of V and a rooted tree T with S1, S2, . . . , Sm as its vertices
such that |Si| ≤ r for each Si ∈ S and for each (u, v) ∈ E, there exists a Si, Sj ∈ S such that
Sj is a parent of Si and u, v ∈ Si ∪ Sj. The tree T is called the width-r decomposition of G.

Notice that unlike in a tree decomposition, here the bags Si are disjoint from each other.
As before, let G = (V,E) be a graph with edge capacity c : E → R≥0, edge-length l : E → R≥0
and F =

∑
e∈E c(e) · l(e). It is easy to see that if G has treewidth r, then we can construct

an equivalent graph G′ = (V ′, E′) with width r + 1 as follows: for each u ∈ V , if u appears
in bags B1, B2, . . . , Bk in the tree decomposition of G, then we replace each appearance of u
in the bags by a new (distinct) vertex, ie. u1, u2, . . . , uk respectively. Furthermore, we connect
ui ∈ Bi, uj ∈ Bj by an edge of sufficiently high capacity and zero length if the bags Bi, Bj are
adjacent in the tree decomposition of G. For each (u, v) ∈ E, there exists at least one bag Bj
of the tree decomposition of G such that u, v ∈ Bj . We add the edge (uj , vj) to E′. If there are
multiple bags with the edge, we add only one of the edges. It is straight forward to verify that
G′ has width at most r + 1 and F =

∑
e∈E c(e) · l(e) =

∑
e∈E′ c(e) · l(e). An illustration of the

transition from a tree decomposition to a width decomposition can be found in Fig. 1.

Figure 1: Transition from a tree decomposition to a width decomposition. The red edges are the
original edges in G and the blue edges are the added edges with length zero and high capacity.

Any small diameter decomposition of G′ does not split copies of the same vertex in G (as
they are connected with edges of very high capacity), and hence, also corresponds to a small
diameter decomposition for G with the same cost. In the next section, we give an algorithm for
computing a small diameter decomposition for a graph of width r.

7 Overview of The Algorithm

Our algorithm has three phases. In phase one, we build a collection of sets, called the cores.
The cores form a cover of the vertices in G. Furthermore, for every core R, we have a set Y of
at most r vertices such that each vertex of R is close to at least one of the vertices in Y . We
refer to Y as the center of the core. In phase two, we process the cores in a top down order
w.r.t the width-r decomposition. When processing a core, we use the region growing algorithm
of [GVY96] to pick a set of cut edges and remove these edges from the graph. Each connected
component obtained at the end of phase two has an associated core and center. Each vertex in
the connected component is close in the original graph G to one of the at most r vertices of its
center (though center might not be contained in the component). Finally, in phase three, we
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use the algorithm described in Section 5 for each connected component to find a small diameter
decomposition. We prove the following, from which Theorem 2 follows as well.

Theorem 6. Let G = (V,E) be a graph of width at most r with edge capacities c : E → R≥0
and edge lengths l : E → R≥0. Then there exists a small diameter decomposition of G with cost
O(ln(r+1)) ·F , where F =

∑
e∈E c(e) · l(e). Moreover, such a decomposition can be constructed

in polynomial time.

8 The Algorithm

Figure 2: An illustration of the terms used in the algorithm and its analysis.

Let G = (V,E) be a graph with edge-capacity c : E → R≥0 and edge-length l : E → R≥0.
We also have two parameters a, b ∈ R≥0 with b > a for the algorithm. They will in fact be fixed
to a = 1/8 and b = 1/4 later.

Let T (G) be the width-r decomposition of G. We may omit the brackets and use just T .
We define the level of a bag in T (G) to be its hop-distance from the root of T (G). For a bag B
of a subtree T ′ of T (G), we define T ′B to be the subtree of T ′ rooted at B. For a subtree T ′ of
T (G), we define V [T ′] to be the union of all bags in T ′.

Phase 1. Growing Cores: The first phase of the algorithm outputs a set R of subsets of
the vertex set V whose union covers V . Each set in R is called a core.

During the algorithm, we say that a vertex is covered if it is part of at least one core
constructed so far. For a V ′ ⊆ V , we use Uncov(V ′) to denote the set of uncovered vertices
of V ′. Also, we say that a bag of T (G) is covered if all the vertices in the bag are covered.
Similarly, a bag is uncovered if one of its vertices is uncovered.

We associate with each bag B of T (G) an attachment A(B) ⊆ V . For a subtree T ′ of T (G)
we use A[T ′] to denote the union of attachments of all bags of T ′.

Initialization: We initialize the set of cores R to ∅. The attachment of each bag of T (G) is
initialized to ∅.

We proceed in iterations during Phase 1 until all vertices are covered. During each iteration
we process one by one each connected component T ′ of the forest induced on T (G) by the
uncovered bags of T (G) (note that T ′ gives a rooted subtree of T (G)). We process each such
T ′ in a top-down manner as follows (see Fig. 3):

1. Mark all bags of T ′ as unvisited.

2. While there is an unvisited bag in T ′:

7



(a) Pick an unvisited bag B of T ′ of the smallest level (breaking ties arbitrarily).

(b) In the graph induced in G by Uncov(V [T ′B])∪A[T ′B] we pick the ball B(Uncov(B), a)
as a new core R into R.

(c) Mark all the bags of T ′ that intersects R as visited.

(d) If B is not the root of T ′ then add R to the attachment of the parent bag of B.

This finishes the Phase 1 algorithm. The center of a core is defined as the center from which
the ball defining the core was picked during Phase 1. The following lemmas follow directly from
the construction.

Lemma 7. Every vertex v of G is in at least one core in R.

Lemma 8. The center of each core is contained in some bag of T (G). Also, each bag contains
the center of at most one core.

Lemma 9. The cores constructed in the same iteration are vertex disjoint.

We call the bag containing the center of a core to be its center-bag. We now bound the
number of iterations of Phase 1.

(a) (b)

Figure 3: An illustration of two iterations of Phase 1. Note that the attachment links allow a
core of iteration 2 to grow within a core of iteration 1.

Lemma 10. The Phase 1 of the algorithm has at most r iterations.

Proof. At each iteration of the Phase 1, at least one vertex per bag of each uncovered bag of
T (G) gets covered. Since each bag has no more than r elements, the algorithm can not have
more than r iterations.

Phase 2. Growing Components: The goal of the second phase is to partition the graph
G into components S such that each component S ∈ S has a set Y of r vertices in the original
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graph (not necessarily in S) called its center such that each vertex in S is at a distance of at
most b in G from Y . The components will be such that the capacity of edges going across the
components is small.

We will process the cores in R in a specific top-down order. While processing a core, we
will grow a ball with the core as center, and pick this as one component. The center of each
component will be in fact the center of the core from which it was grown. The capacity of the
edges going across the components can be bounded as we will pick the radius of the ball as
given by the region growing lemma.

During the second phase algorithm, we will process the cores in a top-down manner. That
is, out of all the unprocessed cores we pick the one whose center-bag is in the smallest level in
T (G) (breaking ties arbitrarily) to be processed next. Let R = {R1, . . . , Rp} be the cores in
this top-down order. Each core Ri is processed as follows:

We pick a new component Si grown from Ri as follows: let Gi := Gi−1−Si−1 where G1 = G.
Also, let R′i be defined as Ri−S1−. . .−Si−1. If R′i is isolated in Gi then take Si := R′i. Otherwise
take Si as the ball BGi(R

′
i, ti) where ti ∈ [0, b − a) is given by the region growing lemma (see

Eq. (2)) such that

CGi(R
′
i, ti) ≤

1

b− a
· ln
(
VolGi(R

′
i, b− a)

Vol(R′i, 0)

)
· VolGi(R

′
i, ti), (3)

where the initial volume Vol(R′i, 0) is set to be Vol′Gi
(R′i, b− a)/h where h = 2r3 + 2r.

That concludes the processing of a core and also concludes the Phase 2 algorithm. Let
S = {S1, . . . , Sp} denote the set of components. Let X2 be the set of edges of G going across
the components in S. We say that X2 is the set of cut-edges picked in Phase 2. In Section 10,
we will bound their total capacity to be logarithmic in the width of the graph. An important
property that is used for this is that if b = 2a each edge contributes to the volume Vol′Gi

(R′i, b−a)

of at most O
(
r3
)

many cores. This property will be proved in Section 9. We now state the
required near to center property of components, which follows just by construction.

Lemma 11. Let S be the component constructed during the processing of core R. Let Y be the
center of R. All vertices in S are at a distance of at most b from Y in G.

Also, we prove that the components indeed give a partition of the vertex set.

Lemma 12. Each vertex v of G is in exactly one component in S.

Proof. Since the vertices in Gi does not intersect any component of S1, . . . , Si−1, we have that
v cannot be in more than one component. To see that v should be in a component, recall that
it should be in at least one core R. When this core R is processed, v will be picked into the
resulting component, if it has not been picked in any component so far.

Phase 3. Decomposing Components: Each component S ∈ S output by the second
phase has the property that there is a set Y ⊆ V called the center of S containing at most r
vertices (not necessarily in S) such that each vertex in S is at most a distance of b away from
Y . In the third phase for each component S we make an auxillary graph G(S) on which we
apply Lemma 4. The graph G(S) is obtained by taking the induced graph of the component
G[S] and adding the vertices Y to it. In addition, for each y ∈ Y and each s ∈ S, we add
edges of capacity 0 and length equal to dG(y, s) to G(S). In this auxillary graph we find a
small diameter decomposition of small cost by using Lemma 4. We satisfy the pre-condition of
Lemma 4, if we set b = 1/4, by using Lemma 11. Note that this means we should set a = 1/8 as
the condition b = 2a is required for bounding the cost of cut-edges. Let X ′(S) be the cut-edges
of the small diameter decomposition of G(S) given by Lemma 4, and let X(S) be X ′(S) minus
the auxilliary edges from Y to S. Note that the cost of X(S) is same as the cost of X ′(S) and
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X(S) gives a small diameter decomposition of G[S] with respect to the distance dG. Our final
set of cut-edges giving a small diameter decomposition of G is given by the union of X2 (the
cut-edges from Phase 2) and X3 :=

⋃
S∈S X(S).

Lemma 13. The set of cut-edges X2 ∪X3 gives a small diameter decomposition of G.

Proof. Once we remove X2 there are no edges going across the components in S output by
Phase 2. Within each of those components Lemma 4 guarantees that after removing X(S)
the remaining connected components have a diameter strictly less than one with respect to the
distance dG. Thus we have a small diameter decomposition of G.

We will bound the cost of X2 ∪X3 in the next two sections.

9 Bounding the Volume Contributions of an Edge

We want to upper bound the capacity of edges going across components produced by Phase 2.
For this, it is clearly sufficient to bound the capacity of δ(Si) in the graph Gi, for each core Ri,
because when we process a core Ri in Phase 2, we consider only the graph Gi. Thus we want to
bound the capacity of δGi(BGi(R

′
i, ti)), where ti < b − a is the radius that satisfies Eq. (3). In

Eq. (3), notice that to bound the capacity, we use the volume of the ball BGi(R
′
i, b−a), whereas

we remove only Si = BGi(R
′
i, ti) afterwards. Thus, it is possible that the edges of the graph

G[BGi(R
′
i, b − a) \ BGi(R

′
i, ti)] are used to pay for certain cut edges for components arising in

the processing of subsequent cores. Our goal in this section is to bound the number of times
an edge can be used to pay for the cut-edges of a component with respect to the width of the
graph, as described in the following lemma.

Lemma 14. Let e be an edge of G. The number of cores Ri for which e appears (even partially)
in BGi(R

′
i, b− a) during the processing of Ri in Phase 2 is at most 2r3 + 2r.

The rest of this section is devoted to proving the above lemma. We begin by introducing
some definitions. We say that a core has rank i if it was constructed in the i-th iteration of
phase 1. We define the rank of a vertex to be the lowest rank among all the cores containing
it. For each core we define its center-bag to be the bag of T (G) that contains its center. We
say that a core R1 is an ancestor (descendant resp.) of R2 if the center-bag of R1 is an ancestor
(descendant resp.) of R2. For any bag of T (G) we define its level to be the hop distance from
the root in T (G). Also, we define the graph rooted at B to be the subgraph of G induced by
the subtree of T (G) rooted at B. For any core R we denote by GT [R] to be the graph rooted
at the center-bag of R. Let H(R) denote the set of cores that are ancestors of R and have rank
strictly less than R. We define the shadow-domain of a core R to be the graph obtained from
GT [R] by removing the vertices that are contained in at least one core in H(R). Note that the
shadow domain of a core Ri in phase 2 is a super-graph of the graph Gi. The shadow Q of a
core R is defined as the ball of radius b−a centered around R in the shadow-domain of R. Note
that the shadow of of a core Ri in phase 2 contains BGi(R

′
i, b − a). The strict shadow of R is

defined as its shadow minus itself, ie. Q \R.
Next, we will prove some lemmas useful for proving the main lemma of this section. The

following two statements bounds the number of intersecting cores.

Lemma 15. The number of cores intersecting any bag is at most r2.

Proof. First, let us determine an upper bound for the number of cores of the same rank that
can be intersecting a given bag B ∈ T (G). The cores of the same rank are disjoint by Lemma 9.
Hence there can at most be r of them intersecting B because |B| ≤ r. Then, since the rank of
each core is in [r] by Lemma 10 we have that the total number of cores intersecting any bag is
at most r2.

10



(a)
(b)

Figure 4: An illustration of the graph GT [R], shadow-domain, and shadow.

The following also follows from the Phase 1 algorithm.

Lemma 16. If B is a bag containing the center Y of a core that has rank i then all the vertices
in B \ Y have a rank strictly lower than i.

Proof. In case a bag B contains a center Y that does not contain all vertices of B, ie. B \Y 6= ∅,
then as explained above B \ Y have to be covered by the previously constructed cores. Those
cores must have been constructed in previous iterations, by construction. This implies that the
vertices in B \ Y have a strictly lower rank than the vertices in Y .

The use of Lemma 16 allows to prove a relation between ranks and shadow-domains.

Lemma 17. Let R1 and R2 be two cores such that the rank of R1 is greater than or equal to
that of R2 and R1 is an ancestor of R2. Let B be the center-bag of R2 and let Y be the center
of R2. If the shadow-domain of R1 intersects B \ Y then there is a core R3 that is an ancestor
of R2 and descendant of R1 and has rank strictly smaller than the rank of R2 .

Proof. Let x be a vertex in the intersection of the shadow-domain of R1 and B\Y . By Lemma 16
it follows that x has a rank strictly lower than the rank of R2. Thus x is contained in a core R3

that has rank strictly lower than R2. Also, R3 is a descendant of R1 as otherwise none of the
vertices in R3 and in particular x is not in the shadow-domain of R1. Finally, R3 is an ancestor
of R2 as the center-bag of R2 contains vertices of R3.

The next observation will also help towards proving the main lemma of the section.

Lemma 18. Let R1 and R2 be two cores such that the rank of R1 is strictly greater than that of
R2, and R1 is an ancestor of R2. Furthermore, suppose that there are no cores of rank smaller
than R2 whose center-bag is in the path between the center-bags of R1 and R2. In GT [R2], every
vertex in the shadow-domain of R1 is in the shadow-domain of R2.

Proof. Let x be a vertex in GT [R2] that is not in the shadow-domain of R2. It suffices to
prove that x is not in the shadow-domain of R1. Since x is not in the shadow-domain of R2

there should be an ancestor core R3 of R2 having rank smaller than R2 containing x. By the
precondition of the lemma, the core R3 has to be an ancestor of also R1. This means that x
cannot be in the shadow-domain of R1.
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We use all the above properties to prove the following lemma, from which the main lemma
of the section follows rather directly.

Lemma 19. If b = 2a in our algorithm, then for any vertex u, the number of cores whose strict
shadow contains u is at most r3.

Proof. Consider a vertex u. Let C be the set of cores whose strict shadow contains u. So, our
goal is to prove that |C| ≤ r3.

Let P be the path in T (G) from the root bag to the bag containing u. The center-bags of
the cores in C are all on P . This comes from the fact that the shadow-domain of a core is a
subgraph of the graph rooted at its center-bag.

Let r1 be the lowest rank among all cores in C. We will show that there is only one core
in C having rank r1 in Claim 20. Let this unique core in C with rank r1 be P1. Let C1 be the
set of all cores in C (including P1) that are ancestors of P1. We will show that each core in C1

intersects the center of P1 in Claim 21. Since the center is contained in a bag, by Lemma 15
this implies that |C1| ≤ r2.

Now, let C̄1 = C \ C1. If C̄1 is non-empty, define r2 be the lowest rank among cores in C̄1.
Note that r2 > r1. We show that there is only one core in C̄1 having rank r2 in Claim 20. Let
this unique core in C̄1 with rank r2 be P2. Let C2 be the set of all ancestor cores P2 in C̄1

including P2. We show that each core in C2 intersects the center of P2 in Claim 21. Since the
center is contained in a bag, by Lemma 15 this implies that |C2| ≤ r2.

We repeat the procedure and define the sequences C1,C2,C3, . . . ,C` and r1 < r2 < · · · < r`
until C̄` = C̄`−1 \ C` is empty, where C̄0 = C. Here, rj is defined as the lowest rank among
cores in C̄j−1. For each j ∈ [`], we show that there is a unique core Pj in C̄j−1 with rank rj
in Claim 20. Let Cj be the set of all cores in C̄j that are ancestors of Pj (including Pj). Also,
we show that all cores in Cj intersects the center of Pj in Claim 21, implying that |Cj | ≤ r2 for
each j ∈ [`]. Since r1 < r2 < · · · < r` ≤ r, this implies that |C| ≤ r3.

Thus, the proof of the lemma concludes by proving the following claims.

Claim 20. There is only one core in C̄j−1 having rank rj for each j ∈ [`].

Proof. Suppose this is not true. Then there are two cores R1 and R2 in C̄j−1 having rank rj .
Assume without loss of generality that R1 is an ancestor of R2. Note that R1 and R2 are disjoint
as they have the same rank. Also, since R1, R2 ∈ C, the center-bags of R1 and R2 lie on the
path P .

Since u is in the shadow of R1 there is a path Z of length at most b that goes from the
center of R1 to u in the shadow-domain of R1. This path Z has to intersect the center-bag of
R2 to get to u.

Suppose this intersection occurs at a vertex in the center of R2. Then the path Z goes from
the center of R1 to outside R1 and then into the center of R2 and then to outside of R2. It has
to go outside of R2 as u is in the strict shadow of R2. Also, it has to go outside of R1 before
entering R2 as R1 and R2 are disjoint (however, it is possible that there is an edge from R1 to
R2). This means Z has a length of more than a+ a = 2a = b, a contradiction.

Now, suppose this intersection occurs at a vertex in the center-bag of R2 that is not in the
center of R2. Then by Lemma 17 it follows that there is at least one core that is ancestor of
R2 and descendant of R1, and having rank lower than rj . Let R3 be the one among such cores
whose center-bag has the smallest level.

We claim that the path Z intersects the center of R3. Suppose otherwise. However, the
path has to intersect the center-bag of R3 to get to u. Then, by Lemma 17 it follows that
there is a core that is ancestor of R3 and descendant of R1, and having rank lower than rj , a
contradiction to the selection of R3.

Note that u is not in R3 as R3 is disjoint from the shadow-domain of R2 by definition of
shadow-domain. However, u is contained in the shadow of R3 as the part of the path Z from
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the center of R3 to u is contained in the shadow-domain of R3 (by Lemma 18) and has length
at most b. Thus, u is contained in the strict shadow of R3. Since R3 is a descendant of R1, we
have that R3 /∈ C1 ∪ C2 ∪ · · · ∪ Cj−1 and hence R3 ∈ C̄j−1. Thus, there is a core in C̄j−1 that
has rank lower than rj , a contradiction to the choice of rj .

Claim 21. Each core in Cj intersects the center of Pj for each j ∈ [`].

Proof. Suppose this is not true. Then there is a core R ∈ Cj that is disjoint from the center of
Pj . Note that Pj is a descendant of R by definition of Cj and the rank of Pj is less than the
rank of R by the definition of Pj . Since u is in the shadow of R there is a path Z of length at
most b that goes from the center of R to u in the shadow-domain of R. This path Z has to
intersect the center-bag of Pj to get to u.

Suppose this intersection occurs at a vertex in the center of Pj . Then the path Z goes from
the center of R outside R and then into the center of Pj and then to outside of Pj . It has to go
outside of Pj as u is in the strict shadow of Pj . Also, it has to go outside of R before entering Pj
as R and the center of Pj are disjoint. This means Z has a length of more than a+ a = 2a = b,
a contradiction.

Now, suppose this intersection occurs at a vertex in the center-bag of Pj that is not in the
center of Pj . Then, by Lemma 17, there exist at least one core that is an ancestor of Pj and
a descendant of R and having rank lower than rj . Let R′ be the one among such cores whose
center-bag has the smallest level. The path Z has to intersect the center of R′ as otherwise
there is a core that is an ancestor of R′ and a descendant of R and having rank lower than rj ,
contradicting the selection of R′.

Note that u is not in R′ as R′ is disjoint from the shadow-domain of R by definition of
shadow-domain. However, u is contained in the shadow of R′ as the the part of the path Z
from center of R′ to u is contained in the shadow-domain of R′ (by Lemma 18) and has length
at most b. Thus, u is contained in the strict shadow of R′. This implies that R′ ∈ Cj . Thus we
have a core in Cj having rank strictly smaller than rj , a contradiction.

Proof of Lemma 14. Each vertex u appears in the strict shadow of at most r3 cores by Lemma 19.
Also, any vertex can only intersect one core of a fixed rank, and hence the total number of cores
intersecting a vertex u is at most r. Thus, each vertex u appears in the shadow of at most r3+r
cores. This implies that for any edge (u, v), the number of cores such that at least one of u or v
appear in the shadow is at most 2r3 + 2r. Observe that by construction, the shadow of a core
Ri contains the ball BGi(R

′
i, b− a). This implies the lemma.

10 Bounding the Total Weight of Cut Edges

Lemma 22. If b = 2a > 0 in our algorithm, then the total capacity of the cut edges X2 picked

in the second phase is at most
16

a
· ln(r + 1) · F ∗, where F ∗ =

∑
e∈E c(e) · l(e).

Proof. Let Ri, Si, Gi, R
′
i, ti be as in Phase 2 description. Note that the set of cut-edges X2 in

Phase 2 is equal to
⋃
δGi(Si). Thus the cost of X2 can be bounded by

∑
i∈[p]CGi(R

′
i, ti). Recall

that we selected ti in Phase 2 algorithm such that

CGi(R
′
i, ti) ≤

1

b− a
· ln
(
VolGi(R

′
i, b− a)

Vol(R′i, 0)

)
· VolGi(R

′
i, ti)

Also, recall that for a core Ri, the initial volume Vol(R′i, 0) was chosen to be Vol′Gi
(R′i, b−a)/h

where h = 2r3 + 2r. By Lemma 14, any edge (u, v) contributes at most h times to the sum∑
i∈[p] Vol

′
Gi

(R′i, b− a) and we obtain the following:
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Claim 23.
∑

i∈[p]
Vol′Gi

(R′i, b− a)

h
≤
∑

e∈E c(e) · l(e) = F ∗

Thus,

CGi(R
′
i, ti) ≤

1

b− a
· ln
(
VolGi(R

′
i, b− a)

Vol(R′i, 0)

)
· VolGi(R

′
i, ti)

=
1

b− a
· ln
(
Vol(R′i, 0) + Vol′Gi

(R′i, b− a)

Vol(R′i, 0)

)
· VolGi(R

′
i, ti)

=
1

b− a
· ln

(
1 +

Vol′Gi
(R′i, b− a)

Vol′Gi
(R′i, b− a)/h

)
· VolGi(R

′
i, ti)

=
1

b− a
· ln (1 + h) · VolGi(R

′
i, ti)

Summing now up over all coresets yields:∑
i∈[p]

CGi(R
′
i, ti) ≤

∑
i∈[p]

1

b− a
· ln (1 + h) · VolGi(R

′
i, ti)

=
1

a
· ln
(
2r3 + 2r + 1

)
·
∑
i∈[p]

VolGi(R
′
i, ti)

≤ 8 · ln(r + 1)

a
·
∑
i∈[p]

(
Vol′Gi

(R′i, b− a)

h
+ Vol′Gi

(R′i, ti)

)

≤ 8 · ln(r + 1)

a
· (F ∗ + F ∗) =

16 · ln(r + 1)

a
· F ∗

The last inequality follows from Claim 23 and the fact that any edge contributes to at most
one term in Vol′Gi

(R′i, ti)).

Proof of Theorem 6 : We showed in Lemma 13 that X2 ∪ X3 gives a small diameter
decomposition. It only remains to bound the cost of X2 ∪ X3. Lemma 22 gives a bound on
the total capacity of edges in X2. It follows directly from Lemma 4 the capacity of X3 used in
Phase 3 is at most 8 · ln(r + 1) · F ∗. Hence the total cost of the small diameter decomposition
is at most 8 · ln(r + 1) · F ∗ + 128 · ln(r+ 1) · F ∗ = 136 · ln(r+ 1) · F ∗. This completes the proof
of Theorem 6.

11 Concluding Remarks

In this paper, we give an algorithm for finding low diameter decomposition of small cost for
bounded treewidth graphs, more specifically with a cost logarithmic in treewidth. Our result
also imples a multiflow-multicut gap and an approximation ratio for multicut that is logarithmic
in treewidth. These results are tight asymptotically. We believe that our techniques could
provide useful insights for proving such a (tight) result for the class of Kr-minor-free graphs.
We also believe that it should be possible to extend our techniques for constructing low-diameter
padded decomposition for bounded treewidth graphs (see [AGG+14] for the definition of padded
decomposition).
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