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A standard approach to accelerating shortest path algorithms on networks is the bidirectional search, which

explores the graph from the start and the destination, simultaneously. In practice this strategy performs par-

ticularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distri-

bution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely

to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic

geometry.

To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic

random graphs and prove that it is Õ (n2−1/α + n1/(2α ) + δmax) with high probability, where α ∈ (1/2, 1)
controls the power-law exponent of the degree distribution, and δmax is the maximum degree. This bound is

sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying

geometry, the algorithm itself is oblivious to it.
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1 INTRODUCTION

One of the most fundamental graph problems consists of finding a shortest path between two

vertices in a network. Besides being of independent interest, many algorithms use shortest path

queries as a subroutine. On unweighted graphs, such queries can be answered in linear time using

a breadth-first search (BFS). Though this is optimal in the worst case, it is not efficient enough when

dealing with large networks or problems involving many shortest path queries.

A way to heuristically improve the run time, is to use a bidirectional BFS [26]. It runs two

searches, simultaneously exploring the graph from the start and the destination. The shortest path

is found once the two search spaces touch. Being one of the standard heuristics, the bidirectional

BFS is widely used in practice (e.g., in route planning). On homogeneous networks (where most

vertices have similar degrees, like road networks) this typically leads to a speedup factor of about

two. However, on heterogeneous networks (having many vertices of low degree and only few

vertices of very high degree, like social networks or the internet) experiments indicate that the

bidirectional BFS yields an asymptotic running time improvement [10].

Despite being such a fundamental heuristic, theory completely fails its main purpose of pre-

dicting and explaining the observed behavior. The theoretical worst-case running time overshoots

the observations by a lot. A more promising approach is the average case analysis by Borassi and

Natale [10], which considers instances that are drawn from certain probability distributions instead

of assuming the worst case. Their results are summarized in the first row of Table 1. The analy-

sis covers a variety of random graph models. On one hand, these include homogeneous networks

where the degree distribution has bounded variance, e.g., Erdős–Rényi random graphs. On the

other hand, they also consider heterogeneous networks where the variance of the degree distribu-

tion is unbounded, e.g., Chung–Lu random graphs with power-law exponent β ∈ (2, 3). However,

the results, again, do not match what is observed in practice, as it predicts shorter running times

on homogeneous networks than on heterogeneous ones.

The fundamental obstacle that prevents the average case analysis from producing convincing

explanations is that the considered random graph models are not realistic. They assume that edges

in the graph are independent of each other. However, real-world networks typically exhibit locality,

i.e., edges in an evolving network tend to form between vertices that are already close in the

network.

We resolve this discrepancy by modeling edge dependencies using geometry and extend the

comparison in Table 1 by adding the second row. Generally, geometric random graphs are obtained

by randomly distributing vertices in some metric space (e.g., the Euclidean plane) and connecting

any two vertices with a probability that depends on their distance. In this framework, hetero-

geneous networks (i.e., networks on which the bidirectional BFS has been observed to perform

particularly well) can be obtained by using the hyperbolic plane as the underlying geometry.

In this article, we analyze the bidirectional BFS on random graph models with an underlying

geometry. We prove that, with high probability, the bidirectional BFS has a sublinear worst-case

running time on the heterogeneous networks generated by the hyperbolic random graph model.

Additionally, it is not hard to see why there is no asymptotic speedup on the homogeneous net-

works generated by the Euclidean random graph model. Both results match previous empirical

observations. Finally, we interpret these insights and discuss how the heterogeneity of the degree

distribution and an underlying geometry affect the running time of the bidirectional breadth first

search.

Related Work. The research on scale-free networks has gained a lot of attention for quite some

time now. Therefore, it is no surprise that the extensively studied problem of computing shortest

paths has also been considered in the context of such graphs [1, 20, 23]. However, the bidirectional
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Table 1. Probabilistic Bounds on the Running Time of the Bidirectional BFS
Obtained by Analyzing Different Random Graph Models

Homogeneous Heterogeneous

Independent

Edges

Bounded

Variance

m
1
2+o (1) [10]

Unbounded

Variance

m
4−β

2 +o (1) [10]

Underlying

Geometry

Euclidean

Random Graphs

Θ(n) (Folklore)

Hyperbolic

Random Graphs

Õ (n2
β−2
β−1 + n

1
β−1 ) (This article)

The considered models (and associated results) are arranged by the heterogeneity of

the corresponding degree distributions of the graphs and the (in)dependence of edges.

Here, n and m denote the number of vertices and edges in the graph, respectively.

The parameter β ∈ (2, 3) denotes the power-law exponent of the degree distribution

in the considered heterogeneous networks.

search that was introduced in 1969 [26] and that has since become one of the standard search

heuristics, has only recently been examined on scale-free networks. In fact, there are only two

theoretical explanations for the performance improvements obtained using this heuristic, both

using an average-case analysis that considers one or more random graph models [10, 21].

A model that yields a better representation of real-world networks than the ones considered

before, is the hyperbolic random graph model introduced by Krioukov et al. [19]. The generated

graphs feature a heterogeneous degree distribution, high clustering, and a small diameter; proper-

ties that are often observed in real-world networks. These properties emerge naturally from the

hyperbolic geometry. Moreover, the model is conceptually simple, which makes it accessible to

mathematical analysis. For these reasons it has gained popularity in different research areas and

has been studied from different perspectives.

From the network-science perspective, the goal is to gather knowledge about real-world net-

works. This is, for example, achieved by assuming that a real-world network has a hidden underly-

ing hyperbolic geometry, which can be revealed by embedding it into the hyperbolic plane [2, 9].

From the mathematical perspective, the focus lies on studying structural properties. The degree

distribution and clustering [17], diameter [15, 22], component structure [7, 18], clique size [6], and

separation properties [5] have been studied successfully.

Additionally, there is the algorithmic perspective, which is the focus of this article. Usually al-

gorithms are analyzed by proving worst-case running times. Though this is the strongest possible

performance guarantee, it is rather pessimistic as practical instances rarely resemble worst-case

instances. Techniques leading to a more realistic analysis include parameterized or average case

complexity. The latter is based on the assumption that instances are drawn from a certain proba-

bility distribution. For hyperbolic random graphs, the maximum clique, as well as the minimum

vertex cover can be computed in polynomial time [3, 6], and there are several algorithmic results

based on the fact that hyperbolic random graphs have sublinear tree width [5]. Moreover, there

is a compression algorithm that can store a hyperbolic random graph using O (n) bits in expecta-

tion [12, 25]. Finally, a close approximation of the shortest path between two vertices can be found

using greedy routing, which visits only O (log logn) vertices for most start–destination pairs [13].

The downside of most of these algorithms is that they need to know the underlying geometry, i.e.,

the coordinates of each vertex, which is a rather unrealistic assumption for real-world networks.

In contrast to that, we analyze an algorithm that is oblivious to the underlying geometry.
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Fig. 1. Left: Points and several line segments in the native representation of the hyperbolic plane. A disk of
radius r is centered atp2. Right: Geometric shapes and their intersections. Sector S has an angular width ofφ.

Outline. After a brief introduction to hyperbolic random graphs in Section 2, we examine the

bidirectional BFS in Section 3. We start by briefly arguing why the bidirectional BFS gives no

asymptotic speedup over the standard BFS on Euclidean random graphs in Section 3.2. Afterwards,

in Section 3.3, we rigorously analyze the bidirectional BFS on hyperbolic random graphs. Section 4

contains concentration bounds that were left out in Section 3 to improve readability. In Section 5,

we conclude by comparing our theoretical results to empirical data and interpret them.

2 PRELIMINARIES

Let G = (V ,E) be an undirected and unweighted graph. We denote the number of vertices and

edges with n andm, respectively. The neighborhood of a vertex v ∈ V is N (v ) = {w ∈ V | {v,w } ∈
E}. The degree of v is deg(v ) = |N (v ) |. We denote the maximum degree with δmax. The soft O-

notation Õ suppresses poly-logarithmic factors in n.

2.1 The Hyperbolic Plane

The major difference between hyperbolic and Euclidean geometry is the exponential expansion

of space. In the hyperbolic plane, a circle of radius r has area 2π (cosh(r ) − 1) and circumference

2π sinh(r ), with cosh(x ) = (ex + e−x )/2 and sinh(x ) = (ex − e−x )/2, both growing as ex/2 ±
o(1). To identify points, we use polar coordinates with respect to a designated origin O and a ray

starting at O . A point p is uniquely determined by its radius r , which is the distance to O , and

the angle (or angular coordinate) φ between the reference ray and the line through p and O . In

illustrations, we use the native representation, obtained by interpreting the hyperbolic coordinates

as polar coordinates in the Euclidean plane; see Figure 1 (left). Due to the exponential expansion,

line segments bend toward the origin O . Let p1 = (r1,φ1) and p2 = (r2,φ2) be two points. The

angular distance between p1 and p2 is the angle between the rays from the origin through p1 and

p2. Formally, it is Δ(φ1,φ2) = π − |π − |φ1 − φ2 | |. The hyperbolic distance dist(p1,p2) is given by

cosh(dist(p1,p2)) = cosh(r1) cosh(r2) − sinh(r1) sinh(r2) cos(Δ(φ1,φ2)).

Note how the angular coordinates make simple definitions cumbersome as angles are considered

modulo 2π , leading to a case distinction depending on where the reference ray lies. Whenever

possible, we implicitly assume that the reference ray was chosen such that we do not have to

compute modulo 2π . Thus, the above angular distance between p1 and p2 simplifies to |φ1 −φ2 |. A

third point p = (r ,φ) lies between p1 and p2 if Δ(φ,φ1) + Δ(φ,φ2) = Δ(φ1,φ2).

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.



Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry 19:5

Throughout the article, we regularly use different geometric shapes that are mostly based on

disks centered at the origin O , as can be seen in Figure 1 (right). With Dr (p) we denote the disk of

radius r around a point p, i.e., the set of points that have distance r to p. For disks, that are centered

in the origin O , we simplify the notation and set Dr � Dr (O ). The restriction of a disk Dr to all

points with angular coordinates in a certain interval is called sector, which we usually denote with

the letter S . Its angular width is the length of this interval. For an arbitrary set of points A, we use

A|r2
r1

to denote the restriction of A to points with radii in [r1, r2], i.e., A|r2
r1
= A ∩ (Dr2\Dr1 ).

2.2 Hyperbolic Random Graphs

A hyperbolic random graph is generated by drawing n points uniformly at random in a disk of

the hyperbolic plane and connecting pairs of points whose distance is below a threshold. More

precisely, the model depends on two parameters C and α that are assumed to be constants. The

generated graphs have a power-law degree distribution with power-law exponent β = 2α + 1

and a constant average degree depending on C . The parameter α is assumed to be in the range

(1/2, 1), yielding power-law exponents β ∈ (2, 3). Exponents outside of this range are atypical for

hyperbolic random graphs. For β < 2 the average degree of the generated networks diverges, while

for β > 3 the graphs decompose into small components (of size sublinear in n), and the variance of

the degree distribution is no longer unbounded. In contrast, it is unbounded for β ∈ (2, 3), resulting

in very heterogeneous degree distributions. Moreover, in this range the obtained networks have

a giant component of size Ω(n) [8], and all other components have at most polylogarithmic size

with high probability [15, Corollary 13]. Note that a bidirectional BFS could completely explore a

non-giant component in Õ (1) time and either return the shortest path (if both vertices are in the

same non-giant component) or conclude that the vertices are in different components. Therefore,

we only consider the case when the two considered vertices are both in the giant component in

the remainder of the article.

When generating a hyperbolic random graph, the n points are sampled within the disk DR of

radius R = 2 logn+C . For each vertex, the angular coordinate is drawn uniformly from [0, 2π ]. Its

radius r is sampled according to the probability density function f (r ), which can then be used to

define the joint distribution of angles and radii f (r ,φ). They are given by

f (r ) =
α sinh(αr )

cosh(αR) − 1
= Θ(e−α (R−r ) ) and f (r ,φ) =

1

2π
f (r ), (1)

for r ∈ [0,R]. For r > R, f (r ) = f (r ,φ) = 0. Two vertices are connected by an edge if and only if

their hyperbolic distance is at most R. The above probability distribution is a natural choice as the

probability for a vertex ending up in a certain region is proportional to its area (at least for α = 1).

Note that the exponential growth in r reflects the fact that the area of a disk grows exponentially

with the radius. It follows that a hyperbolic random graph has few vertices with high degree close

to the center of the disk and many vertices with low degree near its boundary. The following

lemma is common knowledge; for the sake of completeness we give a short proof.

Lemma 2.1. LetG be a hyperbolic random graph. Furthermore, let v1,v2 be two vertices with radii

r1 ≤ r2 ≤ R, respectively, and with the same angular coordinate. Then, N (v2) ⊆ N (v1).

Proof. Let w ∈ N (v2), i.e., dist(v2,w ) ≤ R. Now consider the triangle v2Ow , which is com-

pletely contained in the disk of radius R around w (since dist(v2,w ) ≤ R and r (w ) ≤ R). Since

disks are convex and v1 lies on the line from O to v2, it is part of the triangle and therefore also

contained in this disk. Consequently, dist(v1,w ) ≤ R and thus w ∈ N (v1). �
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Given two vertices with fixed radii r1 and r2, their hyperbolic distance grows with increasing

angular distance. The maximum angular distance such that they are still adjacent [17, Lemma 3.1] is

θ (r1, r2) = arccos

(
cosh(r1) cosh(r2) − cosh(R)

sinh(r1) sinh(r2)

)

= 2e
R−r1−r2

2 (1 + Θ(eR−r1−r2 )), (2)

assuming r2 ≥ R − r1. Otherwise, we have r1 + r2 < R, meaning two vertices with these radii are

adjacent, independent of their angular distance.

The probability that a sampled vertex falls into a given subset A ⊆ DR of the disk is given by

its probability measure μ (A) =
�

A
f (r ,φ) dφ dr , which can be thought of as the area of A. There

are two types of regions we encounter regularly: disks Dr with radius r centered at the origin

and disks DR (r ,φ) of radius R centered at a point (r ,φ). Note that the measure of DR (r ,φ) gives

the probability that a random vertex lies in the neighborhood of a vertex with position (r ,φ).
Gugelmann et al. [17, Lemma 3.2] showed that

μ (Dr ) = e−α (R−r ) (1 + o(1)), and (3)

μ (DR (r ,φ)) = Θ(e−r /2). (4)

For a given region A ⊆ DR of the disk, let X1, . . . ,Xn be random variables with Xi = 1 if

vertex i lies in A and Xi = 0 otherwise. Then X =
∑n

i=1 Xi is the number of vertices lying in A.

By the linearity of expectation, we obtain that the expected number of vertices in A is E[X ] =∑n
i=1 E[Xi ] = nμ (A).
Often, determining the expected value of a random variable is not sufficient to obtain meaningful

statements. Therefore, we additionally classify events depending on how likely they are to occur.

We say that an event holds with high probability, if it occurs with probability 1−O (1/n). Moreover,

we say that an event holds asymptotically almost surely if it occurs with probability 1 − o(1).
To show that certain random variables are concentrated around their expectation (i.e., with

high probability the outcome does not deviate much from the expected value) we regularly use

the following Chernoff–Hoeffding bound.

Theorem 2.2 (Chernoff Bound [14, Theorem 1.1]). Let X1, . . . ,Xn be independent random

variables with Xi ∈ {0, 1} and let X be their sum. Then,

Pr[X > t] ≤ 2−t for t > 2eE[X ], and

Pr[X < (1 − ε )E[X ]] ≤ e−ε2/2·E[X ] for ε ∈ (0, 1).

Usually, it suffices to show that a random variable does not exceed a certain upper bound or

drop below a lower bound with high probability. The following corollaries show that sufficiently

large upper and lower bounds on the expected value suffice to obtain concentration.

Corollary 2.3. Let X1, . . . ,Xn be independent random variables with Xi ∈ {0, 1} and let X be

their sum. Furthermore, let f (n) = Ω(log(n)) be such that E[X ] ≤ f (n) and let c be a constant. Then,

X = O ( f (n)) holds with probability 1 −O (n−c ).

Proof. We prove the statement by showing that the probability for the complementary event

(i.e., X is more than a constant factor larger than f (n)) is O (n−c ) for any c . Since E[X ] ≤ f (n),
we can choose a constant c1 sufficiently large such that c1 f (n) > 2eE[X ]. Thus, by Theorem 2.2 it

holds that

Pr[X > c1 f (n)] ≤ 2−c1f (n) .

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.
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Fig. 2. Visualization of the proof of Lemma 2.5. When constrained to the disk DR , the disk D ′ (bold) with
center P ′ at radius r is completely contained in two consecutive disks Di and Di+1 (red region). Point Pi is
between P and P ′.

Moreover, we have f (n) = Ω(logn). Consequently, there exists another constant c2 such that

f (n) ≥ c2 logn for sufficiently large n. We obtain

Pr[X > c1 f (n)] ≤ 2−c1c2 log n ≤ n−c1c2 ,

for n sufficiently large. Finally, we can chose c1 such that c1 > c/c2, which yields the claim. �

Corollary 2.4. Let X1, . . . ,Xn be independent random variables with Xi ∈ {0, 1} and let X be

their sum. Furthermore, let f (n) = ω (logn) be such that f (n) ≤ E[X ] and let c be a constant. Then,

X ∈ Ω( f (n)) holds with probability 1 −O (n−c ).

Proof. Analogous to the proof of Corollary 2.3 we prove the statement by showing that the

probability for the complementary event (i.e., X is more than a constant factor smaller than f (n))
is O (n−c ) for any c . Let ε be a constant with ε ∈ (0, 1). The following inequalities are obtained

by first using the fact that f (n) ≤ E[X ], applying the second statement of Theorem 2.2, again

applying f (n) ≤ E[X ], and finally using f (n) ∈ ω (logn):

Pr[X < (1−ε ) f (n)] ≤ Pr[X < (1−ε )E[X ]] ≤ e−ε2/2·E[X ] ≤ e−ε2/2·f (n) = e−ε2/2·ω (log n) = n−ω (1) . �

Finally, the following lemma shows that statements about the neighborhood of a vertex with

fixed angular coordinate can be extended to hold for arbitrary angular coordinates, with a small

penalty in certainty.

Lemma 2.5. Let G be a hyperbolic random graph, let Xw ≥ 0 for w ∈ V be random variables, and

letX (D) =
∑

w ∈D Xw for D ⊆ DR . Furthermore, let DR (r ) be the set of disks of radius R with center at

radius r . If for each D ∈ DR (r ) it holds that Pr[X (D) ≤ f (n)] ≥ 1−p, then Pr[∀D ∈ DR (r ) : X (D) ≤
2f (n)] ≥ 1 − O (np).

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.
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Proof. Let D ′ ∈ DR (r ) be a disk with radius R centered at radius r and arbitrary angular coordi-

nate. To bound X (D ′), we cover the disk DR with a circular sequence of n′ disks D1, . . . ,Dn′ , such

that D ′ is completely contained in two consecutive disks (when constrained to the whole disk DR ).

That is, there exists an i ∈ {1, . . . ,n′} such that D ′ ⊆ Di ∪Di+1. Since Xw ≥ 0 for allw ∈ V , it then

holds that

X (D ′) =
∑

w ∈D′
Xw ≤

∑
Di∪Di+1

Xw ≤
∑

w ∈Di

Xw +
∑

w ∈Di+1

Xw = X (Di ) + X (Di+1).

Since Pr[X (D) ≤ f (n)] ≥ 1 − p holds for each D ∈ DR (r ), we can apply the union bound to

conclude that X (Di ) ≤ f (n) holds for all i ∈ {0, . . . ,n′} with probability 1 − n′p. Consequently,

X (D ′) ≤ 2f (n) with probability 1 − n′p.

To complete the proof, it remains to show that there exists such a sequence D1, . . . ,Dn′ with

n′ ∈ O (n). See Figure 2 for an illustration of how the sequence is constructed. All disks Di for i ∈
{1, . . . ,n′} have their center at radius r . The center of the first disk is placed at angular coordinate

0, and each subsequent disk is placed at an angular distance of 2θ (r ,R) (see Equation (2)) to its

predecessor until the whole disk is covered. Note that, as a consequence, the boundaries of two

consecutive disks intersect at the boundary of the whole disk DR .

Let P ′ be the center of D ′. To see that D ′ is contained in two consecutive disks Di and Di+1

(when constrained to the whole disk DR ), first note that there exists an i ∈ {1, . . . ,n′} such that

P ′ is between the centers Pi and Pi+1 of two consecutive disksDi andDi+1. We show that any point

P ∈ D ′ is contained in Di ∪ Di+1. Clearly, Di ∪ Di+1 contains all points between Pi and Pi+1 (blue

region in Figure 2). For the case where P does not lie between Pi and Pi+1, assume without loss of

generality, that Pi is between P and P ′, as depicted in Figure 2. Since dist(P , P ′) ≤ R and since P ′ and

Pi have the same radius but Pi is between P and P ′, it follows that dist(P , Pi ) ≤ R, and thus P ∈ Di .

Finally, it remains to show that n′ = O (n) disks are sufficient to cover the whole disk DR . Since

two consecutive disks are placed at an angular distance of 2θ (r ,R), we need n′ = 2π/(2θ (r ,R)) =
O (1/θ (r ,R)) disks. Since θ (r ,R) ≥ θ (R,R), it follows that n′ = O (1/θ (R,R)) = O (eR/2) due to

Equation (2). Substituting R = 2 log(n) +C then yields the claim. �

3 BIDIRECTIONAL BREADTH-FIRST SEARCH

In this section, we analyze the running time of the bidirectional BFS and obtain an upper bound on

the maximum running time over all possible start–destination pairs. Our results are summarized

in the following main theorem.

Theorem 3.1. LetG be a hyperbolic random graph. With high probability the shortest path between

any two vertices in G can be computed in Õ (n2−1/α + n1/(2α ) + δmax) time.

We note that this bound on the running time also holds in expectation. Our bound fails with

probability O (1/n), in which case the worst-case running time is still bounded by the size of the hy-

perbolic random graph, which is O (n). Consequently, this case contributes O (1) to the expectation,

which is dominated by the above bound.

To prove Theorem 3.1, we make use of the hyperbolic geometry in the following way; see

Figure 3. As long as the two searches visit only low-degree vertices, all explored vertices lie within

a small region, i.e., the searches operate locally. Once the searches visit high-degree vertices closer

to the center of the hyperbolic disk (green area in Figure 3), it takes only few steps to complete the

search, as hyperbolic random graphs have a densely connected core. Thus, we split our analysis

in two phases: a first phase in which both searches advance toward the center and a second phase

in which both searches meet in the center. Note that this strategy assumes that we know the coor-

dinates of the vertices as we would like to stop a search once it reached the center. To resolve this

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.
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Fig. 3. Visualization of the two phases of each BFS in a hyperbolic random graph. Vertices that are visited

during the first phase are red. The red edges denote the first encounter of a vertex in the inner disk DR |
ρ
0

(green region). This corresponds to the first step in the second phase. The last step then leads to a common
neighbor via the blue edges.

issue, we first show in Section 3.1 that there exists an alternation strategy that is oblivious to the

geometry but performs not much worse than any other alternation strategy. We note that this re-

sult is independent of hyperbolic random graphs and thus interesting in its own right. Afterwards,

in Section 3.2, we examine the performance of the bidirectional BFS on Euclidean random graphs,

before focusing on hyperbolic random graphs in Section 3.3.

3.1 Bidirectional Search and Alternation Strategies

In an unweighted and undirected graph G = (V ,E), a BFS finds the shortest path between two

vertices s, t ∈ V by starting at s and exploring the graph in levels, where the ith level Ls
i contains

the vertices with distance i to s . More formally, the BFS starts with the set Ls
0 = {s} on level 0.

Assuming the levels Ls
0, . . . ,L

s
i have been computed already, one obtains the next level Ls

i+1 as the

set of neighbors of vertices in level Ls
i that are not contained in earlier levels. Computing Ls

i+1 from

Ls
i is called an exploration step, obtained by exploring the edges between vertices in Ls

i and Ls
i+1.

The bidirectional BFS runs two BFSs simultaneously. The forward search starts at s and the

backward search starts at t . The shortest path between the two vertices can then be obtained, once

the search spaces of the forward and backward search touch. Since the two searches cannot actually

be run simultaneously, they alternate depending on their progress. When exactly the two searches

alternate is determined by the alternation strategy. Note that we only swap after full exploration

steps, i.e., we never explore only half of level i of one search before continuing with the other. This

has the advantage that we can be certain to know the shortest path once a vertex is found by both

searches.
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In the following we define the greedy alternation strategy as introduced by Borassi and Na-

tale [10] and show that it is not much worse than any other alternation strategy. Assume the latest

levels of the forward and backward searches are Ls
i and Lt

j , respectively. Then the next exploration

step of the forward search would cost time proportional to cs
i �

∑
v ∈Ls

i
deg(v ), while the cost for

the backward search is ct
j �

∑
v ∈Lt

j
deg(v ). The greedy alternation strategy then greedily continues

with the search that causes the fewer cost in the next exploration step, i.e., it continues with the

forward search if cs
i ≤ ct

j and with the backward search otherwise.

Theorem 3.2. Let G be a graph with diameter d . If there exists an alternation strategy such that

the bidirectional BFS explores f (n) edges, then the bidirectional BFS with greedy alternation strategy

explores at most d · f (n) edges.

Proof. Let A be the alternation strategy that explores only f (n) edges. First note that the num-

ber of explored edges only depends on the number of levels explored by the two different searches

and not on the actual order in which they are explored. Thus, if the greedy alternation strategy is

different from A, we can assume without loss of generality that the greedy strategy performed

more exploration steps in the forward search and fewer in the backward search compared to

A. Let cs and ct be the number of edges explored by the forward and backward search, respec-

tively, when using the greedy strategy. Moreover, let j be the last level of the backward search

(which is actually not explored) and, accordingly, let ct
j be the number of edges the next step in

the backward search would have explored. Then, ct + ct
j ≤ f (n) as, when using A, the backward

search still explores level j. Moreover, the forward search with the greedy strategy explores at most

ct + ct
j (and therefore at most f (n)) edges in each step, as exploring the backward search would

be cheaper otherwise. Consequently, each step in the forward and backward search costs at most

f (n). As there are at most d steps in total, we obtain the claimed bound. �

3.2 Bidirectional Search in Euclidean Random Graphs

Euclidean random graphs, commonly known as random geometric graphs, are generated by dis-

tributing n vertices uniformly at random in the unit square [0, 1]2 and connecting any two vertices

if the Euclidean distance between them is at most some threshold R ∈ R [24]. One can imagine,

that each vertex is equipped with a disk of radiusR and an edge is added to all other vertices that lie

in this disk. The threshold R affects the properties of the generated network and in order to obtain

graphs with a giant component of linear size (as is the case for hyperbolic random graphs), R has

to be chosen from the so called supercritical regime [24]. In contrast to hyperbolic random graphs,

the uniform sampling of the vertices in the Euclidean space leads to a distribution where the num-

ber of vertices falling into each disk is roughly the same, which, in turn, leads to a homogeneous

degree distribution.

We examine how a BFS explores such a graph, by considering the region of the plane containing

the vertices visited after several exploration steps. For Euclidean random graphs with R chosen

from the supercritical regime, it was shown that for two vertices at graph theoretic distance d , it

holds that R · d is at most a constant factor larger than the Euclidean distance between them, if d
is super-logarithmic [16]. Additionally, it is easy to see that the Euclidean distance between them

can be at most R · d . Therefore, we can assume that after k (sufficiently many) steps the region in

the plane that contains the visited vertices resembles a disk of radius proportional to k . Since the

area of a disk with radius r grows as πr 2, the expected number of explored vertices is in Θ(nk2)
(since the vertices are distributed uniformly).

In this scenario, it is easy to see that the performance of a bidirectional BFS improves by a

constant factor, compared to a standard BFS. Let s and t be two vertices with (sufficiently large)
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graph theoretic distance d from each other. Then, the expected number of vertices explored by

a standard BFS from s to t is Θ(nd2). If we run two searches instead (one starting at s , the other

at t ), then the expected explored search space is minimized when the two BFSs touch after half

as many steps, exploring two disks of half the radius. (Note that this holds independent of the

chosen alternation strategy.) In that case the expected number of explored vertices is proportional

to 2nπ (d/2)2, which is again Θ(nd2), indicating that the bidirectional variant yields no asymptotic

speedup over the standard BFS.

In the remainder of this article we focus on the performance of the bidirectional BFS on hyper-

bolic random graphs. In contrast to Euclidean random graphs, they feature a heterogeneous degree

distribution, leading to significant differences in the performance of the bidirectional BFS.

3.3 Bidirectional Search in Hyperbolic Random Graphs

To analyze the size of the search space of the bidirectional BFS in hyperbolic random graphs, we

separate the whole disk DR into two parts. One is the inner disk DR |ρ0 centered at the origin. Its

radius ρ is chosen in such a way that any two vertices in DR |ρ0 have a common neighbor with high

probability. The second part is the outer band DR |Rρ , the remainder of the whole disk. A single BFS

now explores the graph in two phases. In the first phase, the BFS explores vertices in the outer

band. The phase ends, when the next vertex to be encountered lies in the inner disk. Once both

BFSs completed the first phase, they only need at most two more steps for their search spaces to

share a vertex. One step to encounter the vertex1 in the inner disk and another step to meet at their

common neighbor that any two vertices in the inner disk have with high probability; see Figure 3.

Note that this scenario describes the worst case. Depending on the positions of the two consid-

ered vertices the two searches may touch earlier, e.g., when both vertices are close to each other

in the outer band or when at least one of them is already contained in the inner disk. However,

since we want to determine an upper bound on the running time, we consider the case where both

vertices lie in the outer band and the two searches touch in the inner disk. In the remainder of the

article we only consider how one of the two searches explores the graph. The obtained bounds

also hold for the other search, meaning the total search space increases only by a constant factor

when considering both searches instead of only one.

For our analysis we assume an alternation strategy in which each search stops once it explored

one additional level after finding the first vertex in the inner disk DR |ρ0 . Of course, this cannot be

implemented without knowing the underlying geometry of the network. However, by Theorem 3.2

the search space explored using the greedy alternation strategy is only a poly-logarithmic factor

larger, as the diameter of hyperbolic random graphs is poly-logarithmic with high probability [15].2

The following lemma shows for which choice of ρ the above sketched strategy works.

Lemma 3.3. Let G be a hyperbolic random graph. With high probability, G contains a vertex that

is adjacent to every other vertex in DR |ρ0 , for ρ = 1
α

(logn − log logn).

Proof. Assume v is a vertex with radius at most R − ρ. Note that the distance between two

points is upper bounded by the sum of their radii. Thus, every vertex in DR |ρ0 has distance at most

R tov , and is therefore adjacent tov . Hence, to prove the claim, it suffices to show the existence of

this vertexv with radius at most R−ρ. As described in Section 2, the probability for a single vertex

1Note that this vertex has a degree of Ω̃(n1−1/(2α ) ) with high probability. Consequently, a non-giant component of size

Õ (1) is detected (at the latest) before exploring this vertex (see Section 2).
2We note that there is a tighter bound of O (log(n)) on the diameter of hyperbolic random graphs, which holds asymptot-

ically almost surely [22].
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Fig. 4. Left: The sector S (red) of angular widthφ contains the search space of a BFS starting atv , in the outer

band DR |Rρ . The vertices v1 and v2 are at maximum angular distance to still be adjacent. Right: Neighbor w

of vertex v is in S (red) or a neighbor of c1 or c2 (blue).

to have radius at most R − ρ is given by the measure μ (DR |R−ρ
0 ). Using Equation (3), we obtain

μ
(
DR |R−ρ

0

)
= e−α ρ (1 + o(1)) =

logn

n
(1 + o(1)).

Thus, the probability that none of the n vertices lies in DR |R−ρ
0 is given by (1 − μ (DR |R−ρ

0 ))n .

That is,

Pr
[{
v ∈ DR |R−ρ

0

}
= ∅

]
=

(
1 − logn

n
(1 + o(1))

)n

.

Since (1 − x ) ≤ e−x for all x ∈ R, this term can be bounded by

Pr
[{
v ∈ DR |R−ρ

0

}
= ∅

]
≤ e−

log(n )
n (1+o (1)) ·n = e− log(n)(1+o (1)) = n−(1+o (1)) = O (1/n).

Hence, there is at least one vertex with radius at most R − ρ with high probability. �

In the following, we first bound the search space explored in the first phase, i.e., before we enter

the inner disk DR |ρ0 . Afterwards, we bound the search space explored in the second phase, which

consists of two exploration steps. The first one to enter DR |ρ0 and the second one to find a common

neighbor, which exists due to Lemma 3.3.

3.3.1 Search Space in the First Phase. To bound the size of the search space in the outer band, we

make use of the geometry in the following way. For two vertices in the outer band to be adjacent,

their angular distance has to be small. Moreover, the number of exploration steps is bounded by

the diameter of the graph. Thus, the maximum angular distance between vertices visited in the

first phase cannot be too large. Note that the following lemma restricts the search to a sublinear

portion of the disk, which we later use to show that also the number of explored edges is sublinear.

Lemma 3.4. With high probability, all vertices that a BFS on a hyperbolic random graph explores

before finding a vertex with radius at most ρ = 1
α

(logn − log logn) lie within a sector of angular

width Õ (n−(1/α−1) ).

Proof. For an illustration of the proof see Figure 4 (left). Recall from Section 2 that θ (r1, r2)
denotes the maximum angular distance between two vertices of radii r1 and r2 such that they are

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.



Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry 19:13

still adjacent. Since r1 and r2 only appear as negative exponents in the expression for θ (r1, r2)
(see Equation (2)), this angle increases with decreasing radii. Thus, θ (r1, r2) ≤ θ (ρ, ρ) holds for all

vertices in the outer band DR |Rρ .

Now assume we start a BFS at a vertex v ∈ DR |Rρ and perform d exploration steps without

leaving the outer band DR |Rρ . Then, no explored vertex has angular distance more than dθ (ρ, ρ)
from v . Thus, the whole search space lies within a disk sector of angular width 2dθ (ρ, ρ). The

number of steps d is at most poly-logarithmic as the diameter of a hyperbolic random graph is

poly-logarithmic with high probability [15]. Using Equation (2) for θ (ρ, ρ), we obtain

θ (ρ, ρ) = 2e
R−2ρ

2 (1 + Θ(eR−2ρ ))

= 2eC/2n1−1/α log(n)1/α (1 + Θ((logn/n1−α )2/α ))

= O (n−(1/α−1) log(n)1/α ),

which proves the claimed bound. �

Note that the expected number of vertices in a sector S of angular width φ is linear in nφ due to

the fact that the angular coordinate of each vertex is chosen uniformly at random. Thus, Lemma 3.4

already shows that the expected number of vertices visited in the first phase of the BFS is Õ (n2−1/α ),
which is sublinear in n. It is also not hard to see that this bound holds with high probability (see

Corollary 2.3). To also bound the number of explored edges, we sum the degrees of vertices in

S . It is not surprising that this yields the same asymptotic bound in expectation, as the expected

average degree in a hyperbolic random graph is constant. However, to obtain meaningful results,

we need a bound that holds with high probability. Though we can use techniques similar to those

that have been used to show that the average degree of the whole graph is constant with high

probability [11, 17], the situation is complicated by the restriction to a sublinear portion of the

disk. Nonetheless, we obtain the following theorem.

Theorem 3.5. Let G be a hyperbolic random graph. The degrees of vertices in every sector of an-

gular width φ sum to Õ (φn + n1/(2α ) + δmax) with high probability if φ = Ω(log(n)2/n1/2).

We note that δmax has to be included here, as the theorem states a bound for every sector,

and thus in particular for sectors containing the vertex of maximum degree. Recall, that δmax =

Õ (n1/(2α ) ) holds almost surely [17]. Moreover, we note that the condition φ = Ω(log(n)2/n1/2) is

crucial for our proof, i.e., the angular width of the sector has to be sufficiently large for the concen-

tration bound to hold. We note that, depending on α , the angular width determined in Lemma 3.4

may be smaller than this lower bound. However, if this is the case, we can choose φ = Õ (n−1/2)

as an upper bound for the angular width of the sector and obtain Õ (φn) = Õ (n1/2) = Õ (n1/(2α ) )
for α ∈ (1/2, 1). Consequently, the bound holds for the previously determined angular width

Õ (n−(1/α−1) ) for all α ∈ (1/2, 1).
As the proof for Theorem 3.5 is rather technical, we defer it to Section 4. Together with

Lemma 3.4, we obtain the following corollary. Note that since α ∈ (1/2, 1), this shows that the

running time spend in the first phase (not accounting for the maximum degree) is sublinear in n
with high probability.

Corollary 3.6. On a hyperbolic random graph, the first phase of the bidirectional search explores

with high probability only Õ (n2−1/α + n1/(2α ) + δmax) many edges.

3.3.2 Search Space in the Second Phase. The first phase of the BFS is completed when the next

vertex to be encountered lies in the inner disk. Thus, the second phase consists of only two ex-

ploration steps. One step to encounter the vertex in the inner disk and another step to meet the
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other search. Thus, to bound the running time of the second phase, we have to bound the number of

edges explored in these two exploration steps. To do this, letV1 be the set of vertices encountered in

the first phase. Recall that all these vertices lie within a sector S of angular width φ = Õ (n−(1/α−1) )
(Lemma 3.4). The number of explored edges in the second phase is then bounded by the sum of

degrees of all neighbors N (V1) of vertices in V1. To bound this sum, we divide the neighbors of V1

into two categories: N (V1) ∩ S and N (V1) \ S . Note that we already bounded the sum of degrees of

vertices in S for the first phase (see Theorem 3.5), which clearly also bounds this sum for N (V1)∩S .

Thus, it remains to bound the sum of degrees of vertices in N (V1)\S .

To bound this sum, we introduce two hypothetical vertices (i.e., vertices with specific positions

that are not actually part of the graph) c1 and c2 such that every vertex in N (V1)\S is a neighbor

of c1 or c2. Then, it remains to bound the sum of degrees of neighbors of these two vertices. To

define c1 and c2, recall that the first phase was restricted to points in the sector S that have a

radius greater than ρ, i.e., all vertices in V1 lie within S |Rρ . The hypothetical vertices c1 and c2 are

basically positioned at the corners of this region, i.e., they both have radius ρ, and they assume the

maximum and minimum angular coordinate within S , respectively. Figure 4 (right) shows these

positions. We obtain the following.

Lemma 3.7. LetG be a hyperbolic random graph, let S be a sector, and letv ∈ S |Rρ be a vertex. Then,

every neighbor of v lies in S or is a neighbor of one of the hypothetical vertices c1 or c2.

Proof. Let v = (r ,φ) ∈ S |Rρ and w ∈ N (v ) \ S . Without loss of generality, assume that c1 lies

betweenv andw , as is depicted in Figure 4 (right). Now consider the pointv ′ = (ρ,φ) obtained by

movingv to the same radius as c1. According to Lemma 2.1, we have N (v ) ⊆ N (v ′). In particular, it

holds thatw ∈ N (v ′) and therefore dist(v ′,w ) ≤ R. Sincev ′ and c1 have the same radial coordinate

and c1 is between v ′ and w , it follows that dist(c1,w ) ≤ R. �

By the above argument, it remains to sum the degrees of neighbors of c1 and c2. In the following,

we show that the degrees of the neighbors of a vertex with radius r sum to Θ(ne−(α−1/2)r ) in

expectation. We note that, for large values of r , i.e., for a vertex lying close to the boundary of the

disk, this term is surprisingly large. This is due to the fact that, although vertices near the center

of the disk are rather unlikely to exist in the first place, their degree would be sufficiently large

such that they dominate the expected degree sum.

Lemma 3.8. Let G be a hyperbolic random graph. The degrees of the neighbors of a vertex v sum

to Θ(ne−(α−1/2)r (v ) ) in expectation.

Proof. Let Zv be the sum of the degrees of the neighbors of v , which is a random variable that

depends on the positions of all vertices in the graph. Formally, we can express Zv by assigning

each vertexw ∈ V \ {v} two random variablesXw andYw . The first is an indicator random variable

with Xw = 1 if w is a neighbor of v and Xw = 0 otherwise. Additionally, the random variable Yw

denotes the degree of w . The sum of the degrees of the neighbors of v can then be written as

Zv =
∑

w ∈V \{v }
Xw · Yw .

The expected value of Zv is given by

E[Zv ] = E

⎡⎢⎢⎢⎢⎢⎣
∑

w ∈V \{v }
Xw · Yw

⎤⎥⎥⎥⎥⎥⎦
=

∑
w ∈V \{v }

E [Xw · Yw ],
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where the second equality holds due to the linearity of expectation. To compute the expected value

of Xw · Yw we can apply the law of total expectation and obtain

E[Zv ] =
∑

w ∈V \{v }

∑
x ∈{0,1}

E[Xw · Yw | Xw = x] · Pr[Xw = x].

Clearly, the case where Xw = 0 does not contribute anything to the sum, which can thus be

simplified as

E[Zv ] =
∑

w ∈V \{v }
E[Yw | Xw = 1] · Pr[Xw = 1].

Recall that Xw = 1 denotes the event where w is a neighbor of v . That is,

Pr[Xw = 1] = Pr[w ∈ N (v )] = Pr[w ∈ DR (v )] = μ (DR (v )).

Moreover, recall that Yw denotes the random variable representing the degree ofw . Consequently,

we can now write E[Zv ] as

E[Zv ] =
∑

w ∈V \{v }
μ (DR (v )) · E[Yw | w ∈ DR (v )] = (n − 1) · μ (DR (v )) · E[deg(w ) | w ∈ DR (v )].

(5)

We continue by computing the expected degree of a vertexw conditioned on the fact that it is con-

tained in DR (v ). To this end, we first consider the expected value without the condition, analogous

to how it was done previously [17] (see the proof of Theorem 2.3), and afterwards explain how to

incorporate the condition. The expected degree of a vertex w with fixed radius r is given by

E[deg(w ) | r (w ) = r ] = (n − 1)μ (DR (w )).

To obtain the expected degree of w without fixing its radius (or angle for that matter) we then

integrate E[deg(w ) | r (w ) = r ∧ φ (w ) = φ] · f (r ,φ) (note the joint distribution) over the whole

disk. That is,

E[deg(w )] =

�
DR

E[deg(w ) | r (w ) = r ∧ φ (w ) = φ] · f (r ,φ) dφ dr

=

�
DR

E[deg(w ) | r (w ) = r ] · f (r ,φ) dφ dr ,

where the second step follows from the fact that the expected degree of a vertex is independent of

its angular coordinate.

It remains to include the condition on the fact that w cannot be anywhere in the whole disk

but lies in DR (v ) instead. First, we have to accommodate for the fact that if w is a neighbor of v ,

then converselyv is also a neighbor ofw . Consequently, we know thatw has at least one neighbor,

which we reflect in the expected value by introducing the condition on the position p (v ) of v .

Moreover, in general the conditional expectation of a random variable X conditioned on an event

A (with Pr[A] > 0) is given by E[X | A] =
∫ ∞
−∞ x fX |A (x ) dx , where fX |A is defined as

fX |A (x ) =
⎧⎪⎪⎨⎪⎪⎩

fX (x )
Pr[A] , x ∈ A,
0, x � A.

Therefore, the above expression for the expected degree of w can be adjusted to include the con-

dition as

E[deg(w ) | w ∈ DR (v )] =

�
DR (v )

E[deg(w ) | r (w ) = r ∧ p (v ) = (r ,φ)]
f (r ,φ)

Pr[w ∈ DR (v )]
dφ dr .
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Fig. 5. Situation in the proof of Lemma 3.8. Vertex w is a neighbor of v . To integrate DR (v ) ∩ DR , we split

the region into two parts: DR (v ) |R−r (v )
0 = DR−r (v ) (blue) and DR (v ) |R

R−r (v )
(red).

Note that the probability Pr[w ∈ DR (v )] in the denominator is, again, the measure of the disk of

radius R centered at v . Substituting this expression in Equation (5) for the expected sum E[Zv ] of

the degrees of the neighbors of v , we get

E[Zv ] = (n − 1) · μ (DR (v )) · E[deg(w ) | w ∈ DR (v )]

= (n − 1) · μ (DR (v )) ·
�

DR (v )
E[deg(w ) | r (w ) = r ∧ p (v ) = (r ,φ)]

f (r ,φ)

μ (DR (v ))
dφ dr

= (n − 1) ·
�

DR (v )
E[deg(w ) | r (w ) = r ∧ p (v ) = (r ,φ)] · f (r ,φ) dφ dr .

To compute the integral, we determine the expected degree of w conditioned on the fact that

r (w ) = r and on the position ofv , which is a neighbor ofw deterministically. Therefore, we obtain

the expected degree by adding 1 (for v) to the expected number of vertices among the remaining

V \ {v,w } that are sampled into DR (w ) and obtain

E[deg(v ) | r (w ) = r ∧ p (v ) = (r ,φ)] = 1 + (n − 2)μ (DR (w )),

which is 1 + Θ(ne−r /2) due to Equation (4). Note that Θ(ne−r /2) is Ω(1) for all r ∈ [0,R], allowing

us to further simplify the expected value to

E[deg(v ) | r (w ) = r ∧ p (v ) = (r ,φ)] = Θ(ne−r /2).

Moreover, recall that f (r ,φ) = 0 for r > R and that it can otherwise be bounded by f (r ,φ) =
Θ(e−α (R−r ) ) (see Equation (1)). We obtain

E[Zv ] = Θ �
�(n − 1) ·

�
DR (v )∩DR

ne−r /2 · e−α (R−r ) dφ dr��
= Θ �

�n
2e−α R ·

�
DR (v )∩DR

e (α−1/2)r dφ dr�� .
We can now split the integral into two parts: one containing the disk DR (v ) |R−r (v )

0 = DR−r (v ) and

the other containing the remainder of DR (v ) ∩ DR , which is given by DR (v ) |R
R−r (v )

(see Figure 5).
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For the second part, we can use Equation (2) to bound the angle θ (r (v ), r ) up to which we need to

integrate depending on r . As a result, we get

E[Zv ] = Θ ��
�n

2e−α R · ��
∫ R−r (v )

0

∫ 2π

0

e (α−1/2)r dφ dr +

∫ R

R−r (v )

∫ θ (r (v ),r )

0

e (α−1/2)r dφ dr��
��
� .

Regarding the first part of the sum, note that evaluating the inner integral only contributes a

constant factor that can be dropped due the Θ-notation. Computing the outer integral then yields

Θ(e (α−1/2)(R−r (v )) ). For the second part of the sum we, again, first evaluate the inner integral and

substitute θ (r (v ), r ) = Θ(e (R−r (v )−r )/2) (see Equation (2)). We obtain

E[Zv ] = Θ ��
�n

2e−α R · ��e
(α−1/2)(R−r (v )) + e (R−r (v ))/2

∫ R

R−r (v )
e−(1−α )r dr��

��
� .

The last integral evaluates to O (e−(1−α )(R−r (v )) ), which multiplied by the factor e (R−r (v ))/2 yields

asymptotically the same expression as the first summand and we get

E[Zv ] = Θ
(
n2e−(α−1/2)r (v ) · e−R/2

)
.

Finally, we can substitute R = 2 log(n) +C to obtain the claimed bound E[Zv ] = Θ(ne−(α−1/2)r (v ) ).
�

For c1 and c2, which both have radius ρ, the degrees of their neighbors thus sum to Õ (n1/(2α ) )
in expectation. However, to actually prove Theorem 3.1, we need a bound that holds with high

probability for all possible angular coordinates of c1 and c2. As with the sum of the degrees in a

sector, we prove a slightly weaker bound that matches the one in Theorem 3.1 and holds with high

probability. We obtain the following lemma.

Lemma 3.9. Let G be a hyperbolic random graph and let v be a hypothetical vertex with radius

ρ = 1/α (logn − log logn) and arbitrary angular coordinate. The degrees of neighbors of v sum to

Õ (n2−1/α + n1/(2α ) + δmax) with high probability.

Again, the proof is rather technical and thus deferred to Section 4. Together with the bounds on

the sum of degrees in a sector of width φ = Õ (n−(1/α−1) ) (Theorem 3.5), we obtain the following

corollary, which concludes the proof of Theorem 3.1.

Corollary 3.10. On a hyperbolic random graph, the second phase of the bidirectional search ex-

plores with high probability only Õ (n2−1/α + n1/(2α ) + δmax) many edges.

4 CONCENTRATION BOUNDS FOR THE SUM OF VERTEX DEGREES

Here, we prove the concentration bounds that were announced in the previous section. For the first

phase, we already know that the search space is contained within a sector S of sublinear width

(Lemma 3.4). Thus, the running time in the first phase is bounded by the sum of vertex degrees in

this sector. Moreover, all edges explored in the second phase also lie within the same sector S or

are incident to neighbors of the two hypothetical vertices c1 and c2 (Lemma 3.7). Thus, the running

time of the second phase is bounded by the sum of vertex degrees in S and in the neighborhood of

c1 and c2.

In both cases, we have to bound the sum of vertex degrees in certain areas of the disk, which can

be done as follows. For each degree, we want to compute the number of vertices of this degree in the

considered area and multiply it with the degree. As all vertices with a certain degree have roughly

the same radius, we can separate the disk into small bands, one for each degree. Then summing

over all degrees comes down to summing over all bands and multiplying the number of vertices
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in this band with the corresponding degree. If we can prove that each of these values is highly

concentrated (i.e., holds with probability 1 − O (n−2)), we obtain that the sum is concentrated as

well (using the union bound). Unfortunately, this fails in two situations. For small radii, the number

of vertices within the corresponding band (i.e., the number of high degree vertices) is too small

to be concentrated. Moreover, for large radii the degree is too small to be concentrated around its

expected value.

To overcome this issue, we partition the disk DR into three parts. An inner part DR |ρI (φ )
0 , con-

taining all points of radius at most ρI (φ), an outer part DR |RρO
, containing all points of radius at

least ρO , and a central part DR |ρO

ρI (φ )
, containing all points in between. We choose ρI (φ) such that

the number of vertices with maximum degree in a sector part S |ρO

ρI (φ )
of angular widthφ is Ω(logn),

which ensures that for each vertex degree, the number of vertices with this degree is concentrated.

Moreover, we choose ρO in such a way that the vertex degrees in S |ρO

ρI (φ )
are sufficiently concen-

trated. To achieve this, we set

ρI (φ) = R − 1

α

(
log(φ/(2π )) + logn − log logn

)
and ρO = R − (2 + ε ) log log(n),

for any constant ε ∈ (0, 1), and show concentration for the sum of the degrees in a sector and in

the neighborhood of a vertex with radius ρ, separately for the three parts of the disk.

4.1 The Inner Part of the Disk

The inner part DR |ρI (φ )
0 contains vertices of high degree. It is not hard to see that there are only

logarithmically many vertices with radius at most ρI (φ).

Lemma 4.1. Let G be a hyperbolic random graph, let φ ∈ [0, 2π ] be an angle, and let ξ > 0 be a

constant. A sector S |ρI (φ )
0 of angular width ξφ ∈ [0, 2π ] contains O (log(n)) vertices, with probability

1 − O (n−c ) for any constant c .

Proof. By Equation (3) the expected number of vertices in the disk DR |ρI (φ )
0 is given by E[|{v ∈

DR |ρI (φ )
0 }|] = ne−α (R−ρI (φ )) (1 + o(1)). Since the angular coordinates of the vertices are distributed

uniformly in [0, 2π ], the expected number of vertices in a sector portion S |ρI (φ )
0 of angular width

ξφ is

E[|{v ∈ S |ρI (φ )
0 }|] = ξφ

2π
ne−α (R−ρI (φ )) (1 + o(1))

=
ξφ

2π
ne−(log(φ/2π )+log n−log log n) (1 + o(1))

= ξ log(n) (1 + o(1)).

Since ξ > 0 is constant, this bound is in Ω(logn) and we can apply Corollary 2.3 to conclude that

|{v ∈ S |ρI (φ )
0 }| = O (log(n)) holds with probability 1 − O (n−c ) for any constant c . �

Note that, if φ ∈ Ω(1/n), we can choose at most O (n) sectors of width 2φ such that any sector

of width φ lies completely in one of them. Thus, the probability that there exists a sector portion

S |ρI (φ )
0 where the number of vertices is super-logarithmic, is bounded by the probability that it is

too large in at least one of these O (n) sectors (of twice the width). By choosing ξ = 2, we can

apply Lemma 4.1 to conclude that a single sector S |ρI (φ )
0 of twice the angular width contains at

most O (log(n)) vertices with probability 1−O (n−2). Applying the union bound and incorporating

the fact that the maximum degree in the graph is δmax, we can bound the number of edges in every

such sector portion and obtain the following corollary.
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Corollary 4.2. Let G be a hyperbolic random graph. For every sector S of angular width φ ∈
Ω(1/n), the degrees of the vertices in S |ρI (φ )

0 sum to Õ (δmax) with high probability.

Note that, in particular, the statement holds for the previously determined angle φ =

Õ (n−(1/α−1) ) for α ∈ (1/2, 1). Additionally, by setting φ = 2π , we can use Lemma 4.1 to bound

the sum of the degrees of the high degree vertices in the neighborhood of a vertex with radius ρ.

Corollary 4.3. Let G be a hyperbolic random graph. For every vertex v of radius ρ, the degrees

of the neighbors of v in DR |ρI (2π )
0 sum to Õ (δmax) with high probability.

4.2 The Central Part of the Disk

For each possible vertex degree k , we want to compute the number of vertices with this degree in

the central part DR |ρO

ρI (φ )
. First note, that by Equation (4) a vertex with fixed radius has expected

degree Θ(k ) if this radius is 2 log(n/k ). Motivated by this, we define rk = 2 log(n/k ). To bound the

sum of degrees in the central part DR |ρO

ρI (φ )
, we use that vertices with radius significantly larger

than rk also have a smaller degree. To this end, we first prove that a vertex with degree k can

actually not have a radius much larger than rk . This has the advantage, that we can bound the

number of degree-k vertices by bounding the number of vertices with these radii.

Lemma 4.4. Let G be a hyperbolic random graph. Then, for every constant c > 0, there exist con-

stants κ,τ > 0, such that all vertices with degree at least k ≥ κ logn have radius at most rk + τ with

probability 1 − O (n−c ).

Proof. To prove this lemma, it suffices to show that there exist constants κ,τ > 0, such that

the probability of a vertex with radius greater than rk + τ having degree at least k , i.e., Pr[∃v ∈
V : deg(v ) ≥ k ∧ r (v ) ≥ rk + τ ], is small. To obtain the following sequence of inequalities, we

first use the union bound, then apply the definition of conditional probabilities, and finally use

Lemma 2.1.

Pr[∃v ∈ V : deg(v ) ≥ k ∧ r (v ) ≥ rk + τ ] ≤ n · Pr[deg(v ) ≥ k ∧ r (v ) ≥ rk + τ ]

≤ n · Pr[deg(v ) ≥ k | r (v ) ≥ rk + τ ]

≤ n · Pr[deg(v ) ≥ k | r (v ) = rk + τ ].

To prove the statement of the lemma, it remains to show that Pr[deg(v ) ≥ k | r (v ) = rk + τ ] is

sufficiently small, i.e., in O (n−(c+1) ).
Recall that, by Equation (4), the expected degree of a vertex with radius r is in Θ(ne−r /2). For a

vertexv with radius rk+τ ,we obtainne−(rk+τ )/2 = e−τ /2k . It follows that there exists a constant c ′ >
0, such thatE[deg(v )] ≤ c ′e−τ /2k . By choosing τ large enough we can ensure thatk ≥ 2eE[deg(v )],
allowing us to apply the Chernoff–Hoeffding bound in Theorem 2.2. We obtain Pr[deg(v ) ≥ k] ≤
2−k . Finally, since k ≥ κ logn, we can choose κ such that this probability is bounded by O (n−(c+1) ).

�

We are now ready to bound the number of vertices in a sector that have degree at least k . As

mentioned earlier, this bound only works for large k as the degree is not sufficiently concentrated

otherwise. Moreover, the degree cannot be too large, as otherwise the number of vertices of this

degree is not concentrated. The upper bound on k in the following lemma directly corresponds to

our choice for ρI (φ). Additionally, ρO is chosen such that the degrees of vertices with radii smaller

than ρO meets the lower bound on k , i.e., the lemma holds for the central part S |ρO

ρI (φ )
.

Lemma 4.5. Let G be a hyperbolic random graph and let S be a sector of angular width φ. If k =
ω (logn) and k = O ((φn/ logn)1/(2α ) ), then the number of vertices in S with degree at least k is in

O (φnk−2α ) with probability 1 − O (n−c ) for any constant c > 0.

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 19. Publication date: March 2022.



19:20 T. Bläsius et al.

Proof. By Lemma 4.4 we know that, for any constant c ′ > 0, there are constants κ,τ > 0

such that all vertices of degree at least k ≥ κ logn have radius at most rk + τ , with probability

1 − O (n−c ′ ). Since k = ω (logn) we have k ≥ κ logn for large enough n and obtain that, with the

same probability, all vertices of degree at least k that are in S are in S |rk+τ
0 . Since the angular width

of S is φ and since the angular coordinates of the vertices are distributed uniformly, the expected

number of vertices in S |rk+τ
0 is given by φ/(2π ) · nμ (DR |rk+τ

0 ). Now we can apply Equation (3),

which states that a disk of radius rk + τ centered at the origin has measure e−α (R−(rk+τ )) (1 + o(1))
and obtain

E[|{v ∈ S |rk+τ
0 }|] = φ

2π
nμ (DR |rk+τ

0 )

=
φ

2π
ne−α (R−(rk+τ )) (1 + o(1))

=
φ

2π
ne−2α log k−α (C−τ ) (1 + o(1))

= Θ(φnk−2α ).

Note that k = O ((φn/ logn)1/(2α ) ) (which is a precondition of this lemma) implies that φnk−2α =

Ω(logn). Thus, we can apply the Chernoff–Hoeffding bound in Corollary 2.3 to conclude that

|{v ∈ S |rk+τ
0 }| = O (φnk−2α ) holds with probability 1 − O (n−c ) for any constant c > 0. �

Using these results, we can now bound the size of the search space in the central part S |ρO

ρI (φ )
of

our sector S , yielding the following lemma. (We note that the lower bound on φ that is a require-

ment of the following lemma, is weaker than the one we need for Theorem 3.5.)

Lemma 4.6. Let G be a hyperbolic random graph. For every sector S of angular width φ ∈
Ω(log(n)2α+1/n), the degrees of the vertices in S |ρO

ρI (φ )
sum to O (φn) with high probability.

Proof. First note that, analogous to the argumentation about sectors in the inner part of the

disk, we can choose at mostO (n) sectors of width 2φ such that any sector of widthφ lies completely

in one of them. Thus, the probability that there exists a sector where the sum of the vertex degrees

in the central part of the disk is too large, is bounded by the probability that it is too large in at

least one of these O (n) sectors (of twice the width). In the following, we show for a single sector

S that the probability that the sum is too large is O (n−2). The union bound then yields the claim,

that the bound holds for every sector.

To sum the degrees of all vertices in S , think of a vertex v of degree deg(v ) as a rectangle of

height 1 and width deg(v ). For a small graph, Figure 6 shows all such rectangles stacked on top

of each other, sorted by their degree. Note that the sum of degrees is equal to the area under the

function д(x ) = |V S
x | where V S

x = {v ∈ S | deg(v ) ≥ x } is the set of vertices in S that have degree

at least x . Also note that the above considerations do not take into account that we sum only the

degrees of vertices in the central part S |ρO

ρI (φ )
of S . To resolve this, let kmin and kmax be the minimum

and maximum degree of vertices in S |ρO

ρI (φ )
, respectively. One can see in Figure 6 that summing only

those degrees that are larger than kmin is equivalent to integrating over |V S
max(kmin,x )

| instead of |V S
x |.

Thus, we can compute the sum of all degrees as

∑
v ∈S |ρO

ρI (φ )

deg(v ) ≤
∑
v ∈S,

kmin≤deg(v )≤kmax

deg(v ) =

∫ kmax

0

|V S
max(kmin,x ) | dx = kmin |V S

kmin
| +

∫ kmax

kmin

|V S
x | dx .

To compute this integral, we first calculate the minimum and maximum degrees kmin and kmax.

Afterwards, we apply Lemma 4.5 to bound |V S
x |. For the minimum degree kmin, assume that vertex

v has radius ρO = R− (2+ε ) log log(n) for any constant ε ∈ (0, 1). Using Equation (4) the expected
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Fig. 6. Visualization of how the sum over the degrees can be turned into an integral (left). The same visual-
ization but only the degrees of vertices with degree at least 3 are summed up (right).

degree of v is E[deg(v )] = Θ(ne−R/2+(1+ε/2) log log(n) ) = Θ(log(n)1+ε/2). Since ε > 0, this bound is

ω (logn), allowing us to apply the Chernoff–Hoeffding bounds in Corollaries 2.3 and 2.4 to conclude

that deg(v ) = Θ(log(n)1+ε/2) with high probability. Note that this only holds under the assumption

that v has radius exactly ρO . However, by Lemma 2.1 all vertices with smaller radius have larger

expected degree. Therefore, Θ(log(n)1+ε/2) is a lower bound on the expected degrees of all such

vertices, allowing us to apply Corollary 2.4 together with a union bound, to conclude that, with

high probability, no vertex with smaller radius has smaller degree. Thus, with high probability,

the minimum degree in S |ρO

ρI (φ )
is kmin = Θ(log(n)1+ε/2). Analogously, the bound on the maximum

degree kmax of a vertex in S |ρO

ρI (φ )
can be obtained as follows. Let v be a vertex with radius ρI (φ) =

R−1/α (log(φ/2π )+ logn− log logn). The expected degree ofv is E[deg(v )] = Θ((φn/ logn)1/(2α ) )
(Equation (4)). Since φ ∈ Ω(log(n)2α+1/n), which is a precondition of this lemma, we can conclude

that this bound on the expected degree of v is Ω(logn), allowing us to apply Corollary 2.3 to

conclude that E[deg(v )] = O ((φn/ logn)1/(2α ) ) holds with high probability. Again, this only holds

under the assumption that v has radius exactly ρI (φ). However, by Lemma 2.1 all vertices with

larger radius have smaller expected degree. Therefore, O ((φn/ logn)1/(2α ) ) is a valid upper bound

on all their expected degrees, allowing us to apply Corollary 2.3 together with a union bound, to

conclude that no vertex with larger radius has larger degree. Thus, the maximum degree in S |ρO

ρI (φ )

is kmax = O ((φn/ logn)1/(2α ) ) with high probability.

Using Lemma 4.5 we obtain |V S
x | = O (φnx−2α ) with probability 1 − O (n−c ) for any constant

c > 0. Note that the requirements x = ω (logn) and x = O ((φn/ logn)1/(2α ) ) in Lemma 4.5 are

satisfied as kmin ≤ x ≤ kmax. By choosing c = 2 and applying the union bound over all degrees, we

can conclude that, with high probability

∑
v ∈S |ρO

ρI (φ )

deg(v ) = O
(
φnk−(2α−1)

min

)
+ O �

�φn ·
∫ kmax

kmin

x−2α dx��
= O

(
φnk−(2α−1)

min

)
+ O

(
φn · k−(2α−1)

min

(
1 − (kmin/kmax)2α−1

))
.

As kmin ≤ kmax, this can be simplified to O (φnk−(2α−1)
min

), which is O (φn) since kmin = ω (logn). �

It remains to bound the sum of the degrees of vertices in the central part of the disk DR |ρO

ρI (2π )

that lie in the neighborhood of a vertex v with radius ρ, i.e., vertices lying in DR (v ). Similar to
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Fig. 7. Determining the sum of degrees of the neighbors of vertex v that are all contained in DR (v ). To

compute the measure of DR (v ) |rk+τ
0 we divide it into two regions DR (v ) |R−ρ

0 = DR−ρ (blue) and DR (v ) |rk+τ
R−ρ

(red).

the bounds for a sector S , we bound the sum of degrees in DR (v ) by bounding the number of

vertices with a fixed degree k for every possible value of k . If all these bounds hold with probability

1− O (n−3), then the union bound shows that the sum is concentrated with probability 1− O (n−2).
To obtain a bound that holds for every possible angular coordinate ofv (as claimed in Section 3.3.2),

we apply Lemma 2.5. There, we choose the random variables Xw to represent the degrees of the

vertices. Our bound on the sum that holds with probability 1−O (n−2) at a fixed angular coordinate,

can then be translated to the same asymptotic bound that holds with probability 1−O (n−1) at every

possible angular coordinate.

For a fixed degree k = ω (logn), all vertices with degree at least k have radius at most rk + τ
with high probability due to Lemma 4.4, where rk = 2 log(n/k ) and τ is constant. Thus, all vertices

of degree at least k in DR (v ) lie in DR (v ) |rk+τ
0 , with high probability. In analogy to Lemma 4.5, we

obtain the following bound on the number of vertices in DR (v ) |rk+τ
0 .

Lemma 4.7. LetG be a hyperbolic random graph and letv be a vertex with radius ρ = 1/α (logn−
log logn). If k = ω (logn), the number of neighbors of v with degree at least k is

|{w ∈ N (v ) | deg(w ) ≥ k }| = O (n1−1/(2α ) log(n)1/(2α )k−(2α−1) + logn),

with probability 1 − O (n−c ) for any constant c > 0.

Proof. Since k = ω (logn), we can apply Lemma 4.4 stating that all vertices of degree at least

k in DR (v ) lie within DR (v ) |rk+τ
0 with high probability. To bound the number of neighbors of

v with degree at least k we first compute the measure μ (DR (v ) |rk+τ
0 ). To do this, we separate

DR (v ) |rk+τ
0 into the disk DR (v ) |R−ρ

0 = DR−ρ and DR (v ) |rk+τ
R−ρ

; see Figure 7. Due to Equation (3), we

have μ (DR−ρ ) = O (e−α (R−(R−ρ )) ) = O (logn/n), which is already an upper bound on μ (DR (v ) |rk+τ
0 )

for the case where rk +τ ≤ R − ρ. When rk +τ > R − ρ, we need to add the measure of DR (v ) |rk+τ
R−ρ

,

which is given by

μ (DR (v ) |rk+τ
R−ρ

) =

∫ rk+τ

R−ρ

2

∫ θ (ρ,r )

0

f (r ,ϕ) dϕ dr = O �
�
∫ rk+τ

R−ρ

θ (ρ, r ) f (r ) dr��.
Since we consider r ∈ [R − ρ, rk + τ ] in the integral, we have r ≥ R − ρ, allowing us to apply Equa-

tion (2) to conclude that θ (ρ, r ) = O (e (R−ρ−r )/2). Furthermore, we can substitute the probability
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density f (r ) = O (e−α (R−r ) ) (Equation (1)) to obtain

μ
(
DR (v ) |rk+τ

R−ρ

)
= O �

�
∫ rk+τ

R−ρ

e (R−ρ−r )/2 · e−α (R−r ) dr��
= O �

�e
(R−ρ )/2 · e−α R ·

∫ rk+τ

R−ρ

e (α−1/2)r dr��
= O

(
e−(α−1/2)R · e−ρ/2 ·

[
e (α−1/2)(rk+τ ) − e (α−1/2)(R−ρ )

])
.

Dropping the negative term in the brackets and substituting R = 2 logn + C , ρ = 1/α (logn −
log logn), and rk = 2 log(n/k ), we obtain

μ
(
DR (v ) |rk+τ

R−ρ

)
= O

(
e−(α−1/2)R · e−ρ/2 · e (α−1/2)(rk+τ )

)
= O

(
n−(2α−1) · n−1/(2α ) log(n)1/(2α ) · n2α−1 · k−(2α−1)

)
= O

(
(log(n)/n)1/(2α ) · k−(2α−1)

)
.

The expected number of vertices in DR (v ) |rk+τ
0 is now obtained by reversing the previous split

and adding the measures of DR−ρ and DR (v ) |rk+τ
R−ρ

, which yields

E[|{v ∈ DR (v ) |rk+τ
0 }|] = n ·

(
μ (DR−ρ ) + μ (DR (v ) |rk+τ

R−ρ
)
)
= O (logn + n1−1/(2α ) log(n)1/(2α )k−(2α−1) ),

and it remains to show that this bound holds with large enough probability. Clearly, this bound

is at least logarithmic. Thus, we can apply Corollary 2.3 to conclude that it holds with probability

1 − O (n−c ) for any constant c . �

With this, we are now ready to bound the sum of the degrees of the vertices in the central part of

the disk that are in the neighborhood of a vertex with radius ρ. The proof of the following lemma

is analogous to the one of Lemma 4.6.

Lemma 4.8. Let G be a hyperbolic random graph and let v be a hypothetical vertex with radius

ρ = 1/α (logn−log logn) and arbitrary angular coordinate. The degrees of neighbors ofv inDR |ρO

ρI (2π )

sum to Õ (n1/(2α ) ) with high probability.

Proof. Recall that DR (v ) is the disk containing all neighbors of v . To bound the sum of the

degrees of the vertices in DR (v ) |ρO

ρI (2π )
, we use basically the same proof as in Lemma 4.6 except we

use Lemma 4.7 instead of Lemma 4.5. Thus,

∑
w ∈DR (v ) |ρO

ρI (2π )

deg(w ) ≤ kmin |V DR (v )
kmin

| +
∫ kmax

kmin

|V DR (v )
x | dx ,

whereV DR (v )
x is the set of vertices of degree at least x inDR (v ) and kmin and kmax are the maximum

and minimum degree in DR (v ) |ρO

ρI (2π )
, respectively.

We start with computing kmin and kmax. Using Equation (4) and Corollaries 2.3 and 2.4, we obtain

that a vertex of radius ρO = R− (2+ε ) log logn, for any ε ∈ (0, 1), has degree kmin = Θ((logn)1+ε/2)
with high probability. Moreover, by the same argumentation as in the proof of Lemma 4.6 no vertex

with smaller radius has smaller degree, with high probability. Additionally, a vertex with radius

ρI (2π ) = R− 1/α (logn− log logn) has degree kmax = O ((n/ logn)1/(2α ) ) and no vertex with larger
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radius has larger degree, with high probability. It follows that we can use the bound shown in

Lemma 4.7 for |V DR (v )
x |. Thus, we obtain

∑
w ∈DR (v ) |ρO

ρI (2π )

deg(w ) = Õ (kmin · n1−1/(2α )k−(2α−1)
min

) + Õ �
�n

1−1/(2α )

∫ kmax

kmin

x−(2α−1) dx�� .

Replacing kmin and simplifying the first term in the sum yields Õ (n1−1/(2α ) ), which is smaller than

the claimed bound. For the second term, we obtain

Õ �
�n

1−1/(2α )

∫ kmax

kmin

x−(2α−1) dx�� = Õ
(
n1−1/(2α )

[
k2−2α

max − k2−2α
min

])
.

Dropping the negative term and replacing kmax = Õ (n1/(2α ) ), we obtain Õ (n1−1/(2α )+1/α−1) =

Õ (n1/(2α ) ). �

4.3 The Outer Part of the Disk

At this point we have bounded the sum of the degrees of the vertices with radius at most ρO = R−
(2+ε ) log logn (for any constant ε ∈ (0, 1)) that lie in a sector of angular widthφ ∈ Ω(log(n)2α+1/n)
or in the neighborhood of a vertex with radius ρ. It remains to bound the sums when considering

vertices with radii larger than ρO .

To bound the sum of the vertex degrees in the outer part of a sector S |RρO
, we start by computing

the expected value.

Lemma 4.9. Let G be a hyperbolic random graph. For a sector S of angular width φ, the degrees of

vertices in S |RρO
sum to Θ(φn) in expectation.

Proof. Let deg(v ) be the random variable describing the degree of a vertex v . Moreover, let

Xv be the indicator variable that is 1 if v ∈ S |RρO
and 0 otherwise. Then the expected sum of the

degrees of vertices in S |RρO
is given by

E

⎡⎢⎢⎢⎢⎢⎣
∑
v ∈V

Xv · deg(v )

⎤⎥⎥⎥⎥⎥⎦
=

∑
v ∈V
E[Xv · deg(v )] = n · Pr

[
v ∈ S |RρO

]
· E

[
deg(v ) | v ∈ S |RρO

]
.

Note that Pr[v ∈ S |RρO
] is simply the measure μ (S |RρO

). As the angular coordinate is uniformly

distributed, the whole sector S has measure Θ(φ). Moreover, the region of the disk containing the

points with constant distance to the boundary has constant measure. Thus, the measure of S |RρO
is

also in Θ(φ). For the sake of completeness, the measure of S |RρO
can be formally computed as

μ
(
S |RρO

)
= μ

(
S \S |ρO

0

)
=

φ

2π
(1 − μ (DρO

))

=
φ

2π
(1 − e−α (R−ρO ) (1 + o(1)))

=
φ

2π
(1 − O ((logn)−α (2+ε ) ))

= Θ(φ).
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It remains to determine E[deg(v ) | v ∈ S |RρO
], which can be done as follows:

E

[
deg(v ) | v ∈ S |RρO

]
=

�
S |RρO

E[deg(v ) | r (v ) = r ]
f (r ,ϕ)

μ (S |RρO
)

dϕ dr

=
1

μ (S |RρO
)
·
∫ R

ρO

∫ φ

0

E[deg(v ) | r (v ) = r ]f (r ,ϕ) dϕ dr

= Θ(1) ·
∫ R

ρO

E[deg(v ) | r (v ) = r ]f (r ) dr

= Θ(1) · n · e−α R

∫ R

ρO

e (α−1/2)r dr

= Θ(1) · n · e−α R
[
e (α−1/2)R − e (α−1/2)ρO

]
= Θ(1) · n · e−R/2

[
1 − e−(α−1/2)(R−ρO )

]
.

Note that the part in brackets is bounded by a constant. Moreover, as R = 2 logn +C , n · e−R/2 is

constant as well. Thus, E[deg(v ) | v ∈ S |RρO
] is in Θ(1). It follows that the expected sum of the

degrees is Θ(φn). �

Unfortunately, the sum of the vertex degrees in S |RρO
is not concentrated sufficiently well around

its expectation to conclude that this bound also holds with high probability. The problem lies

with the high-degree vertices in the graph, which can be adjacent to none or all vertices in S |RρO

depending on their positions. That is, small perturbations of the position of a single high-degree

vertex can change the sum by too much. To overcome this issue, we consider the impact of high-

degree vertices separately. To this end, we partition the edge set that contributes to the degrees

of the vertices in S |RρO
into two sets EI and EO , denoting the inner edges where the other endpoint

is in DR |ρO

0 and the outer edges where the other endpoint is in DR |RρO
. The sum of the degrees of

the vertices in S |RρO
can then be bounded by taking the number of inner edges and adding them to

twice the number of outer edges. That is,∑
v ∈S |RρO

deg(v ) ≤ |EI | + 2|EO |.

Since EI denotes all edges with one endpoint in S |RρO
and the other in the inner or central part of

the disk, we can obtain an upper bound on the first summand by summing the degrees of the ver-

tices in DR |ρO

0 that are adjacent to any vertex in S |RρO
. Since ρ ≤ ρO , we have S |RρO

⊆ S |Rρ , allowing

us to apply Lemma 3.7 to conclude that all such vertices are contained in S or are neighbors of the

two hypothetical corner vertices c1 and c2, which both have radius ρ. Thus, |EI | can be bounded

by the sum of the degrees of vertices in a sector and in the neighborhood of a vertex with radius

ρ, but constrained to vertices in the inner and central parts of the disk. Corresponding bounds

that hold with high probability have been determined above. For the sector we obtain an upper

bound of Õ (δmax) for the inner part (Corollary 4.2) and O (φn) for the central part (Lemma 4.6).

For the neighborhood of a vertex with radius ρ we have Õ (δmax) for the inner part (Corollary 4.3)

and Õ (n1/(2α ) ) for the central part (Lemma 4.8). Taking them together, we obtain the following

corollary.

Corollary 4.10. Let G be a hyperbolic random graph. For every sector S of angular width φ ∈
Ω(log(n)2α+1/n), the number of edges with one endpoint in S |RρO

and the other in DR |ρO

0 is in Õ (φn+

n1/(2α ) + δmax), with high probability.
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To obtain an upper bound on the second part of the above sum, we aim at applying a method

of typical bounded differences based on the fact that changing the position of a single vertex has

typically only little impact on the number of outer edges. The idea is as follows. We consider |EO |
as a function that only depends on the positions P1, . . . , Pn of the vertices in the graph and we ask

ourselves: How much can |EO | change, if we alter the position of a single vertex i? Clearly, this

change can be large in the worst case. Assume that we move i from outside DR |RρO
into S |RρO

. Then,

i does not contribute anything to |EO | before the move and the increase in |EO | depends on the

number of outer edges that are incident to i after the move, which can be n − 1 in the worst case.

However, it is very unlikely that a vertex in S |RρO
has this many neighbors that lie in the outer

part of the disk. In fact, its degree is typically much smaller. To formalize this, we represent the

typical case using an eventA, denoting that the degree of such a vertex is at most a constant factor

larger than the expected degree of a vertex with radius ρO = R − (2 + ε ) log logn for any constant

ε ∈ (0, 1). More precisely, A denotes the event in which all disks of radius R with center in DR |RρO

contain at most O (log(n)1+ε/2) vertices. In this case, moving a vertex i in the same way as before

leads to a much smaller increase in the number of outer edges. Assuming that A holds before the

move, there are at most O (log(n)1+ε/2) outer edges incident to i after the move, which corresponds

to the increase of |EO |. The following lemma defines the event A formally and shows that it holds

with high probability.

Lemma 4.11. Let G be a hyperbolic random graph and let ρO = R − (2 + ε ) log log(n) for any

constant ε ∈ (0, 1). Then, all disks D with radius R and center in DR |RρO
contain at most |{v ∈ D}| =

O (log(n)1+ε/2) vertices, with probability 1 − O (n−c ) for any constant c .

Proof. Let D be a disk of radius R and center P ∈ DR |RρO
. By Lemma 2.1, a valid upper bound

on the expected number of vertices in D can be obtained by considering the disk D ′ at center

P ′ instead, which has the same angular coordinate as P and radius ρO . Thus, E[|{v ∈ D}|] ≤
E[|{v ∈ D ′}|] = O (ne−ρO /2) = O (log(n)1+ε/2) (see Lemma (4)). Moreover, since ε > 0, this bound

is ω (logn) and we can apply Corollary 2.3 to conclude that |{v ∈ D}| ∈ O (log(n)1+ε/2) holds with

probability 1−O (n−c ′ ) for any constant c ′. To obtain a bound that holds for every possible angular

coordinate for P , we apply Lemma 2, which allows us to translate our bound that holds for any

given disk D with probability 1−O (n−c ′ ) to the same asymptotic bound that holds with probability

1 − O (n−c ′+1) for all possible angular coordinates. Choosing c ′ = c + 1 then yields the claim. �

So while moving a single vertex leads to a large change in the number of outer edges |EO | in the

worst case, we observe only small changes in the typical case A. Formally, we say that a function

f : Ωn → R satisfies the typical bounded differences condition with respect to an event A ⊆ Ωn if

for all i ∈ {1, . . . ,n} there exist ΔA
i ≤ Δi such that

| f (x ) − f (x ′) | ≤
⎧⎪⎨⎪⎩

ΔA
i , if x ∈ A,

Δi , otherwise,

for all x ,x ′ ∈ Ωn that differ only in the ith component.

Theorem 4.12 (Method of Typical Bounded Differences, [27, Theorem 23]). Let

X1, . . . ,Xn ∈ Ω be independent random variables and let A ⊆ Ωn be an event. Furthermore, let

f : Ωn → R be a function that satisfies the typical bounded differences condition with respect to A
and with parameters ΔA

i ≤ Δi for i ∈ {1, . . . ,n}. Then, for all ε1, . . . , εn ∈ (0, 1] there exists an

3We state a slightly simplified version in order to facilitate understandability. The original theorem allows for the random

variables X1, . . . , Xn to be defined in different sample spaces.
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event B satisfying B̄ ⊆ A and Pr[B] ≤ Pr[Ā] ·∑i 1/εi , such that for Δ =
∑

i (ΔA
i + εi (Δi − ΔA

i ))2 and

t ≥ 0 it holds that

Pr[f > E[f ] + t ∧ B̄] ≤ e−t 2/(2Δ) .

Intuitively, the choice of the values for εi has two effects. On one hand, choosing εi small al-

lows us to compensate for a potentially large worst-case change Δi . On the other hand, this also

increases the bound on the probability of the event B that represents the atypical case. However,

in that case one can still obtain meaningful bounds if the typical event A occurs with high enough

probability. In the following, we show that an upper bound on the expected value E[f ] is suffi-

cient to apply the method of typical bounded differences, before applying it to bound the number

of outer edges in a sector.

Corollary 4.13. LetX1, . . . ,Xn ∈ Ω be independent random variables and letA ⊆ Ωn be an event.

Furthermore, let f : Ωn → R be a function that satisfies the typical bounded differences condition with

respect to A and with parameters ΔA
i ≤ Δi for i ∈ {1, . . . ,n} and let д(n) be an upper bound on E[f ].

Then for all ε1, . . . , εn ∈ (0, 1], Δ =
∑

i (ΔA
i + εi (Δi − ΔA

i ))2, and c ≥ 1 it holds that

Pr[f > cд(n)] ≤ e−((c−1)д (n))2/(2Δ) + Pr[Ā]
∑

i

1/εi .

Proof. Let h(n) ≥ 0 be a function with f ′ = f + h(n) such that E[f ′] = д(n). Note that h(n)
exists since д(n) ≥ E[f ]. As a consequence, we have f ≤ f ′ for all outcomes of X1, . . . ,Xn and it

holds that

| f ′(x ) − f ′(x ′) | = | f (x ) + h(n) − f (x ′) − h(n) | = | f (x ) − f (x ′) |,
for all x ,x ′ ∈ Ωn . Consequently, f ′ satisfies the typical bounded differences condition with respect

to A with the same parameters ΔA
i ≤ Δi as f . Since f ≤ f ′ it holds that

Pr[f > cд(n)] ≤ Pr[f ′ > cд(n)] = Pr[f ′ > cE[f ′]].

By choosing t = (c − 1)E[f ′] this can be written as

Pr[f ′ > cE[f ′]] = Pr[f ′ > E[f ′] + t].

Theorem 4.12 now guarantees the existence of an event B with Pr[B] ≤ Pr[Ā] ·∑i 1/εi and B̄ ⊆ A,

such that Pr[f ′ > E[f ′]+ t ∧ B̄] ≤ e−t 2/(2Δ) . To bound Pr[f ′ > E[f ′]+ t] we apply the law of total

probability and consider the events B and B̄ separately

Pr[f ′ > E[f ′] + t] = Pr[f ′ > E[f ′] + t | B̄] · Pr[B̄] + Pr[f ′ > E[f ′] + t | B] · Pr[B].

The first part of the sum can be simplified using the definition of conditional probabilities. More-

over, it holds that Pr[f ′ > E[f ′] + t | B] ≤ 1. Thus, we can bound the above term by

Pr[f ′ > E[f ′] + t] ≤ Pr[f ′ > E[f ′] + t ∧ B̄] + Pr[B].

Both remaining summands can now be bounded using the upper bounds that we previously ob-

tained by applying Theorem 4.12, i.e., Pr[f ′ > E[f ′]+t∧ B̄] ≤ e−t 2/(2Δ) and Pr[B] ≤ Pr[Ā] ·∑i 1/εi .

Thus,

Pr[f ′ > E[f ′] + t] ≤ e−t 2/(2Δ) + Pr[Ā] ·
∑

i

1/εi .

Finally, since t was chosen as t = (c − 1)E[f ′] and since E[f ′] = д(n), we obtain the claimed

bound. �

We are now ready to bound the number |EO | of outer edges, i.e., edges that are incident to

vertices in a sector S |RρO
and have their other endpoint in DR |RρO

.
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Lemma 4.14. Let G be a hyperbolic random graph. For every sector S of angular width φ ∈
Ω(log(n)2/n1/2), the number of edges with one endpoint in S |RρO

and the other in DR |RρO
is in O (φn),

with high probability.

Proof. First note that, analogous to the proof of Lemma 4.6, we can cover the disk with O (n)
sectors of angular width 2φ such that any sector of angular width φ lies completely in one of them.

In the following, we show that the claimed bound holds with probability O (n−2) for a single sector

S . Applying union bound then yields the claim.

We consider |EO |, the number of edges with one endpoint in S |RρO
and the other in DR |RρO

, as

a function hat only depends on the positions P1, . . . , Pn of the vertices in the graph. To show

that |EO | does not exceed an upper bound with high probability, we aim at applying the method

of typical bounded differences (Corollary 4.13). We represent the typical case with an event A,

denoting that all disks D of radius R and center in DR |RρO
contain at most O (log(n)1+ε/2) vertices

for any constant ε ∈ (0, 1). In order to determine the parameters ΔA
i ≤ Δi for i ∈ {1, . . . ,n} with

which |EO | fulfills the typical bounded differences condition with respect to A, we have to bound

the maximum change in |EO | obtained by moving a single vertex. As argued before, this change

is at most Δi = n − 1 for all i ∈ {1, . . . ,n} in the worst case. To bound the ΔA
i , we start with a

configuration of vertex coordinates in which the event A holds. In this case, it is easy to see that

moving a single vertex i changes |EO | by at most ΔA
i = O (log(n)1+ε/2) for all i ∈ {1, . . . ,n}, since

the degree of i is at most this large after the move and so is the number of outer edges it contributes

to |EO |.
We are now ready to apply the method of typical bounded differences (Corollary 4.13). For an

upper bound д(n) on |EO |, any constant c > 1, and all ε1, . . . , εn ∈ (0, 1] it states that

Pr[|EO | > cд(n)] ≤ e−((c−1)д (n))2/(2Δ) + Pr[Ā]
∑

i

1/εi ,

where Δ =
∑

i (ΔA
i + εi (Δi − ΔA

i ))2. First note that a valid upper bound on the expected number

of outer edges incident to vertices in S |RρO
is given by the expected sum of the degrees of these

vertices. Thus, by Lemma 4.9 we can choose д(n) = Θ(φn). Moreover, by choosing εi = 1/n for all

i ∈ {1, . . . ,n} and since Δi = n − 1 and ΔA
i = O (log(n)1+ε/2) for all i ∈ {1, . . . ,n}, we can compute

Δ as

Δ =
∑

i

(ΔA
i + εi (Δi − ΔA

i ))2

= O
(
n ·

(
log(n)1+ε/2 + 1/n(n − log(n)1+ε/2)

)2
)

= O
(
n ·

(
log(n)1+ε/2 + (1 − o(1))

)2
)

= O
(
n · log(n)2+ε

)
.

Consequently, the above probability can be bounded by

Pr[|EO | > cд(n)] ≤ exp
��
�−Θ �

�
(φn)2

n log(n)2+ε
�
�
��
� + Pr[Ā] · n2

≤ exp
��
�−Θ �

�
φ2n

log(n)2+ε
�
�
��
� + Pr[Ā] · n2.

Sinceφ ∈ Ω(log(n)2/n1/2) is a precondition of this lemma and since ε < 1, we can conclude that the

fraction is ω (logn), which means that the first summand is O (n−c ′ ) for any constant c ′. Moreover,
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by Lemma 4.11 event A holds with probability 1 − O (n−c ′ ) for any constant c ′. Choosing c ′ = 3

then yields the claim. �

4.4 The Complete Disk

Having obtained the required bounds for the inner, central, and outer parts of the disk, we can

now combine them to bound the sum of the degrees in a sector and in the neighborhoods of the

hypothetical corner vertices. We start with Theorem 3.5, which bounds the sum of degrees in a

sector. To improve readability, we restate the theorem here.

Theorem 3.15. Let G be a hyperbolic random graph. The degrees of vertices in every sector of

angular width φ sum to Õ (φn + n1/(2α ) + δmax) with high probability if φ = Ω(log(n)2/n1/2).

Proof. For the inner and central parts of every sector the sum of the vertex degrees is bounded

by Õ (φn + δmax) with high probability due to Corollary 4.2 and Lemma 4.6. As argued above,

the sum of the degrees of the remaining vertices, i.e., vertices with radius at least ρO , can be

bounded by counting the number of inner edges and adding twice the number of outer edges.

Since φ ∈ Ω(log(n)2/n1/2), we can apply Corollary 4.10 and Corollary 4.14 to conclude that the

corresponding sum is bounded by Õ (φn + n1/(2α ) + δmax), with high probability. �

Lastly, it remains to bound the sum of the degrees of the neighbors of the hypothetical corner

vertices that were used to bound the size of the search space in the second phase. Again, for the

sake of readability, we restate the corresponding lemma here.

Lemma 3.16. Let G be a hyperbolic random graph and let v be a hypothetical vertex with radius

ρ = 1/α (logn − log logn) and arbitrary angular coordinate. The degrees of neighbors of v sum to

Õ (n2−1/α + n1/(2α ) + δmax) with high probability.

Proof. For the inner and central parts of the neighborhood of a vertex with radius ρ and arbi-

trary angular coordinate the sum of the degrees is bounded by Õ (δmax + n
1/(2α ) ) with high proba-

bility, due to Corollary 4.3 and Lemma 4.8. For the sum of the degrees in the outer part of the disk,

note that all neighbors of radius at least ρ have angular distance at most φ = O (n−(1/α−1) ); see

Section 3.3.1. Thus, we can use Theorem 3.5 to conclude that claimed bound holds for the sum of

their degrees. Note that if φ is too small to meet the requirements of Theorem 3.5, we can choose

φ = Õ (n−1/2) as a valid upper bound to conclude that the sum of degrees in the outer part of the

neighborhood is in Õ (n1/2), which is Õ (n1/(2α ) ) for α ∈ (1/2, 1). �

5 CONCLUSION

In the following, we briefly discuss why we think that the bound Õ (n2−1/α +n1/(2α )+δmax) is rather

tight; see Figure 8 (left) for a plot of the exponents. Clearly, the maximum degree of the graph is a

lower bound, i.e., we cannot improve the δmax. As δmax = Θ̃(n1/(2α ) ) holds almost surely [17], we

also cannot improve below Õ (n1/(2α ) ). For the term n2−1/α we do not have a lower bound. Thus,

the blue region in Figure 8 (left) is the only part where our bound can potentially be improved.

However, by only making a single step from a vertex with radius ρ = 1/α (logn − log logn), we

can already reach vertices with angular distance Θ(n−(1/α−1) ). Thus, it seems likely, that there

exists a start–destination pair such that all vertices within a sector of this angular width are actu-

ally explored. As such a sector contains Θ(n2−1/α ) vertices, our bound seems rather tight (at least

asymptotically and up to poly-logarithmic factors). For a comparison of our theoretical bound with

actual search-space sizes in hyperbolic random graphs; see Figure 8.
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Fig. 8. Left: The exponent of our theoretical bound depending on α . Right: The corresponding empirically
measured search spaces. The data were obtained by generating 20 hyperbolic random graphs with aver-
age degree roughly 8 for each shown α and each n ∈ {100k, 200k, 300k}. For each graph we sampled 300k

start–destination pairs and report the maximum number of edges explored in one search. The numbers
are normalized with the total number of edges m of the graph such that x is plotted for a search space of
sizemx .

Finally, in order to put our results into perspective, we discuss the following question: How

does a heterogeneous degree distribution impact the exponent in the running time of the bidi-

rectional BFS? First, considering networks with no underlying geometry, the exponent is 1/2 for

homogeneous networks and (4 − β )/2 = 3/2 − α for heterogeneous networks with power-law

exponent β [10]. That is, when increasing the heterogeneity by letting α go from 1 to 1/2, the

exponent increases from 1/2 to 1. This can be explained by the fact that a heterogeneous degree

distribution leads to high-degree vertices, which leads to a higher running time when they are

explored.

On hyperbolic random graphs, we get the same effect. The 1/(2α )-part of the exponent (the

red function in Figure 8) is very similar to the above 3/2 − α . However, due to the underlying

geometry, the heterogeneity has another effect, expressed by the 2− 1/α-part of the exponent (the

green function in Figure 8). This can be explained as follows. The underlying geometry constrains

the parts of the graph that a vertex can connect to. As a result, the search space cannot expand

sufficiently fast on homogeneous networks and we only get a constant speedup, i.e., the exponent

is 1. However, increasing the heterogeneity leads to high degree vertices, which accelerate the

expansion of the search spaces, leading to a lower exponent.

In conclusion, we can say that heterogeneity has two effects on the bidirectional BFS:

(1) More heterogeneity leads to higher running times as exploring high degree-vertices is costly.

(2) More heterogeneity leads to lower running times as high degree-vertices let the search

spaces expand quickly.

For networks without underlying geometry, the second effect is irrelevant, as the search space

always expands quickly due to the independence of edges. Thus, the running time is better the

more homogeneous the network. For networks with underlying geometry, both effects play an

important role leading to the v-shape in Figure 8. For high heterogeneity (α < 0.75), the cost of

exploring high degree vertices dominates, leading to the exponent 1/(2α ). For lower heterogeneity

(α > 0.75), the slower expanding search space due to the underlying geometry dominates, leading

to the exponent 2 − 1/α .
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