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39:2 D. AJWANI ET AL.

1. Introduction

A topological order T of a given a DAG (i.e., directed acyclic graph) G = (V, E)
(with n := |V | and m := |E |) is a linear ordering of its nodes such that for all
directed paths from x ∈ V to y ∈ V (x �= y), it holds that T (x) < T (y). There
exist well-known algorithms for computing the topological ordering of a DAG in
O(m + n) in an offline setting [Tarjan 1972; Knuth and Szwarcfiter 1974].

In the online variant of this problem, the edges of the DAG are not known in
advance but are given one at-a-time. Each time an edge is added to the DAG, we
are required to update the bijective mapping T .

Incremental topological ordering is required for incremental evaluation of com-
putational circuits [Alpern et al. 1990] and incremental compilation [Marchetti-
Spaccamela et al. 1993; Omohundro et al. 1992] where a dependency graph be-
tween modules is maintained to reduce the amount of recompilation performed
when an update occurs. It is also used as an online cycle detection routine in
pointer analysis [Pearce et al. 2003]. In this problem, one wants to discover the
first edge which introduces a cycle in an arbitrary sequence of edges. Until now,
the best-known algorithm for online cycle detection is to compute the incremental
topological ordering.

The naı̈ve way of computing an incremental topological order each time from
scratch with the offline algorithm takes O(m2 + mn) time. Marchetti-Spaccamela,
Nanni, and Rohnert [1996] (MNR) gave an algorithm that can insert m edges
in O(mn) time. Alpern, Hoover, Rosen, Sweeney, and Zadeck [1990] (AHRSZ)
proposed an algorithm which runs in O(‖δ‖ log ‖δ‖) time per edge insertion, with
‖δ‖ measuring the minimum sum of all nodes which have to be updated and of all
edges incident to these nodes. Note that not all edges of this subgraph need to be
visited and hence even O(‖δ‖) time per insertion is not optimal. However, there is
no analysis of AHRSZ for a sequence of edge insertions. Katriel and Bodlaender
[2006] (KB) analyzed a variant of the AHRSZ algorithm and obtained an upper
bound of O(min{m 3

2 log n, m
3
2 + n2 log n}) for a general edge sequence. In addition,

they show that their algorithm runs in time O(m ·k · log2 n) for a DAG for which the
underlying undirected graph has a tree-width of k. Also, they give an O(n log n)
algorithm for DAGs whose underlying undirected graph is a tree. Liu and Chao
[2007] give a tight analysis of the algorithm KB by showing that it runs in time
�(m3/2 + mn1/2 log n). The algorithm by Pearce and Kelly [2006] (PK) empirically
outperforms the other algorithms for random edge insertions leading to sparse
random DAGs, although its worst-case runtime is inferior to KB. Recently, Ajwani
and Friedrich [2007] have also proven an expected runtime of O(n2 polylog(n))
under insertion of the edges of a complete DAG in a random order for AHRSZ,
KB, and PK. The only nontrivial lower bound for this problem is by Ramalingam
and Reps [1994], who show that an adversary can force any algorithm maintaining
explicit labels to need �(n log n) time complexity for inserting n − 1 edges.

We propose a simple algorithm that works in O(n2.75
√

log n) time and O(n2)
space, thereby improving upon the results of Katriel and Bodlaender for dense
DAGs. With some simple modifications in our data structure, we can get O(n2.75)
time with O(n2.25) space, or O(n2.75) expected time with O(n2) space. We
also demonstrate empirically that this algorithm clearly outperforms KB, MNR,
AHRSZ, and PK on a certain class of hard sequences of edge insertions, while being
at most a factor of 2 to 4 away on random edge sequences leading to complete DAGs.
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FIG. 1. Our algorithm.

Our algorithm is dynamic, as it also supports deletion. However, our analysis
holds only for a sequence of insertions. Note that our algorithm can also be used
for online cycle detection in graphs. Moreover, it permits an arbitrary starting point
which makes a hybrid approach possible, that is, by using the PK or KB algorithm
for sparse graphs and ours when the graphs become dense.

The rest of this article is organized as follows. In Section 2, we describe the algo-
rithm and data structures involved. In Section 3, we give the correctness argument
for our algorithm, followed by an analysis of its runtime in Sections 4 and 5. The
details of our implementation and an empirical comparison with other algorithms
follow in Section 6.

2. Algorithm

We keep the current topological order as a bijective function T : V → [1. .n]. If
we start with an empty graph, we can initialize T with an arbitrary permutation;
otherwise T is the topological order of the initial graph, computed offline. In this
and subsequent sections, we will use the following notation: d(u, v) denotes |T (u)−
T (v)|, u < v is a short form of T (u) < T (v), u → v denotes an edge from u to v ,
and u � v expresses that v is reachable from u. Note that u � u, but not u → u.

Figure 1 gives the pseudocode of our algorithm. Throughout the process of insert-
ing new edges, we maintain some data structures which are dependent on the current
topological order. Inserting a new edge (u, v) is done by calling INSERT(u, v). If
v > u, we do not change anything in the current topological order and simply
insert the edge into the graph data structure. Otherwise, we call REORDER to up-
date the topological order as well as the data structures dependent on it. As we
will prove in Theorem 4, detecting v = u in a call of REORDER(u, v) indicates
a cycle. If v < u, we first collect the sorted sets A and B. Here, A is the set of
out-neighbors of v whose topological order is not greater than T (u). Analogously,
B is the set of in-neighbors of u whose topological order is not less than T (v). If
both A and B are empty, we swap the topological order of the two nodes and update
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39:4 D. AJWANI ET AL.

the data structures. Otherwise, we recursively call Reorder until everything inside
is topologically ordered. To make these recursive calls efficient, we first merge
the sorted sets {v} ∪ A and B ∪ {u} and (using this merged list) compute the set
{u′ : (u′ ∈ B ∪ {u}) ∧ (u′ ≥ v ′)} for each node v ′ ∈ {v} ∪ A. The collection of
sets A and B and the update operations are described in more detail after the data
structures have been introduced.

Data structure. We store the current topological order as a set of two arrays by
maintaining the bijective mapping T and its inverse T −1. This ensures that finding
T (u) and T −1(i) are constant-time operations.

The graph itself is stored as an array of vertices. For each vertex we maintain
two adjacency lists which separately keep the incoming and outgoing edges. Each
adjacency list is stored as an array of buckets of vertices. Each bucket contains
at most t nodes for a fixed t . Depending on the concrete implementation of the
buckets, the parameter t is later chosen to be approximately n0.75 so as to balance
the number of inserts and deletes from the buckets and the extra edges touched by
the algorithm. The ith bucket (i ≥ 0) of a node x contains all adjacent nodes y
with i · t < d(x, y) ≤ (i + 1) · t . The nodes of a bucket are stored with node index
(and not topological order) as their key. This has the advantage that there is no
change necessary if two nodes that lie in the same bucket are swapped. The bucket
can be kept as a balanced binary tree, as an array of n-bits, or as a hash table of a
universal hashing function. The only requirement for the bucket data structure is
that it should provide efficient support for the following three operations.

(1) Insert. This operation will insert an element in a given bucket.

(2) Delete. Given an element and a bucket, this operation will find whether this
element exists in this bucket. If yes, it will delete the element from there and
return 1. Else, return 0.

(3) Collect-all. This will copy all the elements from the bucket to some vector.

Depending on how we choose to implement the buckets, we get different run-
times. This will be discussed in Section 5. We will now discuss how we do the
insertion of an edge, computation of A and B, and updating the data structure
under swapping of nodes, in terms of the aforesaid three basic operations.

Inserting an edge (u, v) means inserting node v in the forward adjacency list of
u and u in the backward adjacency list of v . This requires O(1) bucket inserts.

For given u and v , the set A := {w : v → w and w < u}, sorted according to the
current topological order, can be computed from the adjacency list of v by sorting
all nodes of the first d(u, v)/t� outgoing buckets and choosing all w with w < u.
This can be done by O(d(u, v)/t) collect-all operations on buckets. This means
traversing all elements of A as well as all elements of the d(u, v)/t�-th outgoing
bucket. Overall O(|A| + t) elements are visited. These elements are integers in
the range {1. .n} and can be sorted in O(|A| + t) time using a two-pass radix sort
algorithm, since t is chosen such that t ≥ n0.75. The set B is computed likewise
from the incoming edges.

When we swap two nodes u and v , we need to update the adjacency lists of u and
v as well as that of all nodes w that are adjacent to u and/or v . First, we show how
to update the adjacency lists of u and v . If d(u, v) > t , we build their adjacency
lists from scratch. Otherwise, the new bucket boundaries will differ from the old
boundaries by d(u, v) and at most d(u, v) nodes will need to be transferred between
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any pair of consecutive buckets. The total number of transfers are therefore bounded
by d(u, v)n/t�. Determining whether a node should be transferred can be done
in O(1) using the inverse mapping T −1 and, as noted previously, a transfer can be
done in O(1) bucket inserts and deletes. Hence, updating the adjacency lists of u
and v needs at most min{n, d(u, v)n/t�} bucket inserts and deletes.

Let w be a node which is adjacent to u or v . Its adjacency list needs to be updated
only if u and v are in different buckets. This corresponds to w being in different
buckets of the adjacency lists of u and v . Therefore, the number of nodes to be
transferred between different buckets for maintaining the adjacency lists of all w’s
is the same as the number of nodes that need to be transferred for maintaining the
adjacency lists of u and v , namely, min{n, d(u, v)n/t�}.

Updating the mappings T and T −1 after such a swap is trivial, and can be done
in constant time. Thus, we conclude that swapping nodes u and v can be done by
O(d(u, v)n/t�) bucket inserts and deletes.

3. Correctness

In this section we will show the following theorem.

THEOREM 1. The aforesaid algorithm returns a valid topological order after
each edge insertion.

PROOF. For a graph with no edges, any ordering is a correct topological
order, and therefore the theorem is trivially correct. Assuming that we have a
valid topological order of a graph G, we show that when inserting a new edge
(u, v) using INSERT(u, v), our algorithm maintains the correct topological order of
G ′ := G ∪ {(u, v)}. If u < v , this is trivial.

We need to prove that x < y for all nodes x , y of G ′ with x � y. If there was a
path x � y in G, Lemma 2 gives x < y. Otherwise (if there is no x � y in G), the
path x � y must have been introduced to G ′ by the new edge (u, v). Hence x < y
in G ′ by Lemma 3, since there is x � u → v � y in G ′.

LEMMA 2. Given a DAG, G, and a valid topological order, if u � v and u < v,
then all subsequent calls to REORDER will maintain u < v.

PROOF. Let us assume the contrary. Consider the first call of REORDER, which
for a node pair u, v with u � v and u < v , leads to u > v . Either this call led to
swapping u and w with v ≤ w or it caused swapping w and v with w ≤ u. Note that
in our algorithm, a call of REORDER(u, v) leads to a swapping only if A = ∅ and
B = ∅. Assuming that it was the first case (i.e., swapping u and w) and therefore
caused by the call to REORDER(u, w), A = ∅. However, since u, v is the first such
pair to get violated, x ∈ A for an x with u → x � v , leading to a contradiction.
The other case is proved analogously.

LEMMA 3. Given a DAG, G, with v � y and x � u, a call of REORDER(u,v) will
ensure that x < y.

PROOF. Consider the recursion tree of a call to REORDER, in which the recursive
calls emanating in lines 7 and 8 are its children. The proof follows by induction on
the recursion tree height of REORDER(u, v). For leaf nodes (calls of REORDER with
zero recursion tree height) of the recursion tree, A = B = ∅. If x < y before this
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call, Lemma 2 ensures that x < y will still hold. Otherwise, y := v and x := u.
The swapping of u and v in line 5 gives x < y.

We assume this lemma to be true for calls of REORDER up to a certain recursion
tree height and consider a call with a higher recursion tree. If A �= ∅, then there is
a ṽ such that v → ṽ � y; otherwise ṽ := v = y. If B �= ∅, then there is a ũ such
that x � ũ → u; otherwise ũ := u = x . Hence ṽ � y < x � ũ. The for-loops of
lines 7 and 8 will call REORDER(ũ, ṽ). By the inductive hypothesis, this will ensure
x < y. According to Lemma 2, further calls to REORDER will maintain x < y.

THEOREM 4. The algorithm detects a cycle if and only if there is a cycle in the
given edge sequence.

PROOF. ⇒: First, we show that within a call to INSERT(u, v), there are paths
v � v ′ and u′ � u for each recursive call to REORDER(u′, v ′). This is trivial for the
first call to REORDER and follows immediately by the definition of A and B for all
subsequent recursive calls to REORDER. This implies that if the algorithm indicates
a cycle in line 1 of REORDER, there is indeed a cycle u → v � v ′ = u′ � u. In fact,
the cycle itself can be computed using the recursion stack of the current call to
REORDER.

⇐: Consider the edge (u, v) of the cycle v � u → v inserted last. Since v � u
before the insertion of this edge, the topological order computed will satisfy v < u
(Theorem 1), and therefore REORDER(u, v) would be called. In fact, all edges in
the path v � u will obey the current topological ordering and, by Lemma 2, this
will remain so for all subsequent calls of REORDER. We prove by induction on
the number of nodes in the path v � u (including u and v) that whenever v � u
and REORDER(u, v) is called, it detects the cycle. A call of REORDER(u′, v ′) with
u′ = v ′ or REORDER(u′, v ′) with v ′ → u′ clearly reports a cycle. Consider a path
v → x � y → u of length k > 2 and the call of REORDER(u, v). As noted before,
v < x ≤ y < u before the call to REORDER(u, v). Hence x ∈ A and y ∈ B and a
call to REORDER(y, x) will be made in the for loop of lines 7 and 8. As y � x has
k − 2 nodes in the path, the call to REORDER(y, x) (by our inductive hypothesis)
will detect the cycle.

4. Runtime

The following theorem is the main result of this section.

THEOREM 5. Incremental topological ordering can be maintained while pro-
cessing any sequence of edge insertions using O(n3.5/t) bucket inserts and deletes,
O(n3/t) bucket collect-all operations collecting O(n2t) elements, and O(n2.5+n2t)
operations.

PROOF. Consider the pseudocode in Figure 1. Since there can be a maximum
of n (n − 1)/2 edges inserted in a DAG, there are O(n2) calls of INSERT. Inserting
an edge in the graph involves O(1) bucket operations, and therefore the total cost
of line 2 of INSERT is O(n2).

Lemma 8 shows that REORDER is called O(n2) times. Line 1 of REORDER requires
O(1) operations per call of REORDER, except for the one time it does encounter a
cycle (when it requires O(n) time). Lemma 10 shows that the calculation of the
sets A and B over all calls of REORDER can be done by O(n3/t) bucket collect-all

ACM Transactions on Algorithms, Vol. 4, No. 4, Article 39, Publication date: August 2008.



An O(n2.75) Algorithm for Incremental Topological Ordering 39:7

operations touching O(n2t) edges, and O(n2.5 + n2t) operations. Lines 4 and 5
require O(1) operations per call of REORDER. In Lemma 12, we prove that all the
updates can be done by O(n3.5/t) bucket inserts and deletes.

For lines 7 and 8 of the pseudocode, we first merge the two sorted sets A
and B. This takes O(|A| + |B|) operations. For a particular node v ′ ∈ {v} ∪ A,
we can compute the set V ′ = {u′ : (u′ ∈ B ∪ {u}) ∧ (u′ ≥ v ′)} (as required by
line 8) using this merged set in complexity O(1 + |V ′|), which is also the num-
ber of calls of REORDER emanating for this particular node. Summing over the
entire for-loop of line 7, the total complexity of lines 7 and 8 is O(|A| + |B| +
number of calls of REORDER emanating from here). Since, by Lemma 9, the sum-
mation of |A| + |B| over all calls of REORDER is O(n2) and, by Lemma 8, the
total number of calls to REORDER is also O(n2), we get a total of O(n2) operations
for lines 7 and 8. The theorem follows by simply adding the complexity of each
line.

LEMMA 6. REORDER is local, that is, a call to REORDER(u, v) does not affect
the topological ordering of nodes w such that either w < v or w > u just before
the call was made.

PROOF. This lemma can be proven by induction on the level of recursion tree of
a call to REORDER(u, v). For the leaf node of the recursion tree, |A| = |B| = 0 and
the topological order of u and v is swapped, not affecting the topological ordering
of any other node.

We assume this lemma to be true up to a certain tree-level. To see that it is also
valid for one level higher, note that the arrays A and B contain elements w such
that v < w < u. Since each call of REORDER in the for-loop of lines 7 and 8 is
from an element of A to an element of B and all of these calls are themselves local
by our induction hypothesis, this call of REORDER is also local.

LEMMA 7. If two nodes are swapped in a call of REORDER, their relative order
will remain unchanged in the future.

PROOF. Let us assume that two nodes u′ and v ′ are swapped within one of the
recursive calls of REORDER invoked by INSERT(u, v). After the insertion of edge
(u, v), there is a path u′ � u → v � v ′. Therefore, by Lemma 2, the relative order
of u′ and v ′ will not be changed in any subsequent call of INSERT.

It remains to prove that also within the recursion tree of REORDER(u, v), the
relative order of u′ and v ′ will not be changed after they have been swapped. This is
ensured by the order in which the two for-loops in lines 7 and 8 iterate, since there
can be no calls to REORDER(u′, w) with w > v ′ or REORDER(w, v ′) with u < u′
after the call of REORDER(u′, v ′).

LEMMA 8. REORDER is called O(n2) times.

PROOF. As we have proven that the algorithm is correct in Section 3, we now
know that for each pair (u, v), the following holds: If REORDER(u, v) is called, then
v ≤ u holds beforehand and u ≤ v holds afterwards. As, by Lemma 7, this implies
that REORDER(u, v) can only be called once for each pair (u, v), the number of calls
to REORDER can be upper bounded by n2.

LEMMA 9. The summation of |A| + |B| over all calls of REORDER is O(n2).
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PROOF. Consider arbitrary nodes u and v ′. We prove that for all v ∈ V , v ′ ∈ A
happens only once over all calls of REORDER(u, v). This proves that

∑ |A| ≤ n, for
all such calls of REORDER(u, v). Therefore, summing up for all u ∈ V ,

∑ |A| ≤ n2

over all calls of REORDER.
In order to see that for all v ∈ V , v ′ ∈ A happens only once over all calls of

REORDER(u, v), consider the first such call. Since v ′ ∈ A, v ′ < u and v → v ′
before the call was made. By Lemma 3, u < v ′ after this call and hence, v ′ /∈ A for
any call of REORDER afterwards. As for calls within the recursive substructure of
the first call, the order in which these calls are made ensures that there will be no
calls of REORDER(u, w) for any w < v ′ before REORDER(u, v ′) and since u < v ′
after REORDER(u, v ′), v ′ /∈ A for REORDER(u, w).

Analogously, it can be proven that for arbitrary nodes v and v ′ and for all u ∈ V ,
v ′ ∈ B happens only once over all calls of REORDER(u, v). The proof for

∑ |B| ≤
n2 follows similarly and completes the proof of this lemma.

LEMMA 10. Calculating the sorted sets A and B over all calls of REORDER

can be done by O(n3/t) bucket collect-all operations that touch a total of O(n2t)
elements and O(n2.5 + n2t) operations for sorting these elements.

PROOF. Consider the calculation of set A in a call of REORDER(u, v). As dis-
cussed earlier in Section 2, we look at the out adjacency list of u, stored in the form
of buckets. In particular, we will need O(d(u, v)/t) bucket collect-all operations
touching O(|A| + t) elements to calculate A. The additional worst-case factor of
t stems from the last bucket visited. Summing up over all calls of REORDER, we
get O(

∑
d(u, v)/t) collect-all operations, touching

∑
(|A| + |B| + t) elements.

Since d(u, v) ≤ n for every call of REORDER(u, v) and there are O(n2) calls of
REORDER (Lemma 8), there are O(n3/t) bucket collect-all operations. Also, since∑

(|A| + |B|) = O(n2) by Lemma 9, the total number of elements touched is
O(n2 + ∑

t) = O(n2t). Since the keys are in the range {1. .n}, we can use a two-
pass radix sort to classify the elements collected from the buckets. The total sorting
time over all calls of REORDER is

∑
(2(|A| + t) + √

n) + ∑
(2(|B| + t) + √

n) =
O(n2.5 + n2t).

LEMMA 11.
∑

d(u, v) = O(n5/2), where the summation is taken over all calls
of REORDER(u,v) in which u and v are swapped.

PROOF. Let T ∗ denote the final topological ordering and

X (T ∗(u), T ∗(v)) :=
{

d(u, v) if REORDER(u, v) leads to a swapping

0 otherwise.

As Lemma 7 implies that each node pair is swapped at most once, the variable X (i, j)
is clearly defined. Next, we model a few linear constraints on X (i, j), formulate it
as a linear program, and use this LP to prove that max{∑i, j X (i, j)} = O(n5/2).
By definition of d(u, v) and X (i, j),

0 ≤ X (i, j) ≤ n for all i, j ∈ [1. .n].

For j ≤ i , the corresponding edges (T ∗ −1(i), T ∗ −1( j)) go backwards and thus are
never inserted at all. Consequently,

X (i, j) = 0 for all j ≤ i .
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Now consider an arbitrary node u which is finally at position i , namely, T ∗(u) = i .
Over the insertion of all edges, this node has been moved left and right via swapping
with several other nodes. Strictly speaking, it has been swapped right with nodes at
final positions j > i and has been swapped left with nodes at final positions j < i .
Hence, the overall movement to the right is

∑
j>i X (i, j) and to left is

∑
j<i X ( j, i).

Since the net movement (difference between the final and the initial position) must
be less than n, ∑

j>i

X (i, j) −
∑
j<i

X ( j, i) ≤ n for all 1 ≤ i ≤ n.

Putting all the constraints together, we aim to solve the following linear program.

max
∑

1≤i≤n
1≤ j≤n

X (i, j) such that

(i) X (i, j) = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ i ,

(ii) 0 ≤ X (i, j) ≤ n for all 1 ≤ i ≤ n and i < j ≤ n,

(iii)
∑

j>i X (i, j) − ∑
j<i X ( j, i) ≤ n for all 1 ≤ i ≤ n.

Note that these are necessary constraints, but not sufficient. Nonetheless, this is
enough for our purposes as an upper bound to the solution of this LP will give an
upper bound for the

∑
X (i, j) in our algorithm. In order to prove the upper bound

on the solutions of this LP, we consider the dual problem

min

⎡
⎢⎣ n

∑
0≤i<n
i< j<n

Y (i · n + j) + n
∑

0≤i<n

Y (n2 + i)

⎤
⎥⎦ such that

(i) Y (i · n + j) ≥ 1 for all 0 ≤ i < n and j ≤ i ,

(ii) Y (i · n + j) + Y (n2 + i) − Y (n2 + j) ≥ 1 for all 0 ≤ i < n and j > i ,

(iii) Y (i) ≥ 0 for all 0 ≤ i < n2 + n,

as well as the following feasible solution for the dual. We have

Y (i · n + j) = 1 for all 0 ≤ i < n and 0 ≤ j ≤ i,
Y (i · n + j) = 1 for all 0 ≤ i < n and i < j ≤ i + 1 + 2

√
n,

Y (i · n + j) = 0 for all 0 ≤ i < n and j > i + 1 + 2
√

n,

Y (n2 + i) = √
n − i for all 0 ≤ i < n.

This solution has a value of n2 + 2 n5/2 + n
∑n

i=1

√
i = O(n5/2), which, by the

primal-dual theorem, is a bound on the solution of the original LP.
In fact, it can be shown that there is a solution to primal LP whose value is

O(n5/2), namely

X (i, j) = 0 for all 0 ≤ i < n and 0 ≤ j ≤ i ,

X (i, j) = n for all 0 ≤ i < n and i < j ≤ i +
⌈√

1+8i−1
2

⌉
,

X (i, j) = 0 for all 0 ≤ i < n and j > i +
⌈√

1+8i−1
2

⌉
.
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LEMMA 12. Updating the data structure over all calls of REORDER requires
O(n3.5/t) bucket inserts and deletes.

PROOF. Our data structure requires O(d(u, v) n/t) bucket inserts and deletes
to swap two nodes u and v . Lemma 7 shows that each node pair is swapped at
most once. Hence, summing up over all calls of REORDER(u, v) where u and v are
swapped, we need O(

∑
d(u, v) n/t) = O(n3.5/t) bucket inserts and deletes using

Lemma 11.

5. Bucket Data Structure

We get different runtimes and space requirements of our algorithm, depending on
the data structures of the buckets used.

(a) Balanced Binary Trees (see, e.g., Guibas and Sedgewick [1978]). Balanced
binary trees give us O(1 + log τ )-time insert and delete and an O(1 + τ )-
time collect-all operation, where τ is the number of elements in the bucket.
Therefore, by Theorem 5, the total time required will be O(n2t + n3.5 log n/t).
Substituting t = n0.75

√
log n, we get a total time of O(n2.75

√
log n). The total

space requirement will be O(n2), as a balanced binary tree needs O(t) nodes
for storing at most t elements.

(b) N-Bit Array. A bucket that stores at most t elements can be kept as an n-bit
array, where each bit is 0 or 1, depending on whether the element is present
in the bucket. Also, we can keep a list of all elements in the bucket. To insert,
we just flip the appropriate bit and insert at the end of the list. To delete, we
just flip the appropriate bit. To collect all, we go through the list and for each
element in the list, we check whether the corresponding bit is 1 or 0. If it is 0,
we also remove it from the list. This gives us constant-time insert and delete and
the time for the collect-all operation will be the total output size plus the total
number of deletes. Each delete is counted once in collect-all, as we remove the
corresponding element from the list after the first collect-all. By Theorem 5,
the total time required will be O(n2t +n3.5/t), giving us O(n2.75) for t = n0.75.
The total space requirement will be O(n) for each bucket, leading to a total of
O(n2.25) for O(n2/t) buckets.

(c) Uniform Hashing [Östlin and Pagh 2003]. A data structure based on uniform
hashing coupled with a list of elements in the bucket operated in the same way
as the n-bit array will give an expected constant-time insert and delete and the
same bound for collect-all as for the n-bit array. This gives an expected total
time of O(n2t +n3.5/t). With t = n0.75 this yields an expected time of O(n2.75).
Since the hashing-based data structure as described in Östlin and Pagh [2003]
takes only linear space, the total space requirement is O(n2).

6. Empirical Comparison

We conducted our experiments on a 2.4 GHz Opteron machine with 8GB of main
memory running Debian GNU/Linux. For PK, MNR, and AHRSZ we used the
C++/Boost-based implementation of David J. Pearce (see Pearce and Kelly [2006]).
For our algorithm (AFM), we implemented variant (b) of Section 5 using C++/STL.
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FIG. 2. Our hard-case graph.

Additionally, we also implemented a local (refer to Lemma 6) variant of KB using
an ordered bidirectional-list data structure [Dietz and Sleator 1987]. The codes of
AFM and KB are available upon request. All codes were compiled using gcc 3.3
in 32-bit mode and optimization level -O3. The timings were measured using the
gettimeofday function of <sys/time.h> and all the results are averaged over
10 runs each.

We examined all five algorithms on two classes of DAG. First, we considered
random edge insertion sequences leading to a complete DAG. This random DAG
model by Barak and Erdős [1984] is similar to the well-known G(n, m) random
graph model of Erdős and Rényi [1959]. On a random edge sequence, all the
algorithms are quite fast and none encounter its worst-case behavior. Therefore,
we also considered a particular sequence of edges which we believe to be a hard
instance of the problem. This edge sequence is similar to the worst-case sequence
given by Katriel and Bodlaender [2006] for their algorithm. On this sequence,
KB, PK, MNR, and AHRSZ (the variant choosing the smallest permitted priority)
face their worst-case of �(n3) operations, while our algorithm takes �(n2.5) time
complexity. This sequence of edges is depicted in Figure 2. Let us briefly describe
its structure. For a graph with n nodes, we divide the set of nodes into four blocks
of different sizes: block 1 consists of nodes [0. .n/3), block 2 of nodes [n/3. .n/2),
block 3 of nodes [n/2. .2n/3), and block 4 of nodes [2n/3. .n). First, we insert n −4
edges such that within each block, the vertices form a directed path from left to
right. Then we insert the following edges:

(a)
→
∀ j ∈ [0..n/3)

←
∀k ∈ [0..n/6) : add edge( j, k + n/2);

(b)
→
∀ j ∈ [0..n/6) : add edge(2 j, j + n/3) and edge(2 j + 1, j + n/3);

(c)
→
∀ j ∈ [0..n/6)

←
∀k ∈ [0..n/3) : add edge( j + n/3, k + 2n/3); and

(d)
→
∀ j ∈ [0..n/6)

←
∀k ∈ [0..n/6) : add edge( j + n/2, k + n/3),

where
→
∀ denotes going from left to right in the for-loop and

←
∀ the other way around.

Figure 3 shows the runtimes of the five algorithms considered for random-edge
sequences leading to complete DAGs with a varying number n of vertices (and with
m = (n

2

)
). We see that AFM is approximately 30% faster than KB and a constant

factor of 2 to 4 away from AHRSZ, MNR, and PK.
Figure 4 shows the average runtimes for random graphs with n = 1000 and a

varying number of edges. AFM loses a lot during the insertion of the first O(n log n)
edges because in this phase, updating the data structures after every swapping proves
very costly. Afterwards, however, the curves between AFM and PK/MNR/KB are
almost parallel, while the slope for AHRSZ is around 2 times that of AFM. For
practical purposes, we believe therefore that a hybrid approach would perform best.
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FIG. 3. Experimental data on full random graphs with varying n.

FIG. 4. Experimental data on random graphs with n = 1000 and varying m.

FIG. 5. Experimental data on a class of hard instances with varying n.
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In other words, one inserts the first O(n log n) edges with either PK or KB and then
inserts the remaining edges with our algorithm.

Figure 5 shows the runtimes of the five algorithms considered on the class of
hard-edge sequences described before. The difference in asymptotic behavior as
discussed before is clear from the graph.

7. Discussion

We have presented the first o(n3) algorithm for incremental topological ordering. We
also implemented this new algorithm and compared it with previous approaches,
showing that for certain hard examples, it outperforms PK, MNR, and AHRSZ.
There is still a large gap between the �(n log n) lower bound for inserting n − 1
edges, the trivial lower bound of �(m) for m > n log n, and the upper bound
of O(min{m1.5 + n2 log n, m1.5 log n, n2.75}). Bridging this gap remains an open
problem.
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