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Abstract

Understanding real-world networks has been a core research
endeavor throughout the last two decades. Network Cre-
ation Games are a promising approach for this from a game-
theoretic perspective. In these games, selfish agents corre-
sponding to nodes in a network strategically decide which
links to form to optimize their centrality. Many versions have
been introduced and analyzed, but none of them fits to mod-
eling the evolution of social networks. In real-world social
networks, connections are often established by recommenda-
tions from common acquaintances or by a chain of such rec-
ommendations. Thus establishing and maintaining a contact
with a friend of a friend is easier than connecting to complete
strangers. This explains the high clustering, i.e., the abun-
dance of triangles, in real-world social networks.
We propose and analyze a network creation model inspired
by real-world social networks. Edges are formed in our model
via bilateral consent of both endpoints and the cost for estab-
lishing and maintaining an edge is proportional to the dis-
tance of the endpoints before establishing the connection. We
provide results for generic cost functions, which essentially
only must be convex functions in the distance of the endpoints
without the respective edge. For this broad class of cost func-
tions, we provide many structural properties of equilibrium
networks and prove (almost) tight bounds on the diameter,
the Price of Anarchy and the Price of Stability. Moreover,
as a proof-of-concept we show via experiments that the cre-
ated equilibrium networks of our model indeed closely mim-
ics real-world social networks. We observe degree distribu-
tions that seem to follow a power-law, high clustering, and
low diameters. This can be seen as a promising first step to-
wards game-theoretic network creation models that predict
networks featuring all core real-world properties.

Introduction
Complex networks from the Internet to various (online) so-
cial networks have a huge impact on our lives and it is thus
an important research challenge to understand these net-
works and the forces that shape them. The emergence of the
Internet has kindled the interdisciplinary field of Network
Science (Barabási 2016), which is devoted to analyzing and
understanding real-world networks.
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Extensive research, e.g. (Albert, Jeong, and Barabási
1999; Barabási and Albert 1999; Broder et al. 2000; Klein-
berg 2000; Leskovec, Kleinberg, and Faloutsos 2005; New-
man, Barabasi, and Watts 2011; Barabási 2016), on real
world networks from many different domains like commu-
nication networks, social networks, metabolic networks, etc.
has revealed the astonishing fact that most of these real-
world networks share the following basic properties:
• Small-world property: The diameter and average dis-

tances are at most logarithmic in number of nodes.
• Clustering: Two nodes with a common neighbor have a

high probability of being neighbors, i.e., there is an abun-
dance of triangles and small cliques.

• Power-law degree distribution: The probability that a
node has degree k is proportional to k−β , for 2 ≤ β ≤ 3.
That is, the degree distribution follows a power-law. Such
networks are also called scale-free networks.

The phenomenon that real world networks from different do-
mains are very similar begs a scientific explanation, i.e., for-
mal models that generate networks with the above properties
from very simple rules.

Many such models have been proposed, most promi-
nently the preferential attachment model (Barabási and Al-
bert 1999), Chung-Lu random graphs (Chung and Lu 2002),
hyperbolic random graphs (Krioukov et al. 2010; Friedrich
and Krohmer 2015) and geometric inhomogeneous random
graphs (Bringmann, Keusch, and Lengler 2019). However,
all these models describe a purely random process which
eventually outputs a network having realistic properties. In
contrast, many real-world networks evolved over time by an
interaction of rational agents. For example, in (online) so-
cial networks (Jackson 2010) the selfish agents correspond
to people or firms that choose carefully with whom to main-
tain a connection. Thus, a model with higher explanatory
power should consider rational selfish agents which use and
modify the network to their advantage (Papadimitriou 2001).

In game-theoretic models for network formation, selfish
agents correspond to nodes in a network. Each agent strate-
gically selects other agents to form a link. The union of all
chosen links then determines the edge-set of the created net-
work (Jackson and Wolinsky 1996). The individual goal of
each agent is modeled via a cost function, which typically
consists of costs for creating links and of a service cost



term, which measures the perceived quality of the created
network for the individual agent. For example, the service
cost could be proportional to the node’s centrality (Fabrikant
et al. 2003) or simply to the number of reachable nodes (Bala
and Goyal 2000). Any network can be considered as an out-
come of such a game and among all possible networks the
so-called equilibrium networks, where no agent wants to add
or remove links, are particularly interesting since analyzing
their structure yields insights into why real-world networks
exhibit the above-mentioned properties. Moreover, a game-
theoretic model allows measuring the impact of the selfish
agent behavior on the whole society of agents.

So far, game-theoretic approaches can explain the small-
world property, that is, it has been proven that the diameter
of all equilibrium networks is small (Demaine et al. 2012).
However, to the best of our knowledge, no known game-
theoretic model can also explain the emergence of clustering
and a power-law degree distribution.

Our Contribution In this paper, we propose and analyze
a simple and very general game-theoretic model which is
motivated by real-world social networks. Its main actors are
selfish agents that bilaterally form costly links to increase
their centrality. Hereby, the cost of each link is an arbitrary
convex function in the distance of the involved nodes with-
out this link. This naturally models the convention that con-
necting with a friend of a friend is much easier than to es-
tablish and maintain a link with an agent having no common
acquaintances. To establish a link, both endpoints have to
agree and pay the edge’s cost.

We characterize the social optimum and prove the exis-
tence of equilibrium networks for our generic model. For
this, we provide many structural properties. Moreover, we
give (nearly) tight bounds on the diameter, the Price of An-
archy and the Price of Stability that essentially only depend
on the cost of closing a triangle and on the cost of main-
taining a bridge-edge in the network. This implies that all
these values are very low for many natural edge-cost func-
tions. Moreover, as a proof of concept, we show via simula-
tion experiments of our model that a given sparse initial net-
work evolves over time into an equilibrium network having
a power-law degree distribution, high clustering and a low
diameter. Hence, our model promises to be the first game-
theoretic network formation model which predicts networks
that exhibit all core properties of real-world networks.

Due to the space constraints some details are omitted.
See (Bilò et al. 2020) for the full version of the paper.

Model and Notation We consider a model which is re-
lated to the bilateral network creation game (Corbo and
Parkes 2005). In our model, called social network creation
game (SNCG), the set of n selfish agents V corresponds
to the nodes of a network and the agents’ strategies deter-
mine the edge-set of the formed network G. More precisely,
let s = (S1, . . . , Sn) denote the strategy profile, where
Su ⊆ V \ {u} corresponds to agent u’s strategy, then the
jointly created network G(s) is defined as G(s) = (V,E),
with E = {{u, v} | u, v ∈ V, u ∈ Sv, v ∈ Su}. And, in-

versely, for any given undirected network G = (V,E) there
exists a minimal strategy vector s = (S1, . . . , S|V |) with
u ∈ Sv and v ∈ Su if and only if {u, v} ∈ E, that realizes
this network, i.e., with G = G(s). Hence, we will omit the
reference to s. Also, we will use the shorthand uv for the
undirected edge {u, v}.

Each agent u tries to optimize a cost function cost(G, u),
which solely depends on the structure of the network G. In
real-world social networks new connections are formed by
a bilateral agreement of both endpoints while an existing
connection can be unilaterally removed by any one of the
involved endpoints. Following this idea, we consider only
single edge additions with consent of both endpoints or sin-
gle edge deletions as possible (joint) strategy changes of the
agents. As equilibrium concept we adopt the well-known so-
lution concept called pairwise stability (Jackson and Wolin-
sky 1996). Intuitively, a networkG is pairwise stable if every
edge of G is beneficial for both endpoints of the edge and
for every non-edge of G, at least one endpoint of that edge
would increase her cost by creating the edge. More formally,
G = (V,E) is pairwise stable if and only if the following
conditions hold:

1. for every edge uv ∈ E, we have cost(G − uv, u) ≥
cost(G, u) and cost(G− uv, v) ≥ cost(G, v);

2. for every non-edge uv /∈ E, we have cost(G + uv, u) ≥
cost(G, u) or cost(G+ uv, v) ≥ cost(G, v);

where G − uv (resp., G + uv) denotes the network G in
which the edge uv has been deleted (resp., added). Created
edges are bidirectional and can be used by all agents, but the
cost of each edge is equally shared by its two endpoints.

We denote by dG(u, v) the distance between u and v in
G = (V,E), i.e., the number of edges in a shortest path be-
tween u and v in G. We assume that dG(u, v) = +∞ if no
path between u and v exists in G. The main novel feature of
our model is the definition of the cost of any edge uv ∈ E,
which is proportional to the distance of both endpoints with-
out the respective edge, i.e., proportional to dG−uv(u, v).
This is motivated by the fact that, in social networks, the
probability of establishing a new connection between two
parties is inversely proportional to their degree of separa-
tion. More precisely, let σ : R → R be a monotonically
increasing convex function such that σ(0) = 0.1 The cost of
the edge uv in network G is equal to

cG(uv) =

{
σ (dG−uv(u, v)) if dG−uv(u, v) 6= +∞,
σ(n) otherwise.

We call an edge uv a k-edge if dG−uv(u, v) = k, and a
bridge if dG−uv(u, v) = +∞. If the network is clear from
the context, we will sometimes omit the reference to G and
we still simply write c(uv) to denote the cost of edge uv.
Note that by definition, any bridge inG, i.e., any edge whose
removal would increase the number of connected compo-
nents of G, has cost σ(n) > σ(n − 1) and thus any bridge
has higher cost than any other non-bridge edge. The latter

1All the results of this paper hold if we replace this constraint
by the milder constraint σ(3) ≥ 3

2
σ(2).
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Figure 1: Edge costs before and after the edge uv is added.

property can be understood as an incentive towards more ro-
bust networks. Note, that the addition or removal of an edge
in networkG can also influence the cost of other edges inG.
See Figure 1 for an example.
The resulting cost for an agent u in the networkG is the sum
of the cost of all edges incident to u and the sum of distances
to all other agents:

cost(G, u) :=
1

2

∑
v∈NG(u)

cG(uv) +
∑
v∈V

dG(u, v),

where NG(u) is the set of all neighbors of u in G. The qual-
ity of the created network is measured by its social cost,
which is denoted by cost(G) :=

∑
u∈V cost(G, u) and

measures the total cost of all agents.
As in the original bilateral network creation game (Corbo

and Parkes 2005), we restrict our study to connected net-
works, as any pairwise stable non-connected network has
an unbounded social cost2. Let worstn (resp., bestn) be the
highest (resp., lowest) possible social cost of a pairwise sta-
ble (connected) network created by n agents, assuming that
a pairwise stable network with n agents always exists. More-
over, let optn be the social cost of a social optimum, i.e., a
minimum social cost network of n nodes. Then the Price of
Anarchy (PoA) (Koutsoupias and Papadimitriou 1999) is de-
fined as maxn∈N

worstn
optn

and measures the deterioration of
the network’s social cost due to the agents’ selfishness. The
Price of Stability (PoS) (Anshelevich et al. 2008) is the ratio
maxn∈N

bestn
optn

and describes the minimal cost discrepancy
between an equilibrium and an optimal outcome.

Related Work Strategic network formation is a rich and
diverse research area and it is impossible to discuss all pre-
vious work in detail. Instead, we focus on the models which
are closest to our approach.

The SNCG is a variant of the bilateral network creation
game (BNCG) (Corbo and Parkes 2005). The BNCG is
based on the unilateral network creation game (NCG) (Fab-
rikant et al. 2003) where edges can be created and must be
paid by only one of its endpoints, and the pure Nash equilib-
rium is used as solution concept. In both models edges have
a uniform cost of α > 0. In a series of papers it was estab-
lished that the PoS for the NCG is at most 4

3 and the PoA is
constant for almost all values of α (Fabrikant et al. 2003; Al-
bers et al. 2006; Demaine et al. 2012; Mihalák and Schlegel

2E.g., any network with no edges and n ≥ 3 is pairwise stable.

2010; Mamageishvili, Mihalák, and Müller 2013; Bilò and
Lenzner 2020; Àlvarez and Messegué 2019). Moreover, it
was shown that the diameter of any equilibrium network in
the NCG is at most 2O(

√
logn) (Demaine et al. 2012) and for

many ranges of α it is constant. In contrast, for the BNCG it
was shown the PoA of the BNCG is in Θ(min{

√
α, n/

√
α})

and that a equilibrium networks with a diameter in Θ(
√
α)

exist (Corbo and Parkes 2005; Demaine et al. 2012). The
original NCG was dedicated to model real-world networks
like peer-to-peer networks and social networks. However,
the main downside of these classical models is that they do
not predict a realistic degree distribution or high clustering.
A NCG variant was proposed where agents try to maximize
their local clustering instead of their centrality (Brautbar and
Kearns 2011). This model yields various sparse equilibrium
networks with high clustering but these can have a large di-
ameter and a homogeneous degree distribution.

Closer to the SNCG are variants of the NCG with non-
uniform edge cost. Models were proposed where the edge
cost is proportional to its quality (Cord-Landwehr, Mäcker,
and auf der Heide 2014). Edges between certain types of
agents have different costs (Meirom, Mannor, and Orda
2014, 2015), and the edge cost depends on the node de-
gree (Chauhan et al. 2017), or the edge costs are defined
by an underlying geometry (Bilò et al. 2019). Especially the
latter is related to our model, as our model can also be under-
stood as having a dynamically changing underlying geome-
try which depends on the structure of the current network.
Finally, the island connection model (Jackson and Rogers
2005) assumes that groups of agents are based on islands
and that the edge cost within an island is much lower than
across islands. This yields equilibria with low diameter and
high clustering but no realistic degree distribution.

The SNCG incorporates a robustness aspect since bridge-
edges are expensive. This fits to a recent trend in the AI
community for studying robust network formation (Meirom,
Mannor, and Orda 2015; Chauhan et al. 2016; Goyal et al.
2016; Chen et al. 2019; Echzell et al. 2020).

Despite the variety of studied network formation mod-
els, to the best of our knowledge, no simple game-theoretic
model exists, which predicts a low diameter, a power-law de-
gree distribution and high clustering in its equilibrium net-
works. We are also not aware of any simulation results in
this direction. However, there are two promising but very
specialized candidates in that direction. The first candidate,
which is particularly tailored to the web graph (Kouroupas
et al. 2015), yields directed equilibrium networks that share
many features of real-world content networks. The second
candidate uses a game-theoretic framework and hyperbolic
geometry to generate networks with real-world features. In
the network navigation game (Gulyás et al. 2015), agents
correspond to randomly sampled points in the hyperbolic
plane and they strategically create edges to ensure greedy
routing in the created network. It is shown that the equilib-
rium networks indeed have a power-law degree distribution
and high clustering. However, the main reason for this is
not the strategic behavior of the agents but the fact that the
agents correspond to uniformly sampled points in the hyper-



bolic plane. It is known that the closely related hyperbolic
random graphs (Krioukov et al. 2010) indeed have all core
properties of real-world networks.

Properties of Equilibrium Networks
In this section we prove structural properties satisfied by all
connected pairwise stable networks that will be useful in
proving our main results. We first define some basic nota-
tion and provide a nice property satisfied by the function
σ. An edge e of a network G is a bridge if G − e has
at least one more connected component than G. A con-
nected network that has no bridge is said to be 2-edge-
connected. A 2-edge-connected component of a network G
is a maximal (w.r.t. node addition) induced subgraph of G
that is 2-edge-connected.3 The diameter D of a network G
is equal to the length of the longest shortest path in G, i.e.,
D = maxu,v∈V dG(u, v). Finally, we say that an edge uv of
G is an i-edge if dG−uv(u, v) = i, where we use the con-
vention n-edge for a bridge edge.

Proposition 1. Fix a positive real value x. Let x1, . . . , xk,
with 0 ≤ xi ≤ x, be k ≥ 2 positive real values and let
λ1, . . . , λk, with λ ∈ [0, 1], such that x =

∑k
i=1(λixi).

Then σ(x) ≥
∑k
i=1

(
λiσ(xi)

)
.

In the next statement we claim that nodes can be incident
to at most one expensive edge. Hence, the number of such
edges is limited.

Proposition 2. In any pairwise stable network, any node
has at most one incident edge of cost at least σ(4). If
2σ(2) ≤ σ(3) holds, any node in a pairwise stable network
has at most one incident edge of cost at least σ(3).

Next, we establish that all pairwise stable networks contain
at most three bridges.

Proposition 3. Any pairwise stable network contains at
most three bridges.

The following proposition shows an upper bound of the di-
ameter of any pairwise stable network that only depends on
the cost of edges which close a triangle.

Proposition 4. The diameter of any pairwise stable network
is at most σ(2) + 2.

Proof. Consider a pairwise stable networkG of diameterD.
Let v0, v1, . . . , vD be a diametral path of G. Consider the
addition of the edge between vbD/2c−1 and vbD/2c+1 to
network G. Each node v0, . . . , vbD/2c−1 becomes 1 unit
closer to vbD/2c+1; similarly, each node vbD/2c+1, . . . , vD
becomes 1 unit closer to vbD/2c−1. In both cases, the dis-
tance cost of the considered agent decreases by at least
bD/2c. Since the network is pairwise stable, both agents
vbD/2c−1 and vbD/2c+1 have no incentive in buying the con-
sidered edge. Therefore, σ(2)/2 − bD/2c ≥ 0 from which
we derive D ≤ σ(2) + 2.

3The subgraph ofG induced by a node setU ⊆ V is a subgraph
whose node set is U that, for any two nodes u, v ∈ U , contains the
edge uv if uv is also an edge of G.

Finally, we prove an upper bound on the cost of non-bridge
edges. This implies that all pairwise stable networks contain
only small minimal cycles, i.e., cycles where the shortest
path between two nodes in the cycle is along the cycle.
Proposition 5. In a pairwise stable network, for all k /∈
{2, 3, n}, the cost of any k-edge is σ(k) < nσ(2). If σ(2) ≤
1
2σ(3) holds, for all k /∈ {2, n}, the cost of any k-edge is
σ(k) ≤ nσ(2).

Equilibrium Existence and Social Optima
The clique graph of n nodes is denoted by Kn. A fan
graph Fn with n nodes consists of a star with n − 1 leaves
v0, . . . , vn−2 augmented with all the edges of the form
v2iv2i+1, for i = 0, . . . , bn−22 c, where all indices are com-
puted modulo n − 2 (see Figure 2 for examples). In other
words, Fn, with n odd, is a star augmented with a perfect
matching w.r.t. the star leaves,4 while Fn, with n even, con-
sists of Fn−1 augmented with an additional node that is con-
nected to the star center and any star leaf. Clique graphs and

F9F8

Figure 2: Two examples of fan graphs.

fan graphs play an important role since, as we will prove,
the former are social optima when σ(2) ≤ 2, while the
latter are social optima when σ(2) ≥ 2. Furthermore, we
also show that clique graphs are pairwise stable whenever
σ(2) ≤ 2, while (almost) fan graphs are pairwise stable
whenever σ(2) ≥ 2.
Theorem 1. If σ(2) < 2, then Kn is the unique social op-
timum. If σ(2) > 2, then Fn is the unique social optimum.
Finally, if σ(2) = 2 any network of diameter 2 and contain-
ing only 2-edges is a social optimum.5

Now we prove the existence of pairwise stable networks. For
this we consider a modified fan graph F′n that is equal to
Fn if n is odd. If n is even, F′n consists of Fn−1 and one
additional node connected to the center.
Theorem 2. For σ(2) ≥ 2, a the modified fan graph F′n is
a pairwise stable network, otherwise a clique is the unique
pairwise stable network.

PoA and PoS
Here we prove upper and lower bounds to the PoA and PoS.
Theorem 3. The PoA of the SNCG is in
O
(

min{σ(2), n}+ σ(n)
nmax{σ(2),n}

)
. For the class of 2-

edge-connected networks the PoA is in O
(

min{σ(2), n}
)
.

4In the literature, this graph is also known as friendship graph
or Dutch windmill graph.

5Hence, for σ(2) = 2, Kn and Fn are also social optima.



Proofsketch. By Theorem 1 and Theorem 2, we only need
to focus on the case σ(2) ≥ 2. Indeed, when σ(2) < 2, Kn

is the unique pairwise stable network as well as the unique
social optimum and, therefore, the PoA is equal to 1.

For the rest of the proof we assume that σ(2) ≥ 2. By
Theorem 1, Fn is a social optimum of cost Ω

(
n2+σ(2)n

)
=

Ω
(
nmax{σ(2), n}

)
. Consider a pairwise stable network G

of maximum social cost for a given number of nodes n. Let
D be the diameter of G. A trivial upper bound for the dis-
tance cost of the network is n(n− 1) ·D. By Proposition 4,
the network diameter is at most σ(2) + 2, hence the distance
cost of G is at most (σ(2) + 2) · n(n− 1).

Now we will show an upper bound for the edge cost. Let
ki denote the number of i-edges in G. By Proposition 3, G
has at most 3 bridges. Hence, for any pairwise stable net-
work we have that kn ≤ 3; if the network is additionally
2-edge-connected, then kn = 0. We consider two cases, de-
pending on whether 2σ(2) ≤ σ(3) or not.

We consider the case 2σ(2) ≤ σ(3). By Proposition 2,
each node has at most one incident i-edge where 3 ≤ i < n.
Moreover, by Proposition 5, σ(i) ≤ nσ(2) for any i ≥ 3.
Then the overall edge-cost of the network is at most

k2 · σ(2) +

n−1∑
i=3

(σ(i) · ki) + knσ(n)

≤

(
n(n− 1)

2
−
n−1∑
i=3

ki

)
· σ(2) + nσ(2)

n−1∑
i=3

ki + knσ(n)

≤ σ(2) · n(n− 1)

2
+ (n− 1)σ(2) · n

2
+ knσ(n)

≤ σ(2)n2 + knσ(n).

Therefore, PoA ∈ O
(

min{σ(2), n}+ σ(n)
nmax{σ(2),n}

)
,

while for the class of 2-edge-connected networks, the PoA
is in O

(
min{σ(2), n}

)
.

If 2σ(2) > σ(3), the same upper bound for the edge cost
can be proven in a similar way. The statement follows.

It is worth noticing that the high inefficiency of worst case
pairwise stable networks in Theorem 3 follows from the ex-
istence of bridges in a network. The PoA is much better in
bridge-free pairwise stable networks. Such networks can for
example evolve via edge additions starting from a 2-edge-
connected network. A real-world example for this would be
co-authorship networks of authors with at least two papers.

We now prove lower bounds on the PoA. We start with the
construction of a pairwise stable 2-edge-connected network
with high social cost and a diameter in Ω(σ(2)).

Lemma 1. There are 2-edge-connected pairwise stable net-
works with n = Ω(σ(2)) nodes, social cost in Ω

(
σ(2)n2

)
,

and diameter of at least σ(2)4 .

The pairwise stable networks of Lemma 1, depicted in Fig-
ure 3, asymptotically reach the upper bound for the diame-
ter of pairwise stable networks. Moreover, they allow us to
prove asymptotically matching lower bounds to the PoA for
the class of 2-edge-connected networks.

dσ(2)
8 e︷ ︸︸ ︷

Figure 3: A high diameter pairwise stable network.

Theorem 4. The PoA of SNCG is in Ω
(

σ(n)
nmax{σ(2),n}

)
.

For the class of 2-edge-connected networks the PoA is in
Ω
(

min{σ(2), n}
)
.

We conclude this section by showing bounds to the PoS.

Theorem 5. The PoS of the SNCG when σ(2) ≤ 2 or n is
odd is 1. The PoS of the SNCG when σ(2) > 2 and n is even:

• at most 11
8 if σ(3) ≥ 6 and σ(2) ≤ n

2 − 4;

• at most 17
12 if σ(2) ≥ 2n

3 ;

• O
(

σ(n)

nmax
{
σ(2),n

}), otherwise.

Dynamics of the SNCG
So far we have considered the SNCG as a one-shot-game,
i.e., we only have specified the strategy space of the agents
and then focused on analyzing the equilibria of the game. In
this section we focus on a more constructive sequential view
of the game. As our goal is to mimick real-world social net-
works, we want to study the process of how such networks
evolve over time. For this, we consider some initial network
and then we activate the agents sequentially. An active agent
will try to decrease her current cost by adding (jointly with
another agent) or deleting an edge in the current network.
If this process converges to a state where no agent wants to
add or delete edges, then a pairwise stable network is found.
Hence, such so-called improving move dynamics are a way
for actually finding equilibrium states of a game. Such dy-
namics are guaranteed to converge if and only if the strate-
gic game has the finite improvement property (FIP), i.e., if
from any strategy vector any sequence of improving strategy
changes must be finite. This is equivalent to the game being a
potential game (Monderer and Shapley 1996). We start with
the negative result that the convergence of improving move
dynamics is not guaranteed for the SNCG.

Theorem 6. The SNCG does not have the FIP.

Proofsketch. Let σ be any function such that 2 < σ(2) <
1
2σ(3) + 1 and σ(3) < 1

2σ(5) + 2.6 Consider the cyclic
sequence of improving moves depicted in Figure 5 in which
Gi andG(i+1) mod 4 differ by exactly one edge. It is easy to
show that each step of the cycle is an improving move.7

6Observe that there are several functions σ that satisfy these
additional constraints (for example σ(x) = 3

2
x).

7A careful reader will note that each improving move is actu-
ally a best possible improving move.



Figure 4: Snapshots of networks obtained by the iterative best move dynamic starting from a random spanning tree with
n = 1000 and α = 3. Each plot from left to right shows the current network after 1000 steps each. The left plot shows the
initial tree; the right plot shows is the final pairwise stable network. The size of the nodes is proportional to the node degrees.

G0 1

3

25

G1

4

G2 G31

254

1

254

1

254

333

Figure 5: A cyclic sequence of improving moves. The active
player or pairs of players in each step are highlighted.

The above negative result for the sequential version of the
SNCG should not be overrated. In fact, when simulating the
sequential process it almost always converges to a pairwise
stable network. We will now discuss such simulations.

Experimental Results
We will illustrate that starting from a sparse initial network,
the sequential version of the SNCG converges to a pairwise
stable network with real-world properties, like low diameter,
high clustering and a power-law degree distribution. We will
measure the clustering with the average local clustering co-
efficient (CC), that is a commonly used measure in Network
Science (Barabási 2016) 8. Power-law degree distributions
will be illustrated via log-log plots and a comparison with a
perfect power-law distribution.

For all experiments9 we choose σ(x) = 2 log2(n) · xα,
where n ∈ N (the number of agents) and α ∈ R (the expo-
nent) are input parameters. Clearly, this function satisfies all

8The clustering coefficient is the probability that two randomly
chosen neighbors of a randomly chosen node in the network are
neighbors themselves. More formally, let deg(v) denote the degree
of v in G and let ∆(v) denote the number of triangles in G that
contain v as a node. The local clustering coefficient CC(v) of node
v in G is the probability that two randomly selected neighbors of v
are neighbors, i.e., CC(v) := 2∆(v)

deg(v)(deg(v)−1)
if deg(v) ≥ 2, and

0 otherwise. Clearly, 0 ≤ CC(v) ≤ 1. The CC of a network G
with n nodes is the average of the local clustering coefficients over
all nodes v, i.e., CC(G) = 1

n

∑
v∈V CC(v).

9The source code we used can be found at https://github.com/
melnan/distNCG.git.

constraints we have in the definition of the game, i.e., it is
convex, monotone, and σ(0) = 0.

Note that by Proposition 4 the upper bound for the diame-
ter of pairwise stable networks is σ(2) + 2 and thus we have
to define σ(2) to be growing with n to avoid a constant di-
ameter. Using σ(x) = 2 log2(n) · xα as a proof-of-concept
ensures a diameter upper bound of O(log n) that is in line
with the observed diameter bounds in many real-world net-
works (Barabási 2016). We emphasize that also other edge
cost functions with similar properties yield similar results.

In each step of our simulations one agent is activated uni-
formly at random and this agent then performs the best pos-
sible edge addition (jointly with the other endpoint if the
respective agent agrees) or edge deletion. If no such move
exists then the agent is marked, otherwise the network is
updated, and all marked agents become unmarked and we
repeat. The process stops when all agents are marked.

In our experiments, we always start from a sparse initial
network, i.e., a cycle or a random spanning tree, to simu-
late an evolving social network, i.e., agents are initially con-
nected with only very few other agents, and the number of
new connections grows over time. See Figure 4 for showcase
snapshots from this process.

Additional experiments starting with sparse Erdös-Renyi
random networks support our intuition that the network ini-
tialization does not matter as long as the networks are sparse
and the average distances are large, i.e., the resulting sta-
ble structures have the same structural properties as starting
from random trees or cycles. However, for example, start-
ing from a star network yields drastically different results.
Moreover, if the initial structure is a fan graph, the algorithm
stops immediately since a fan is a stable network as stated
in Theorem 2. This shows that for the initial networks both
sparseness and large average distances are crucial.

Figure 6 shows the box-and-whiskers plot for the aver-
age clustering coefficient of the pairwise stable networks
obtained by the algorithm for n = 1000 with respect to
the value of the power coefficient α. The upper and lower
whiskers show the maximal and the minimal average clus-
tering coefficient over 20 runs. The bottom and top of the
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Figure 6: Average clustering coefficient of pairwise stable
networks obtained by the best move dynamic for n = 1000
over 20 runs with σ(x) = 18xα. Blue: results of the process
starting from a cycle; green: starting from a random tree.

boxes are the first and the third quartiles; the middle lines are
the median values. The plot explicitly shows that pairwise
networks generated by the best move dynamic for a polyno-
mial edge-cost function have a high clustering coefficient.
The results indicate that the clustering coefficient correlates
with the power coefficient α.

Figure 7 shows a degree distribution for the resulting
pairwise stable networks for n = 3000. We supplemented
each plot with a plot of a perfect power-law distribution
P (k) ∼ k−γ . All our experiments show that the power-law
exponent γ is between 2 and 3, which indicates that our gen-
erated pairwise stable networks are indeed scale-free.
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Figure 7: Log-log plot of the degree distribution of pair-
wise stable networks obtained by the best move dynamic for
n = 3000 with σ(x) = 22xα. Blue: results for the process
starting from a cycle; green: starting from a random tree.
Black: a fitted perfect power law distribution.

Finally, Figure 8 illustrates the correlation between the
node degree and the local clustering coefficient of nodes
with the respective degree. All plots show that the local clus-
tering coefficient is an inverse function of a node degree.
In Network Science, a local clustering following the law
∼ k−1 is considered as an indication of the network’s hi-
erarchy that is a fundamental property of many real-world
networks(Ravasz and Barabási 2003).

More plots of the degree distribution and the local clus-
tering can be found in the full version of the paper (Bilò
et al. 2020). Moreover, there we provide a comparison of
our generated networks with real-world social networks.
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Figure 8: Log-log plot of the local clustering coefficient of
nodes of a given degree in pairwise stable networks ob-
tained by the best move dynamic for n = 3000 where
σ(x) = 22xα. Blue: results starting from a cycle; green:
starting from a random tree. Black line: the function 2/k.

In summary, we conclude from our proof-of-concept ex-
periments that the best move dynamic of the SNCG gener-
ates pairwise stable networks that have very similar proper-
ties as real-world social networks.

Conclusion

We introduced the SNCG, a promising game-theoretical
model of strategic network formation where agents can bilat-
erally form new connections or unilaterally remove existing
links aiming to maximize their centrality in the created net-
work while at the same time to minimize the cost for main-
taining edges. We emphasize that our model is based on only
four simple principles: (1) agents are selfish, (2) each agent
aims at increasing her centrality, (3) new connections are
most likely to appear between friends of friends rather than
between more remote nodes, and (4) connections are costly
and can only be created by bilateral consent. All principles
are motivated by modeling real-world social networks.

For this simple and stylized model for the creation of a so-
cial network by selfish agents, we provide theoretical as well
as promising empirical results. On the theory side, we show
that equilibrium networks of the SNCG have structural prop-
erties expected from social networks, like a high number
of triangles, low diameter, and a low number of isolated 1-
degree nodes. Our bounds on the PoA and the PoS show that
the cost of closing a triangle essentially determines how in-
efficient an equilibrium network can be, compared to the so-
cial optimum. We emphasize, that all our theoretical results
hold for a broad class of convex monotone edge cost func-
tions. On the empicial side, we provide proof-of-concept re-
sults showing that the best move dynamic of the SNCG con-
verges to equilibrium networks that share fundamental prop-
erties with real-world networks, like a power-law degree dis-
tribution, a high clustering, and a low diameter.

We see our paper as a promising step towards game-
theoretic models that yield networks with all core proper-
ties of real-world networks. Future work could systemati-
cally study the influence of our model parameters on the
obtained network features and on proving that the sequen-
tial network creation process indeed converges to real-world
like networks with high probability.
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