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Abstract

We present a simple algorithm which maintains the topological order of a directed
acyclic graph with n nodes under an online edge insertion sequence in O(n2.75)
time, independent of the number of edges m inserted. For dense DAGs, this is an
improvement over the previous best result of O(min{m 3

2 log n,m
3
2 + n2 log n}) by

Katriel and Bodlaender.
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1 Introduction

A topological order T of a given directed acyclic graph (DAG) G = (V, E)
(with n := |V | and m := |E|) is a linear ordering of its nodes such that for
all directed paths from x ∈ V to y ∈ V (x �= y), it holds that T (x) < T (y).
There exist well known algorithms for computing the topological ordering of
a DAG in O(m + n) in an offline setting (see e.g. [3]).

In the online variant of this problem, the edges of the DAG are not known
in advance but are given one at a time. Each time an edge is added to the
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DAG, we are required to update the bijective mapping T .

The online topological ordering has been studied in the following contexts
• As an online cycle detection routine in pointer analysis [9].

• Incremental evaluation of computational circuits [2].

• Compilation [5,7] where dependencies between modules are maintained to
reduce the amount of recompilation performed when an update occurs.

The näıve way of maintaining an online topological order, i.e., to com-
pute it each time from scratch with the offline algorithm, takes O(m2 + mn)
time. Marchetti-Spaccamela et al. [6] (MNR) gave an algorithm that can in-
sert m edges in O(mn) time. Alpern et al. proposed a different algorithm [2]
(AHRSZ) which runs in O(‖δ‖ log ‖δ‖) time per edge insertion with ‖δ‖ mea-
suring the number of edges of the minimal node subgraph that needs to be
updated. Note that not all edges of this subgraph need to be visited and
hence even O(‖δ‖) time per insertion is not optimal. Katriel and Bodlaender
(KB) [4] analyzed a variant of the AHRSZ algorithm and obtained an upper

bound of O(min{m 3
2 log n,m

3
2 + n2 log n}) for a general DAG. The algorithm

by Pearce and Kelly [8] (PK) empirically outperforms the other algorithms
for sparse random DAGs, although its worst-case runtime is inferior to KB.

We propose a simple algorithm that works in O(n2.75
√

log n) time and
O(n2) space, thereby improving upon the results of Katriel and Bodlaender
for dense DAGs. With some simple modifications in our data structure, we
can get O(n2.75) time with O(n2.25) space or O(n2.75) expected time with O(n2)
space.

Our algorithm is dynamic, as it also supports deletion. However, our
analysis holds only for a sequence of insertions. Our algorithm can also be
used for online cycle detection in graphs, as well. Moreover, it permits an
arbitrary starting point, which makes a hybrid approach possible, i.e., using
the PK or KB algorithm for sparse graphs and ours for dense graphs.

2 Algorithm

We keep the current topological order as a bijective function, T : V → [1..n].
If we start with an empty graph, we can initialize T with an arbitrary permu-
tation, otherwise T is the topological order of the starting graph, computed
offline. In this and the subsequent sections, we will use the following nota-
tions: d(u, v) denotes |T (u) − T (v)|, u < v is a short form of T (u) < T (v),
u → v denotes an edge from u to v, and u � v expresses that v is reachable
from u. Note that u � u, but not u → u.
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Insert(u, v)

� Insert edge (u, v) and calculate new topological order
1 if v ≤ u then Reorder(u,v)
2 insert edge (u, v) in graph

Reorder(u, v)

� Reorder nodes between u and v such that v ≤ u
1 if u = v then report detected cycle and quit
2 A := {w : v → w and w ≤ u}
3 B := {w : w → u and v ≤ w}
4 if A = ∅ and B = ∅

then � Correct the topological order
5 swap u and v
6 update the data structure

else � Reorder node pairs between u and v
7 for v′ ∈ {v} ∪ A in decreasing topological order
8 for u′ ∈ B ∪ {u} ∧ u′ ≥ v′ in increasing topological order
9 Reorder(u′,v′)

Fig. 1. Our algorithm

Figure 1 gives the pseudo code of our algorithm. Throughout the process
of inserting new edges, we maintain some data structures which are dependent
on the current topological order. Inserting a new edge (u, v) is done by calling
Insert(u, v). If v > u, we do not change anything in the current topological
order and simply insert the edge into the graph data structure. Otherwise, we
call Reorder to update the topological order as well as the data structures
dependent on it. Detection of v = u indicates a cycle. If v < u, we first collect
sorted sets A and B as defined in the code. If both A and B are empty, we
swap the topological order of the two nodes and update the data structures.
The query and the update operations are described in more detail along with
our data structures in Section 2.1. Otherwise, we recursively call Reorder
until everything inside is topologically ordered. To make these recursive calls
efficient, we first merge the sorted sets {v} ∪ A and B ∪ {u} and using this
merged list, compute the set {u′ : (u′ ∈ B ∪ {u}) ∧ (u′ > v′)} for each node
v′ ∈ {v} ∪ A.
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2.1 Data structure

We store the current topological order, as a set of two arrays, storing the
bijective mapping T and its inverse. This ensures that finding T (i) and T−1(u)
are constant time operations.

The graph itself is stored as an array of vertices. For each vertex we
maintain two adjacency lists, which keep the incoming and outgoing edges
separately. Each adjacency list is stored as an array of buckets of vertices.
The bucket can be kept as a balanced binary tree or as an array of n-bits or as
a hash-table of a universal hashing function. Each bucket contains at most t
nodes for a fixed t. Depending on the concrete implementation of the buckets,
the parameter t is later chosen to be approximately n0.75 so as to balance the
number of inserts and deletes from the buckets and the extra edges touched
by the algorithm. The i-th bucket (i ≥ 0) of a node u contains all adjacent
nodes v with i · t < d(u, v) ≤ (i + 1) · t. The nodes of a bucket are stored
with node index (and not topological order) as their key. The bucket data
structure should provide efficient support for the following three operations:

(i) Insert: Inserting an element in a given bucket.

(ii) Delete: Given an element and a bucket, find out if that element exists
in that bucket. If yes, delete the element from there and return 1. Else,
return 0.

(iii) Collect-all: Copying all the elements from the bucket to some vector.

We will now discuss how we do the insertion of an edge, computation of A
and B, and updating the data-structure under swapping of nodes in terms of
the above three basic operations.

Inserting an edge (u, v) means, inserting node v to the forward adjacency
list of u and u to the backward adjacency list of v. This requires O(1) bucket
inserts.

For given u and v, the set A := {w : v → w and w < u} sorted according
to the current topological order can be computed from the adjacency list of
v by sorting all nodes of the first �d(u, v)/t outgoing buckets and choosing
all w with w < u. This can be done by O(d(u, v)/t) collect-all operations on
buckets collecting a total of O(|A| + t) elements. These elements are integers
in the range {1 . . n} and can be sorted in O(|A| + t +

√
n) time using a two-

pass radix sort algorithm. The set B is computed likewise from the incoming
edges.

When we swap two nodes u and v, we need to update the adjacency lists
of u and v as well as that of all nodes w that are adjacent to u and/or v.
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First, we show how to update the adjacency lists of u and v. If d(u, v) > t, we
have to build their adjacency lists from scratch. Otherwise, the new bucket
boundaries will differ from the old boundaries by d(u, v) and at most d(u, v)
nodes will need to be transferred between any pair of consecutive buckets. The
total number of transfers are therefore bounded by d(u, v)�n/t. Determining
whether a node should be transferred can be done in O(1) using the inverse
mapping T−1 and as noted above, a transfer can be done in O(1) bucket
inserts and deletes. Hence, updating the adjacency lists of u and v needs
min{n, d(u, v)�n/t} bucket inserts and deletes.

Let w be a node which is adjacent to u or v. Its adjacency list needs to
be updated only if u and v are in different buckets. This corresponds to w
being in different buckets of the adjacency lists of u and v. Therefore, the
number of nodes to be transferred between different buckets for maintain-
ing the adjacency lists of all w’s is the same as the number of nodes that
need to be transferred for maintaining the adjacency lists of u and v, i.e.,
min{n, d(u, v)�n/t}.

Updating the mappings T and T−1 after such a swap is trivial and can be
done in constant time. Thus, we conclude that swapping nodes u and v can
be done by O(d(u, v)�n/t) bucket inserts and deletes.

The details of correctness proof and runtime analysis are available in [1].

3 Discussion

We have presented the first o(n3) algorithm for online topological ordering.
The only non-trivial lower bound for this problem is by Ramalingam and
Reps [10], who show that an adversary can force any algorithm maintaining
explicit labels to need Ω(n log n) time complexity for inserting n − 1 edges.
There is still a large gap between this, the trivial lower bound of Ω(m), and
the upper bound of O(min{m1.5 + n2 log n,m1.5 log n, n2.75}). Bridging this
gap remains an open problem.
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