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Abstract. Bootstrap percolation is a classical model for the spread of
information in a network. In the round-based version, nodes of an undi-
rected graph become active once at least r neighbors were active in the
previous round. We propose the perturbed percolation process: a super-
position of two percolation processes on the same node set. One pro-
cess acts on a local graph with activation threshold 1, the other acts on
a global graph with threshold r – representing local and global edges,
respectively. We consider grid-like local graphs and expanders as global
graphs on n nodes.

For the extreme case r = 1, all nodes are active after O(log n) rounds,
while the process spreads only polynomially fast for the other extreme
case r ≥ n. For a range of suitable values of r, we prove that the process
exhibits both phases of the above extremes: It starts with a polynomial
growth and eventually transitions from at most cn to n active nodes, for
some constant c ∈ (0, 1), in O(log n) rounds. We observe this behavior
also empirically, considering additional global-graph models.

Keywords: Bootstrap percolation · Random graphs · Expanders ·
Rumor spreading

1 Introduction

Information spreads very fast in networks (see, e.g., [23]). Several practical and
theoretical studies concern n agents (nodes) interacting within a network and
exchanging information via incident edges. These works have demonstrated that
if each agent, once informed, informs all its agents in the neighborhood, the
entire network is typically informed in a time that is at most logarithmic in the
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number of agents. This behavior even holds if each agent chooses only one ran-
dom neighbor at each iteration (and a slightly faster dissemination is possible if
an agent does not choose the same agent twice in a row [22]). A similar behav-
ior occurs in the bootstrap percolation model [17], in which agents are informed
once the number of informed neighbors reaches a certain threshold. This model
has been extensively analyzed on a range of graph models, including hyper-
cubes [9], grids [10], Erdős–Rényi graphs [31], preferential attachment graphs [4],
random regular graphs [11], random geometric graphs [14], hyperbolic random
graphs [15], inhomogeneous random graphs [1,5], geometric inhomogeneous ran-
dom graphs [32], Kleinberg’s small world model [24,27], as well as superpositions
of Erdős–Rényi graphs and other graphs [37].

In the bootstrap percolation model, the process usually either reaches almost
all agents quickly or terminates without having reached most of the agents [9,
31]. This speed is often attributed to the logarithmic diameter of the network,
as well as to the existence of high-degree nodes, which are both prevalent in
many real-world graphs as well as in their mathematical models. However, these
models assume that information spreads the same way among all edges. If this
is not the case, e.g., because agents need to be convinced of some information
by more than one agent, the resulting behavior can be fundamentally different
[12,16,26,28,35].

Typically, the edges of a graph describe the closeness of agents, i.e., two
agents connected via an edge are close, while non-edges represent separation.
This is particularly true for graph models that utilize an underlying geometry
for determining the edge set. However, another perspective, found in epidemics,
is that every pair of agents has an activation probability defined, e.g., by split-
ting the agents into groups [30]. In bootstrap percolation, one can set different
activation thresholds based on the groups [13]. Further, one can model the close-
ness via different graphs on the same agents, namely via local and global edges,
which are assigned different activation probabilities [7,8]. The underlying graphs
represent different interactions, e.g., contacts within and across households [6].

We aim at understanding the effect of edge types on the speed of information
dissemination. To this end, we analyze graphs that have two types of edges: one
representing short edges, and another one representing long edges. The graph
induced by the short edges (the local graph) models the local neighborhood
of agents. These model whether two agents are close, e.g., people an agent is
exposed to more often, such as colleagues, relatives or neighbours. The graph
induced by the long edges (global graph) models non-local (global) contacts. This
represents people who the agent has not that much contact with, e.g., people
who live further away or celebrities from social media who the agent may never
meet personally but is influenced by.

We employ the classic bootstrap percolation model as a foundation for the
spread of information in networks as described above. In this model, each agent
either has a certain piece of information (it is active) or it has not (inactive).
Given a parameter r ∈ N+ (the activation threshold) and a set of initially active
nodes, iteratively, at each round t ∈ N+, a node becomes (and remains) active
if it has at least r neighbors that were active in round t − 1.



Accelerated Information Dissemination 81

Model. We propose the perturbed percolation model, which is the superposition
of two bootstrap percolation processes on the same node set but with two differ-
ent edge sets. One process acts on the local graph with an activation threshold
of 1. The other process acts on the global graph with an activation threshold
of r. This is similar to the above-mentioned models where nodes have local and
global contacts with varying activation probabilities [8]. Note that a perturbed
percolation process always percolates completely if the local graph is connected.
However, the overall speed is majorly influenced by the global graph via r.

Theoretically and empirically, we analyze how quickly nodes become active in
this model. We are interested in the two following activation rates: a polynomial
rate, i.e., the number of active nodes in round t is a polynomial in t, and a rapid
rate, i.e., the number of inactive nodes reduces from at least (1 − c)n, for some
constant c ∈ (0, 1), to none in O(log n) rounds.

Results. For our theoretical results, we analyze the activation rate of the
perturbed percolation model on local graphs that we refer to as polynomial-
neighborhood graphs (PNGs) with n nodes, characterized by having a polyno-
mially expanding neighborhood w.r.t. the hop distance, including grid graphs,
cycles, and, asymptotically almost surely (a.a.s.), random geometric graphs with
expected polylogarithmic node degree. We prove the following landscape of per-
turbed percolation w.r.t. the activation threshold r, using PNGs as local and
expanders as global graph:

– For the extreme case r ≥ n, the process has a polynomial rate (Theorem1).
– For the other extreme case r = 1, the process has a rapid rate (Corollary 1),

i.e., adding global edges changes the rate immediately from polynomial to
rapid.

– Our main result is that the process with suitable values of r between the
extreme cases above, including r = 2, has a polynomial-to-rapid rate
(Corollary 2), i.e., the process has a polynomial rate for a polynomial number
of rounds (w.r.t. n) and then ends with a rapid rate. This result highlights
that while the edges from the global graph speed up the overall process, it
takes some (long) time for the process to actually switch to a rapid rate.

We complement our theoretical results by empirical analyses (Figs. 1 and 2).
Next to Erdős–Rényi graphs as global graphs, we also include Barabási–Albert
and hyperbolic random graphs, which are not covered by our theoretical analysis.
For all cases, we observe a clear distinction between the polynomial and the rapid
rate.

Framework (Informal Description). Our main result follows from our more
general result (Theorem3) based on proving the following three independent
properties, assuming a graph with n nodes:

1. Any bootstrap percolation process on the local graph, for any initial active set
of size 1, has polynomial rate.
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2. For the perturbed percolation process, a.a.s. for an initial number of rounds
polynomial in n, no inactive node has at least r global edges to active nodes.

3. Asymptotically a.s., any bootstrap percolation process on the global graph,
for any initial active set of linear size, percolates completely in a number of
rounds logarithmic in n.

Combining all three properties shows a polynomial-to-rapid rate. We note that
Property 3 considers the classic bootstrap percolation setting but requires to first
fix the random graph and then the initial set (even adversarially). Typically, this
order is reversed. Thus, we believe our results proving this property (Theorem6
and 8) to be of independent interest. In addition, in Theorem8 we provide an
improved bound of r · n/ lnn for the size of the initial set in Property 3 for the
special case of Erdős–Rényi graphs.

Outline. In Sect. 2, we introduce our notation as well as our model and the
graph classes we consider. Sections 3 and 4 contain our theoretical results. The
former considers the extreme cases of the activation threshold r, the latter suit-
able intermediate values. Our main result of these sections is Corollary 2. In
Sect. 5, we discuss our empirical results, and we provide an outlook in Sect. 6.

2 Preliminaries

Let N denote the set of natural numbers, including 0. For m,n ∈ N, let [m..n] :=
[m,n] ∩ N, and let [m] := [1..m]. We consider undirected, finite graphs. Given
such a graph G, let V (G) denote its set of nodes and E(G) its set of edges. We
denote the minimum and maximum node degree of G by dmin(G) and dmax(G),
respectively, dropping G if it is clear from context.

We use big-O notation only in combination with a graph G. The asymp-
totics of the notation are then with respect to |V (G)| (which we usually call n).
Additionally, the notation Õ allows for factors polylogarithmic in |V (G)|. In the
same context, a constant is a value Θ(1), that is, a value bounded independently
of |V (G)|.

An event A occurs asymptotically almost surely (a.a.s.) if and only if Pr[A] =
1 − o(1).

2.1 Percolation Processes

We introduce the perturbed percolation process, which is a superposition of two
classical bootstrap percolation processes, using different edges and thresholds.

Bootstrap Percolation. Let G be a graph with n nodes, r ∈ N>0, and I ⊆
V (G). The bootstrap percolation process P on G with threshold r and initial
active set I is a deterministic discrete-time process on V (G) in which each node
is either active or inactive. In each round, each node adjacent to at least r active
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nodes becomes active. Let (At)t∈N denote the sequence of sets of active nodes
over time. Note that A0 = I and that, for all t ∈ N with t ≥ n − 1, At+1 = At.
We say that P percolates completely if and only if |An−1| = n.

Let t1, t2 ∈ N, and let T = min{t ∈ N | At = An−1}. We say that P has
a polynomial activation rate for [t1..t2] if and only if there is a constant c > 0
such that for all t ∈ [t1..t2] it holds that |At| = Õ(tc+1). Further, P has a rapid
activation rate for [t1..t2] if and only if t2 = t1 + O(log n), there is a constant
c ∈ (0, 1) such that |At1 | ≤ cn, and |At2 | = n. We say P has a polynomial (resp.
rapid) activation rate if and only if it has a polynomial (resp. rapid) activation
rate for [0..T ]. Last, we say that P has a polynomial-to-rapid activation rate if
it has both a polynomial activation rate and rapid activation rate. Note that
this is equivalent to the existence of t1, t2 ∈ N and a constant c > 0 such that
t1 ∈ Ω(nc) and that P has a polynomial activation rate for [0..t1] and a rapid
activation rate for [t2..T ].

Perturbed Percolation. Let G = (V,E) be a graph decomposable into a local
graph G! = (V,E!) and a global graph Gg = (V,Eg) (each possibly random),
i.e., E = E! ∪ Eg. Further, let r ∈ N>0 and I ⊆ V . The perturbed percolation
process P on G with threshold r and initial active set I is the union of the
bootstrap percolation process on G! with threshold 1 and the one on Gg with
threshold r, both with initial active set I. That is, in each round, each node with
an active neighbor in G! or at least r active neighbors in Gg becomes active. The
notion of polynomial/rapid activation rate from bootstrap percolation naturally
extends to P .

We introduce randomization into the connections via a random permutation
of the nodes. To this end, we assume w.l.o.g. that there exists a bijective label-
ing # : V (G) → [1..n]. Let σ be a permutation over [1..n], chosen uniformly at
random, independently of any other potential random choices, and let G′

g be
identical to Gg. Then Eg =

{
{σ(#(u)),σ(#(v))} ∈ V (G)2 | {u, v} ∈ E(G′

g)
}
.

Technically, Gg is random (due to σ), and G′
g represents a (possibly determin-

istic) isomorphic representation of Gg. However, throughout the paper, we refer
to both graphs as the global graph. When talking about the graph itself, we
refer to G′

g, which can be deterministic. In contrast, if we refer to its edges, we
refer to the set E(Gg), which is random. Without randomization, there always
exist perturbed percolation processes with (solely) rapid activation rates, due to
possible dependencies between G! and Gg. In particular, there are graphs G! and
Gg in the graph classes below such that the perturbed percolation process ends
within O(log n) rounds. Randomization eliminates such cases. In case that G!

and Gg are independent, randomization does not change anything. In particular,
it is not required for our results concerning random graphs.

Throughout the paper, we assume the following order of events: 1. Fix G!

and Gg in some order. 2. Randomize Gg as described above. 3. Fix an initial
active set of nodes. Note that this implies that the initial active set can be
chosen adversarially w.r.t. the realizations of the resulting graph of the perturbed
percolation process.
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2.2 Graph Classes

As local graphs, we consider graphs with polynomially expanding neighborhoods.
As global graphs, we consider expanders, especially random regular graphs and
Erdős–Rényi graphs.

Polynomial-Neighborhood Graphs. For a connected graph G = (V,E), let
dG : V 2 → N denote the distance between all pairs of nodes in G. That is, for all
u, v ∈ V , the value dG(u, v) is the length of a shortest path from u to v. Further,
for all u ∈ V and all h ∈ [0..|V | − 1], let Bh(u) = {v ∈ V | dG(u, v) ≤ h} denote
the ball of distance at most h around u.

Let c > 0 be a constant. We say that G is a polynomial-neighborhood graph
(PNG) of growth c if and only if for all u ∈ V and all h ∈ [0..|V | − 1] it holds
that |Bh(u)| = Õ(hc + 1).

Examples of PNGs include grid graphs (with and without looping bound-
aries), cycles, and, a.a.s., random geometric graphs with expected node degree
polylogarithmic in n.

Expanders. We call a graph an expander if and only if its spectral expansion λ
is bounded away from 1 from above and below (see Sect. 4.2 for more details).
We note that expanders can be deterministic or random. It is well-known that
both Erdős–Rényi Graphs [19] and random d-regular graphs are expanders [25]
(see Theorems 4 and 5).

Random Regular Graphs. Let n ∈ N>0, let d ∈ [3..n−1], and let Gn,d denote
the class of all (deterministic) d-regular graphs with n nodes. Each uniform
sample G from Gn,d is a random d-regular graph with n nodes, denoted as Gn,d.

Erdős–Rényi Graphs. Let n ∈ N>0 and p ∈ [0, 1]. A graph G is an Erdős–
Rényi graph with n nodes and edge probability p, denoted as Gn,p, if and only if
|V (G)| = n and each e ∈ V 2 ! {(v, v) | v ∈ V } is in E(G) with probability p,
independent of all other choices.

3 Extreme Thresholds

We consider perturbed percolation on PNGs with n nodes as local graphs for
the extreme cases of r ≥ n and r = 1, where r is the threshold of the global
graph.

Case r ≥ n. This case is equivalent to bootstrap percolation on PNGs with a
threshold of 1. We show that regardless of the (bootstrap) threshold, the rate
of the process on PNGs is polynomial if the initially active set is constant. We
note that the perturbed percolation process percolates completely if and only if
the local graph is connected.
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Theorem 1. Let c > 0 be a constant, and let G be a PNG of growth c. Further,
let I ⊆ V (G) such that |I| = Θ(1), and let r′ ∈ [n − 1]. Then the bootstrap
percolation process on G with threshold r′ and initial active set I has a polynomial
activation rate.

Proof. Let t ∈ N, and recall that At is the set of active nodes at the end of
round t. From each u ∈ I, the bootstrap percolation process reaches at most
Bt(u), that is, it holds that |At| ≤

∑
u∈I |Bt(u)|. Since G is a PNG of growth c

and since |I| = Θ(1), it follows that |At| = Õ
(
|I| · (tc + 1)

)
= Õ(tc + 1), which

concludes the proof.

Case r = 1. It follows from the literature that the rate is rapid from the start
(Corollary 1) if the global graph is an Erdős–Rényi graph, as the diameter of the
graph is logarithmic.

Theorem 2 [34, Theorem 4]. Let n ∈ N>0, ε > 0 be a constant, and let G be
a graph with n nodes that is decomposable into a connected local graph and into
a Gn,ε/n as a global graph. Then a.a.s., G has a diameter of O(log n).

For d-regular expanders, it is well-known that the diameter is O(log n) [29, page
455].

The following statement immediately follows (as it only requires that the
diameter is O(log n)), noting that the diameter of a Gn,p does not increase
when p increases.

Corollary 1. Let G = (V,E) be a graph with n ∈ N>0 nodes that is decom-
posable into a connected local graph and into a global graph Gg. Further, let
c ∈ (0, 1) be a constant, and let I ⊆ V (G) such that I )= ∅ and |I| ≤ cn.

1. Let Gg be Gn,p with p ∈ [Ω(1/n), 1]. Then a.a.s., the perturbed percolation
process on G with threshold 1 and initial active set I has a rapid activation
rate.

2. For d ∈ [3..n − 1], let Gg be a d-regular expander with n nodes. Then a.a.s.,
the perturbed percolation process on G with threshold 1 and initial active set I
has a rapid activation rate.

4 Polynomial-to-Rapid Activation Rate

We prove the emergence of a polynomial-to-rapid activation rate for suitable
values of r between the extreme cases considered above. Our main result is the
following.

Corollary 2. Let G be a graph with n ∈ N≥3 nodes that is decomposable into a
PNG as local graph and into a graph with spectral expansion λ ∈ R>0 and dmax =
O(dmin) as global graph. Let d = 2|E(G)|/n, and let r ∈ [2..(1 − λ)d2min/(4d)].
Then a.a.s., there exists a V ′ ⊆ V (G) with |V ′| = n − n3/4 such that for all
v ∈ V ′, the perturbed percolation process on G with threshold r and initial active
set {v} has a polynomial-to-rapid rate.
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We prove this result by applying a general framework for proving that a
perturbed percolation process P has a transition from polynomial to rapid rate
on a graph G = (V,E) with |V | = n. To this end, let G! denote the local graph
that P acts on, and let Gg denote the global graph. Further, let P! and Pg

denote the bootstrap percolation processes on G! and Gg, respectively. Last, let
(At)t∈[0..n−1] denote the set of active nodes of P! after each round, and for all
v ∈ V and U ⊆ V , let Γg(v, U) = {u ∈ U | {u, v} ∈ E(Gg)}.

Framework. The framework comprises the following three independent prop-
erties:

1. For all v ∈ V (G), the process P! with initial active set {v} has a polynomial
activation rate and percolates completely.

2. There are constants c1, c2 ∈ (0, 1) and a set |V ′| ≥ n − n1−c1 such that for
all v ∈ V ′, having initial active set {v} implies that for all u ∈ V ,
|Γg(u,Anc2 )| < r.

3. There exists a constant c3 > 1 such that for all I ⊆ V with |I| ≥ n/c3, the
process Pg with initial active set I has a rapid activation rate.

Properties 1 and 3 consider exclusively P! and Pg, respectively, whereas Property
2 connects P! with the global graph. Our framework yields the following general
theorem.

Theorem 3 (Polynomial-to-rapid rate). Let n ∈ N≥3, let r ∈ [2..n−1], and
let G be a graph with n nodes, decomposable into a local graph and into a global
graph. Assume that P is a perturbed percolation process on G with threshold r
and some initial active set such that Properties 1 to 3 are all satisfied. Then P
has a polynomial-to-rapid rate.

Proof. By Property 2, there exists a c2 > 0 such that during the initial nc2

rounds of P , all activations are exclusively due to the local graph. By Property
1, it follows that P has a polynomial activation rate for [0..nc2 ].

Now consider the first round t∗ such that the number of active nodes is
at least n/c3, where c3 is from Property 3. Note that such a t∗ exists, as the
number of active nodes strictly increases each round until complete percolation,
since the process on the local graph percolates completely. Further note that,
due to Property 3, the number of active nodes in round t∗ − 1 is less than n/c3.
By Property 3, for any set of active nodes in round t∗, the process P percolates
completely in O(log n) rounds. Thus, the process P has a rapid activation rate,
starting from round t∗ − 1, which concludes the proof.

In the following, we prove the properties of our framework separately. As
Theorem1 already proves Property 1, we are left to consider Properties 2 and 3.

4.1 Polynomial Rate

We show that Property 2 is satisfied for PNGs as local graph and for global
graphs with a bounded maximum degree, which includes expanders and, a.a.s.,
Erdős–Rényi graphs.
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Lemma 1. Let n ∈ N≥3, r ∈ [2..n − 1], and c1, c2 ∈ R>0 with c2 < 1/3 be
constants. Further, let G be a graph with n nodes, decomposable into a PNG with
growth c1 as local graph and into a global graph Gg with dmax(Gg) ≤ nc2 . Then
with probability at least 1−n−1/12, there exists a V ′ ⊆ V (G) with |V ′| = n−n3/4

such that for all v ∈ V ′, the perturbed percolation process on G with threshold r
and initial active set {v} has a polynomial activation rate for [0..n(1/3−c2)/c1 ].

Proof. By monotonicity, it suffices to consider the case r = 2. Pick any node
v ∈ V as the initially active node. Let Bv be all nodes that get activated in
the local graph G! after O(n(1/3−c2)/c1) rounds. Hence, |Bv| = O(n1/3−c2). Note
that within the graph Gg, due to the random labeling of the nodes, we can regard
the subset Bv in Gg as a random set of size |Bv|. In particular, the events of any
two nodes x, y being in Bv are negatively correlated. Now let Zv ⊆ V be the set
of nodes in V (Gg) that have at least 2 neighbors in Bv. Then,

E[|Zv|] ≤ n ·
(
dmax(Gg)

2

)
·
(
|Bv|
n

)2

≤ n2c2 · n2/3−2c2

n
= n−1/3.

Hence by Markov’s inequality, the probability of any activation occurring via
global edges is Pr[|Zv| ≥ 1] ≤ n−1/3.

Now define Y := {v ∈ V | |Zv| ≥ 1}. Then E[|Y |] ≤ n2/3, and by another
application of Markov’s inequality, Pr[|Y | ≥ n3/4] ≤ n−1/12.

4.2 Rapid Rate on the Global Graph

We show that expander graphs satisfy Property 3 (Theorem6). For the special
case of Erdős-Rényi graphs, we prove an even stronger bound, showing complete
percolation in O

(
log(n)/ log log n

)
rounds (Theorem 8). We note that due to

our assumption that the random graphs are revealed before the initial active
set is chosen, our theorems show that a.a.s. the global graphs have immediately
a rapid activation rate for arbitrary sufficiently large initial active sets. This
includes cases where the initial set is chosen adversarially w.r.t. the global graph.
In contrast, classic results typically fix the global graph after or independent of
the initial set [11,31], thus not allowing for adversarially chosen initial sets.

Expanders. For any graph G, for all v ∈ V (G), let deg(v) be the degree
of v, let d = 2|E(G)|/n denote the average degree, and, for all S ⊆ V (G), let
vol(S) :=

∑
u∈S deg(u). We define the normalized Laplacian matrix of G by

Lu,v =






1 if u = v,

− 1√
deg(u)·deg(v)

if {v, w} ∈ E(G),

0 otherwise.

We denote by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 the n eigenvalues of L. Further,
λ := maxi≥2 |1−λi| denotes the spectral expansion. A graph is called an expander
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if λ ≤ 1−c for some constant c > 0 (in other words, all eigenvalues are sufficiently
far away from 0 and 2).

The following result shows that Erdős-Rényi graphs are expanders.

Theorem 4 [19, Theorem 1.2]. Let G = Gn,p be an Erdős-Rényi graph with
expected degree p(n−1) ≥ c1 · ln(n) for a sufficiently large constant c1 > 0. Then
a.a.s., the spectral expansion of L satisfies λ(G) = O((p(n − 1))−1/2).

A similar result was shown by Friedman [25] for random regular graphs (for
simplicity, we only state a slightly weaker version of his main result, which suffices
for our purposes).

Theorem 5 [25, Theorem A]. Let G be a G(n, 2d) random 2d-regular graph.
Then for all d = O(1), a.a.s., the spectral expansion of L satisfies λ(G) =
O(d−1/2).

Our main result of this section is the rapid activation rate of expanders.

Theorem 6. Let n ∈ N≥3, and let G = (V,E) with |V | = n, with spectral
expansion λ > 0, and with dmax = O(dmin). Further, let d = 2|E(G)|/n, let
r ∈ [2..(1 − λ)d2min/(4d)], and let I ⊆ V with |I| ≥ 4 r−1

(1−λ)·d2
min/d

· n. Then
the bootstrap percolation process on G with threshold r and initial active set I
percolates completely after O( log n

1−λ ) rounds.

In case of Erdős-Rényi graphs with p = Ω(log n/n) or random 2d-regular graphs,
1 − λ is bounded below by a positive constant, and thus the process percolates
rapidly. We remark that the result and proof of Theorem6 share some ideas
with the work by [20], who investigate the size of smallest contagious sets in
various classes of expander graphs. However, one key difference is that Theorem6
provides a guarantee so that all sets of a certain size percolate, and it additionally
establishes a bound on the number of steps until complete percolation.

We use the following version of the expander mixing-lemma to show
Theorem6.

Lemma 2 (Non-regular-expander mixing-lemma). For all S ⊆ V of a
graph with spectral expansion λ, denoting with e(S, V \ S) the number of edges
between S and V \ S, we have

∣∣∣∣e(S, V \ S) − vol(S) · vol(V \ S)
vol(G)

∣∣∣∣ ≤ λ · vol(S) · vol(V \ S)
vol(G)

.

Proof (Proof of Theorem 6). We establish the result in two stages, depending
on whether |S| is greater or smaller than n/2. In the first stage, we show that
whenever the set of active nodes S with |S| = ε · n satisfies 4 r−1

(1−λ)·d2
min/d

≤
ε ≤ 1/2, then the number of active nodes increases by a factor of 1 + Ω(1 − λ).
Applying Lemma2 with S yields

e(S, V \ S) ≥ (1 − λ) · vol(S) · vol(V \ S)
vol(G)

≥ (1 − λ) · d
2
minεn(1 − ε)

d
.
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Now define N := {v ∈ V \ S | degS(v) ≥ r} ⊆ V \ S, which are the nodes that
get activated by S in the next round. By decomposing e(S, V \ S) = e(S,N) +
e(S, (V \ S) \N),

e(S, V \ S) ≤ |N | · dmax + (|V \ S| − |N |) · (r − 1),

and rearranging gives

|N | ≥ e(S, V \ S) − (n − |S|) · (r − 1)
dmax

≥
(1 − λ) · d2

min
d ε(1 − ε)n − n · (r − 1)

dmax
.

(1)

Hence, if 1/2 ≥ ε ≥ 4 r−1
(1−λ)·d2

min/d
, we conclude that

|N | ≥

(
1−λ
2

d2
min
d ε − 1−λ

4
d2
min
d ε

)
· n

dmax
≥

1−λ
4

d2
min
d ε

dmax
· n =

1 − λ

4
· d2min

dmax · d
· |S|.

Recall that we assumed dmax = O(dmin). Thus in the next step, we can replace
S by S ∪ I and obtain an at least exponential growth (with factor Θ(1 − λ)) in
the number of active nodes until |S| > n/2.

Consider now the second stage, where we assume |S| > n/2 (thus ε > 1/2).
As before, we infer in the same way e(S, V \ S) ≥ (1 − λ) · d2minεn(1 − ε)/d.
Recalling that N = {v ∈ V \ S | degS(v) ≥ r}, we obtain the following refined
version of (1), using that ε ≥ 1/2,

|N | ≥
(1 − λ)d

2
min
d ε(1 − ε)n − (|V \ S| − |N |) · (r − 1)

dmax

≥
1−λ
2

d2
min
d (1 − ε)n − (1 − ε) · n · (r − 1)

dmax
.

Hence, if r − 1 ≤ (1−λ)d2
min

4d , we conclude that

|N | ≥
1−λ
4

d2
min
d (1 − ε)n
dmax

=
1 − λ

4
· d2min

dmax · d
· |V \ S|.

Thus, if |S| > n/2, the set of inactive nodes decreases exponentially in each
round.

Erdős-Rényi Graphs. We first prove an upper bound for the time until com-
plete percolation for bootstrap processes on Erdős-Rényi graphs, showing Prop-
erty 3, which is better than the one following from Theorem6. Then, we show
that there exists an initial active set such that the time needed for complete per-
colation matches this bound. We make use of the well-known Chernoff bounds.
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Theorem 7 (Chernoff bounds [3, Theorems A.1.12 and A.1.13]). Let
n ∈ N>0, p ∈ [0, 1], and X ∼ Bin(n, p). Then

1. for all β > 1, it holds that Pr[X ≥ βnp] ≤ (eβ−1β−β)np, and
2. for all a ∈ (0, np], it holds that Pr[X < np − a] < exp

(
− a2/(2np)

)
.

The following bound shows a rapid activation rate for sufficiently large initial
active sets.
Theorem 8. Let n ∈ N≥3, p ≥ 20 ln(n)/n, r ∈ [2.. lnn]. Further, let I ⊆
V (Gn,p) with |I| = r · n/ lnn. Then a.a.s., the bootstrap percolation process
on Gn,p with threshold r and initial active set I percolates completely in at most
(1 + o(1)) ln(n)/ ln lnn rounds.

Proof. We prove several claims about G = Gn,p, which ultimately show Theo-
rem8.

Claim (8.1). The minimum degree of a node of G is a.a.s. at least 13 lnn.

Proof. The degree of each node v is a binomial random variable with parameters
n−1 and p. By assumption (n−1)p ≥ (1−o(1))20 lnn and, by Theorem7, Item
2, the probability that it is smaller than 13 lnn is at most

e−(1+o(1))(49/40) lnn =
1

n49/40−o(1)
.

The assertion of the claim thus follows from the union bound.

Claim (8.2). Asymptotically almost surely, for every two disjoint sets C and B
in G, with |C| = n/2 and |B| = rn/ lnn, there is a node c in C that has at least
r neighbors in B.

Proof. Fix two disjoint sets B and C as above. Clearly it suffices to prove the
claim for p = 20 ln(n)/n. For every node v ∈ C, the expected number of neigh-
bors of v in B is p|B| = 20r. By Theorem7, Item 2, the probability it has less
than r neighbors in B is at most (with room to spare) e−192r2/(40r) < 1

100 . These
events for distinct nodes v ∈ C are pairwise independent, hence the probability
that there is no node v ∈ C as above is at most (1/100)n/2. As there are less
than 4n pairs of sets B,C as above, the result follows by the union bound, since
4n/100n/2 = o(1).

Claim (8.3). Asymptotically almost surely, for any two disjoint sets of nodes
B and C, where |B| ≥ n/2, n − |B| ≥ 12 lnn and |C| = (n − |B|)/2, there is a
node in C that has at least r neighbors in B.

Proof. As before, fix two disjoint sets B,C as above, and note that we may
assume that p = 20 ln(n)/n. For every fixed v ∈ C the expected number of
neighbors of v in B is p|B| ≥ 10 lnn. As r ≤ lnn, the probability that v has
less than r neighbors in B is at most e−81 ln(n)/20 < n−4, by Theorem7, Item 2.
Therefore the probability that this is the case for every v ∈ C is smaller than
(1/n4)|C|. The number of possible pairs of sets B and C as above is smaller than
n3|C| (as the number of choices for the complement of B is

( n
2|C|

)
≤ n2|C|), and

the claim follows by the union bound.
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Claim (8.4). Asymptotically almost surely, for every y ≤ n
100 lnn , no set of y

nodes of G spans more than y lnn edges.

Proof. Fix a set Y of y nodes. The expected number of edges in it is
(y
2

)
p ≤

y210 lnn
n . By Theorem7, Item 1, with

β =
y lnn

(y210 lnn)/n
=

n

10y
(> 10 lnn)

the probability that Y spans at least y lnn edges is at most

(eβ−1/ββ)(y
210 lnn)/n ≤ β−0.9β(y210 lnn)/n = (10y/n)0.9y lnn < e−2y lnn.

The number of sets of size y is
(n
y

)
≤ ey lnn. We conclude by noting that the

probability that there is a set Y spanning y lnn edges for any y ≤ n
100 lnn is at

most
n/(100 lnn)∑

y=1

ey lnn · e−2y lnn = o(1).

Claim (8.5). Asymptotically almost surely, for every set B of nodes of size n−x,
where 12 lnn ≤ x ≤ n/1000, the number of nodes outside B that do not have at
least lnn (≥ r) neighbors in B is smaller than 10x/ lnn.

Proof. Fix a set B as above and a subset C of 10x/ lnn nodes in its complement.
We bound the probability that no node of C has at least lnn neighbors in B
as follows. By Sect. 4.2, a.a.s. each node in the graph has degree at least 13 lnn.
Assume this is the case. Then every node of C has at least 12 lnn neighbors in
the complement B′ of B (as it has at most lnn neighbors in B). By Sect. 4.2,
a.a.s., the number of edges spanned by the set C is at most |C| lnn. Thus the
number of edges between C and B′ ! C has to be at least 10|C| lnn = 100x.
The expected number of edges is

|C|(|B′| − |C|)p ≤ 10x
lnn

x
20 lnn

n
=

200x2

n
.

Applying Theorem7, Item 1, with

β =
100x

200x2/n
=

n

2x
≥ 500 (> e5)

we conclude that the probability of having that many edges is at most

(eβ−1β−β)200x
2/n ≤ β−0.8β200x2/n = (2x/n)80x.

The number of choices for the sets B′ and C is smaller than
(n
x

)2 ≤ (en/x)2x.
Thus, by the union bound the probability that there are sets B,C violating the
claim is at most ∑

x≥12 lnn

(en/x)2x(2x/n)80x.

Since x ≤ n/1000, 2x/n ≤ 1/500 and hence (2x/n)80x ≤
(
x/(250n)

)40x
<

(
x/(250n)

)2x showing that the sum above is at most
∑

x≥12 lnn(e/250)
2x = o(1).
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We now prove that the number of rounds until complete percolation is a.a.s.
(1 + o(1)) ln(n)/ ln lnn. Assuming that all claims hold, starting with any set A
of rn/ lnn nodes, by Claim 8.2, in one round at least n/2 nodes become active.
By Claim 8.3, in 9 additional rounds the number of inactive nodes drops to at
most n/210 < n/1000. By Claim 8.5, in each round from now on, the number
of inactive nodes drops by a factor of at least lnn/10, as long as this number is
above 12 lnn. Once below 12 lnn, one final step activates all remaining nodes, as
the minimum degree is at least 13 lnn, by Claim 8.1. This completes the proof.

Note that the bound in Theorem8 is optimal for p = Θ(log(n)/n) in the
sense that there is an initial active set A such that the process takes, for some
ε ∈ (0, 1], at least (1 − ε) ln(n)/ ln lnn rounds. This is the case since a.a.s.
dmax(G) = O(log n) (similar to Sect. 4.2). Assuming this is the case, for every
node v the number of nodes within distance at most t is at most

(
O(log n)

)t. For
t = (1− ε) ln(n)/ ln lnn, this number is smaller than n/2. Hence there is a set A
of n/2 > rn/ lnn nodes so that the distance between A and v exceeds t. Thus,
when starting with A of active nodes, t rounds do not suffice to activate v.

The following remark implies this is the same number of rounds the perturbed
percolation with r = 1 for p = Θ(log(n)/n) takes when starting from an active
set of constant size.

Remark 1 [18, Theorem 4]. Let n ∈ N>0 and p = Θ(log(n)/n). Then a.a.s.,
Gn,p has a diameter of Θ(log(n)/ log log n).

5 Experimental Results

In this section, we provide empirical results on the polynomial-to-rapid acti-
vation rate both on the graphs analyzed above, and on further global-graph
models. Our findings are consistent with our theoretical results as well as the
expected behavior of the perturbed percolation process on such graph models.
The Python implementation uses the libraries NetworKit [36] and igraph [21],
collections of tools for generating and analyzing graphs. In particular, they pro-
vide implementations for several random graph models. All experiments were run
on a machine with 4 Intel i7-7500U cores and 8GB RAM. However, note that
we are not concerned with wall clock times, and all experiments were finished
within minutes.

5.1 Erdős–Rényi Graphs

Corollary 2 shows that a.a.s. there is a polynomial-to-rapid activation rate for
a PNG local graph combined with a Gn,p, for some parameter range. In Fig. 1,
we consider such configurations satisfying these conditions, in particular, with
a two-dimensional torus on n = 106 nodes as local graph. All runs are on the
same random Gn,p with p = 20 ln(n)/n, as it is generated once for consistent
comparison. One can see the linear increase of the number of activations per
round on the local graph. After 500 rounds, the number of new active nodes per
round starts decreasing, as the set of active nodes wraps around the torus.
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Fig. 1. The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”),
we only consider the 2-dimensional torus on n nodes, while all other runs are on both
the torus and a Gn,p with p = 20 ln(n)/n and a threshold r on the Gn,p. Note that
both axes are logarithmic.

With the introduction of the Gn,p with r = 1, the process completely per-
colates within three rounds, reflecting the rapid percolation. However, as r is
increased, the effect of the global graph is withheld until some number of nodes
are activated in the polynomial phase. Only then does the change to a rapid rate
arise, and the process quickly percolates within few rounds, driven by the global
edges. Even at r = 100, this effect is still observed.

5.2 Other Global-Graph Models

While our results only apply to the Gn,p and expander graphs as global graph,
we have strong reason to believe the same behavior can be observed for other
global-graph models. We focus on two such models: (1) The Barabási-Albert
(BA) model [2] uses a preferential-attachment approach, where nodes are iter-
atively added and connect to a fixed number of previous nodes proportional
to their degree. (2) The hyperbolic random graph (HRG) model [33] randomly
places nodes in a hyperbolic disk according to some probability distribution, and
connects them if and only if they are close to each other. Both models exhibit
small diameter and a power-law degree distribution, which should be beneficial
for fast percolation. However, due to the underlying geometry, the HRG model
has a large clustering coefficient, i.e., the neighbors of a node are likely to be
neighbors of each other. We expect this feature to further accelerate the process,
as this makes global edges more likely to hit the same nodes.
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Fig. 2. The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”),
we only consider the 2-dimensional torus on n nodes, while all other runs are on both
the torus and a Barabási–Albert random graph (left), or hyperbolic random graph
(right). Note that both axes are logarithmic.

The experiment setup is analogous to that described in Sect. 5.1, with the
two-dimensional torus on n nodes as local graph. For the BA model, the number
of attachments is chosen such that the expected average degree is 20 lnn. For the
HRG model, we configure an expected power-law exponent of 3, and an expected
average degree of 20 lnn. We consider the threshold model, i.e., a temperature
of T = 0.

Our results of one run are depicted in Fig. 2. Again, the process for r = 1
reflects the rapid percolation, and for increasing r, the effect of the global edges
is delayed until a threshold is reached. However, this threshold is reached earlier
than in the Gn,p version. For example, for r = 100, the Gn,p has no activation
by global edges until round 328, while with the BA model, this first happens in
round 57. This can be explained by high-degree nodes in the BA model being
more probable to reach the threshold r quickly.

For the HRG model, this effect is even stronger, with the first activation
through global edges occurring in round 10 for r = 100. Even though both the
BA and the HRG graph share the average degree and power-law exponent, the
HRG graph has more high-degree nodes, in particular, those close to the center
of the disk. Such nodes turn active very early, and then (through their high
degree and high clustering) quickly activate the remaining nodes.
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6 Outlook

With Lemma1 and Theorems 6 and 8, we have shown bounds on the length
of the initial (polynomial) and final (rapid) phase. It would be interesting to
further analyze and tighten this gap. Our experiments (see Fig. 1) suggest that
the transition is rather sharp once the first global activation occurs. Additionally,
our experiments suggest that this behavior is very similar for other global-graph
models, although we believe that the polynomial phase might be much shorter in
the presence of a heavy-tailed degree distribution. Rigorously proving activation
rates on such graph models would increase our understanding even further.
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