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Abstract
Maintaining diversity is important for the performance of evolutionary algorithms.
Diversity-preserving mechanisms can enhance global exploration of the search space
and enable crossover to find dissimilar individuals for recombination. We focus on
the global exploration capabilities of mutation-based algorithms. Using a simple bi-
modal test function and rigorous runtime analyses, we compare well-known diversity-
preserving mechanisms like deterministic crowding, fitness sharing, and others with
a plain algorithm without diversification. We show that diversification is necessary
for global exploration, but not all mechanisms succeed in finding both optima effi-
ciently. Our theoretical results are accompanied by additional experiments for different
population sizes.
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1 Introduction

In evolutionary computation the term diversity indicates dissimilarities of individuals
and is considered an important property. In a population-based evolutionary algorithm
without a diversity-preserving mechanism, there is a risk of the best individual taking
over the whole population before the fitness landscape is explored properly. When
the population becomes completely redundant, the algorithm basically reduces to a
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trajectory-based algorithm while still suffering from high computational effort and
space requirements for the whole population.

Diversity-preserving mechanisms can help the optimization in two ways. On one
hand, a diverse population is able to deal with multimodal functions and can ex-
plore several hills in the fitness landscape simultaneously. Diversity-preserving mech-
anisms can therefore support global exploration and help to locate several local and
global optima. This behavior is welcome in dynamic environments as the algorithm
is more robust with respect to changes of the fitness landscape. Moreover, the algo-
rithm can offer several good solutions to the user, a feature desirable in multi-objective
optimization. On the other hand, a diverse population gives higher chances to find
dissimilar individuals and to create good offspring by recombining different “build-
ing blocks.” Diversity-preserving mechanisms can thus enhance the performance of
crossover.

Up to now, the use of diversity-preserving mechanisms has been assessed mostly by
means of empirical investigations (e.g., Chaiyaratana et al., 2007; Ursem, 2002). Theo-
retical runtime analyses have mostly used diversity-preserving mechanisms to enhance
the performance of crossover. Jansen and Wegener (2005) presented the first proof that
crossover can make a difference between polynomial and exponential expected opti-
mization times. They used a very simple diversity-preserving mechanism that only
shows up as a tie-breaking rule: when there are several individuals with worst fitness
among parents and offspring, the algorithm removes those individuals with a maximal
number of genotype duplicates. Nevertheless, this mechanism makes the individuals
spread on a certain fitness level (i. e. , makes them produce different individuals of the
same fitness) such that crossover is able to find suitable parents for recombination.
Storch and Wegener (2004) presented a similar result for populations of constant size.
They used a stronger mechanism that prevents duplicates from entering the population,
regardless of their fitness value.

Niching methods encourage the exploration of niches, that is, they aim at the sur-
vival of individuals far apart from the other individuals. The first theoretical runtime
analysis considering niching methods was presented by Fischer and Wegener (2005) for
a fitness function derived from a generalized Ising model on ring graphs. The authors
compare the well-known (1+1) EA with a (2+2) GA with fitness sharing. Fitness shar-
ing (Mahfoud, 1997) derates the real fitness of an individual x by a measure related to
the similarity of x to all individuals in the population, hence encouraging the algorithm
to decrease similarity in the population. Fischer and Wegener (2005) prove that their
genetic algorithm outperforms the (1+1) EA by a polynomial factor. Sudholt (2005)
extended this study for the Ising model on binary trees, where the performance gap
between GAs and EAs is even larger. While a broad class of (μ+λ) EAs has exponential
expected optimization time, a (2+2) GA with fitness sharing finds a global optimum in
expected polynomial time.

In all these studies, diversity is used to assist crossover. Contrarily, Friedrich,
Hebbinghaus, and Neumann (2007) focused on diversity-preserving mechanisms as
a means to enhance the global exploration of EAs without crossover. Using rigorous
runtime analyses, the authors compare a mechanism avoiding genotype duplicates
with a strategy avoiding duplicate fitness values to spread individuals on different
fitness levels. It is shown for artificial functions that each mechanism can drastically
outperform the other, depending on the circumstances.

Friedrich et al. (2007) were the first to focus on the use of diversity-preserving mech-
anisms for global exploration with respect to rigorous runtime analyses. However, their
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test functions are clearly tailored toward one particular diversity-preserving mecha-
nism. We want to obtain a broader perspective including a broader range of diversity-
preserving mechanisms. Therefore, we compare several well-known diversity-
preserving mechanisms on the simplest bimodal function that may also appear as
part of a real-world problem. On the considered function, simple hill climbers find
the global optimum with constant probability, and hence a restart strategy is sufficient
for optimization. We focus on well-known diversity-preserving mechanisms that do
not restart the algorithm. Firstly, we rigorously prove that diversity-preserving mech-
anisms are necessary for our function since populations of almost linear size without
diversification fail to find both peaks, with high probability. Then we analyze common
diversity-preserving mechanisms and show that not all of them are effective for avoid-
ing premature convergence even for such a simple landscape. As a result, we hope to
get a more objective and more general impression of the capabilities and limitations of
common diversity-preserving mechanisms.

This paper extends its conference version (Friedrich et al., 2008) in several ways. On
one hand, some theoretical results have been improved. In particular, the negative result
for fitness duplicates (Theorem 3) now holds for larger population sizes μ and the lower
bound on the runtime has been improved by using stronger drift results. On the other
hand, we supplement our theoretical work with experimental results. This enables us
to compare our asymptotic theoretical predictions against empirical data for a concrete
problem dimension and several values for the population size μ. Moreover, we consider
the effect of very large μ to see whether for the diversity-preserving mechanisms very
large populations can be successful where small populations fail.

In the remainder of this paper, we first present our bimodal test function in Section 2.
Negative results for a plain (μ+1) EA in Section 3 show that diversification is needed.
In Sections 4 and 5 we investigate the strategies previously analyzed by Friedrich et al.
(2007) to avoid genotype duplicates and fitness duplicates, respectively. Section 6 deals
with the well-known deterministic crowding strategy (Mahfoud, 1997) where offspring
directly compete with their associated parents. Fitness sharing, which turns out to be
the strongest mechanism, is analyzed in Section 7. Section 8 contains experimental
results showing how well our theoretical results match with empirical results and
revealing additional insight on the dynamic behavior of the algorithms. We present our
conclusions in Section 9.

2 A Simple Bimodal Function

We consider a simple bimodal function called TWOMAX that has already been investi-
gated in the context of genetic algorithms by Pelikan and Goldberg (2000) and Goldberg
et al. (2002). The function TWOMAX is essentially the maximum of ONEMAX and
ZEROMAX . Local optima are solutions 0n and 1n where the number of zeros or the
number of ones, respectively, is maximized. Hence, TWOMAX can be seen as a bi-
modal equivalent of ONEMAX . The fitness landscape consists of two hills with sym-
metric slopes. In contrast to Pelikan and Goldberg (2000) and Goldberg et al. (2002)
we modify the function slightly such that only one hill contains the global opti-
mum, while the other one leads to a local optimum. This is done by simply adding
an additional fitness value for 1n, turning it into a unique global optimum. Hence,
an unbiased random search heuristic cannot tell in advance which hill is more
promising.
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Figure 1: Sketch of TWOMAX . The dot indicates the global optimum.

For x = x1x2 . . . xn, let |x|1 := ∑n
i=1 xi denote the number of 1-bits and |x|0 :=∑n

i=1 (1 − xi) denote the number of 0-bits in x. Then

TWOMAX (x) := max{|x|0 , |x|1} +
n∏

i=1

xi.

Figure 1 shows a sketch of TWOMAX . Among all search points with more than n/2
1-bits, the fitness increases with the number of ones. Among all search points with less
than n/2 1-bits, the fitness increases with the number of zeros. We refer to these sets as
branches and the algorithms as climbing these two branches of TWOMAX .

The TWOMAX function does appear in well-known combinatorial optimization prob-
lems. For example, the VERTEXCOVER bipartite graph analyzed in Oliveto et al. (2008)
consists of two branches, one leading to a local optimum and the other to the minimum
cover. In fact similar proof techniques as those used in this paper have also been applied
in the VERTEXCOVER analysis of the (μ+1) EA for the bipartite graph. Another function
with a similar structure is the MINCUT instance from Sudholt (2008).

Considering μ independent parallel runs of the (1+1) EA (or μ starts of the algo-
rithm with a suitable restart scheme) yields that the probability of not finding the global
optimum efficiently is 2-μ. When using populations of size μ, we expect the search
to be more focused than with μ independent runs. Hence without diversification the
probability of finding the optimum should be significantly worse. However, from a
good diversity-preserving mechanism, we expect that the probability of not finding
the optimum decreases significantly with growing μ. We will see in the following that
diversity-preserving mechanisms avoiding duplicates do not fulfil this property and
that the probability of finding the global optimum efficiently is at most 1/2 + o(1) (see
Motwani and Raghavan [1995] for the asymptotic notation), hence comparable to the
simple (1+1) EA . We can conclude for these mechanisms that populations are nearly
useless on TWOMAX . On the other hand, deterministic crowding shows a behavior very
similar to μ independent runs and fitness sharing even finds the optimum efficiently
with probability 1.

Note that optimizing TWOMAX is not always inefficient. All algorithms considered
hereinafter are able to find either 0n or 1n efficiently, hence there is still a good chance
that the global optimum is found in short time. For the plain (μ+1) EA , the expected
time to find 0n or 1n is bounded by the expected optimization time on ONEMAX , hence at
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most O(μn + n log n) (Witt, 2006). For all variants of the (μ+1) EA , the weaker bound
μen(ln n + 1) = O(μn log n) holds. This bound relies on the fact that 1-bit mutations can
effectively decrease the distance to the closest point from {0n, 1n} if an elitist is chosen as
the parent. Due to symmetry, the global optimum 1n is found first with probability 1/2.
This implies that appropriate restart strategies yield an expected optimization time of
O(μn log n). In the following, we will, however, consider algorithms without restarts
and prove for some diversity-preserving mechanisms that the global optimum is not
found in exponential time with probability close to 1/2.

3 No Diversity-Preserving Mechanism

In order to obtain a fair comparison of different diversity-preserving mechanisms,
we keep one algorithm fixed as much as possible. The basic algorithm, the following
(μ+1) EA , has already been investigated by Witt (2006).

Algorithm 1 (μ+1) EA

Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
Choose z ∈ Pt with worst fitness uniformly at random.
if f (y) ≥ f (z) then Pt+1 = Pt \ {z} ∪ {y} else Pt+1 = Pt .
Let t = t + 1.

The (μ+1) EA uses random parent selection and elitist selection for survival. As
parents are chosen randomly, the selection pressure is quite low. Nevertheless, the
(μ+1) EA is not able to maintain individuals on both branches for a long time. We now
show that if μ is not too large, the individuals on one branch typically become extinct
before the top of the branch is reached. Thus, the global optimum is found only with
probability close to 1/2 and the expected optimization time is very large.

THEOREM 1: The probability that the (μ+1) EA with no diversity-preserving mechanism and
μ = o(n/log n) optimizes TWOMAX in time nn-1 is at most 1/2 + o(1). Its expected optimization
time is �(nn).

PROOF: The probability that during initialization either 0n or 1n is created is bounded
by μ · 2-n+1, hence exponentially small. In the following, we assume that such an atypical
initialization does not happen as this assumption only introduces an error probability
of o(1).

Consider the algorithm at the first point of time T ∗ where either 0n or 1n is created.
Due to symmetry, the local optimum 0n is created with probability 1/2. We assume in the
following that 0n is created and keep in mind an error probability of 1/2. We now show
that then with high probability 0n takes over the population before the global optimum
1n is created. Let i be the number of copies of 0n in the population. From the perspective
of extinction, a good event Gi is to increase this number from i to i + 1. For n ≥ 2 we
have P(Gi) ≥ i

μ
· (1 − 1

n
)n ≥ i

4μ
since it suffices to select one out of i copies and to create

another copy of 0n. On the other hand, the bad event Bi is to create 1n in one generation.

Evolutionary Computation Volume 17, Number 4 459



T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

This probability is maximized if all μ − i remaining individuals contain n − 1 ones:
P(Bi) ≤ μ−i

μ
· 1

n
< 1

n
. Together, the probability that the good event Gi happens before the

bad event Bi is

P(Gi | Gi ∪ Bi) ≥ P(Gi)
P(Gi) + P(Bi)

≥ i/(4μ)
i/(4μ) + 1/n

= 1 − 1/n

i/(4μ) + 1/n
≥ 1 − 4μ

in
.

The probability that 0n takes over the population before the global optimum is reached
is therefore bounded by

μ∏
i=1

P(Gi | Gi ∪ Bi) ≥
μ∏

i=1

(
1 − 4μ

in

)
.

Using 4μ/n ≤ 1/2 and 1 − x ≥ e-2x for x ≤ 1/2, we obtain

μ∏
i=1

(
1 − 4μ

in

)
≥

μ∏
i=1

exp
(

−8μ

in

)
= exp

(
−8μ

n
·

μ∑
i=1

1
i

)

≥ exp(−O((μ log μ)/n)) ≥ 1 − O((μ log μ)/n) = 1 − o(1).

If the population only contains copies of 0n, mutation has to flip all n bits to reach the
global optimum. This event has probability n-n and, by the union bound, the probability
of this happening in a phase consisting of nn-1 generations is at most 1/n. The sum of
all error probabilities is 1/2 + o(1), which proves the first claim.

For the second claim, observe that the conditional expected optimization time is
nn once the population has collapsed to copies of 0n. As this situation occurs with a
probability of at least 1/2 − o(1), the unconditional expected optimization time
is �(nn). �

4 No Genotype Duplicates

It has become clear that diversity-preserving mechanisms are very useful to opti-
mize even a simple function such as TWOMAX . The simplest way to enforce diver-
sity within the population is to not allow genotype duplicates. Algorithm 2 has been
defined and analyzed by Storch and Wegener (2004). It prevents identical copies
from entering the population as a natural way of ensuring diversity. We will, how-
ever, show that this mechanism is not powerful enough to explore both branches of
TWOMAX .

We prove that if the population is not too large, the algorithm can be easily trapped
in a local optimum.

THEOREM 2: The probability that the (μ+1) EA with genotype diversity and μ = o(n1/2)
optimizes TWOMAX in time nn-2 is at most 1/2 + o(1). Its expected optimization time is �(nn-1).

PROOF: We use a similar way of reasoning as in the proof of Theorem 1. With proba-
bility 1/2 − o(1), 0n is the first local or global optimum created at time T ∗. Call x good
(from the perspective of extinction) if |x|1 ≤ 1 and bad if |x|1 ≥ n − 1. At time T ∗ the
number of good individuals is at least 1. In the worst case (again from the perspective
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Algorithm 2 (μ+1) EA with genotype diversity

Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if y /∈ Pt then

Choose z ∈ Pt with worst fitness uniformly at random.
if f (y) ≥ f (z) then Pt+1 = Pt \ {z} ∪ {y} else Pt+1 = Pt .

Let t = t + 1.

of extinction) the population at time T ∗ consists of 0n and μ − 1 bad individuals with
n − 1 good ones. Provided that the (μ+1) EA does not flip n − 2 bits at once, we now
argue that the number of good individuals remains the same unless the unique 0-bit in
a bad individual is flipped.

Due to the assumptions on the population, only offspring with a fitness of at least
n − 1 are accepted, that is, only good or bad offspring. In order to create a bad offspring,
the unique 0-bit has to be flipped since otherwise a clone or an individual with worse
fitness is obtained. Hence, the number of good individuals can only decrease if a
bad individual is chosen as parent and its unique 0-bit is flipped. If there are i good
individuals, we denote this event by Bi and have P(Bi) ≤ μ−i

μ
· 1

n
.

On the other hand, the number of good individuals is increased from i to i + 1 if
a good offspring is created and a bad individual is removed from the population. We
denote this event by Gi . A good offspring is created with probability at least 1/(3μ) for
the following reasons. The point 0n is selected with probability at least 1/μ and then there
are n − (i − 1) = n − o(n1/2) ≥ (e/3) · n 1-bit mutations (provided n is large enough)
creating good offspring that are not yet contained in the population. Along with the fact
that a specific 1-bit mutation has probability 1/n · (1 − 1/n)n-1 ≥ 1/(en), the bound 1/(3μ)
follows. After creating such a good offspring, the algorithm removes an individual
with fitness n − 1 uniformly at random. As there are i − 1 good individuals with this
fitness and μ − i bad individuals, the probability of removing a bad individual equals
(μ − i)/(μ − 1) ≥ (μ − i)/μ. Together, P(Gi) ≥ 1

3μ
· μ−i

μ
= μ−i

3μ2 . The probability that Gi

happens before Bi is at least

P(Gi | Gi ∪ Bi) ≥
μ−i

3μ2

μ−i

3μ2 + μ−i

μn

= 1
1 + 3μ/n

= 1 − 3μ/n

1 + 3μ/n
≥ 1 − 3μ

n
.

The probability that the number of good individuals increases to μ before the global
optimum is reached is

μ∏
i=1

P(Gi | Gi ∪ Bi) ≥
(

1 − 3μ

n

)μ

≥ 1 − 3μ2

n
= 1 − o(1).

The probability of creating a global optimum, provided the population contains only
search points with at most one 1-bit, is at most n-(n-1). The probability of this happening
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in a phase of nn-2 generations is still at most 1/n. Adding up all error probabilities, the
first claim follows.

The claim on the expected optimization time follows as the last situation is reached
with probability at least 1/2 − o(1) and the conditional expected optimization time is at
least nn-1 then. �

5 No Fitness Duplicates

Avoiding genotype duplicates does not help much to optimize TWOMAX as individuals
from one branch are still allowed to spread on a certain fitness level and take over the
population. A more restrictive mechanism is to avoid fitness duplicates, that is, multiple
individuals with the same fitness. Such a mechanism has been defined and analyzed
by Friedrich et al. (2007) for plateaus of constant fitness. In addition, this resembles the
idea of fitness diversity proposed by Hutter and Legg (2006).

The following (μ+1) EA with fitness diversity avoids the possibility that multiple
individuals with the same fitness are stored in the population. If at some time t a new
individual x is created with the same fitness value as a preexisting one y ∈ Pt , then x

replaces y.

Algorithm 3 (μ+1) EA with fitness diversity

Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if there exists z ∈ Pt such that f (y) = f (z)
then Pt+1 = Pt \ {z} ∪ {y},
else Choose z ∈ Pt with worst fitness uniformly at random.

if f (y) ≥ f (z) then Pt+1 = Pt \ {z} ∪ {y} else Pt+1 = Pt .
Let t = t + 1.

From the analysis of Friedrich et al. (2007) it can be derived that if the population
size μ is a constant then the runtime on a simple plateau is exponential in the problem
size n. Only in the case where μ is very close to n will the expected runtime be poly-
nomial. In particular, if μ = n, then the same upper bound as that of the (1+1) EA for
plateaus of constant fitness (Jansen and Wegener, 2001) can be obtained [i. e. , O(n3)].
In the following, by analyzing the mechanism on TWOMAX , we show that on a simple
bimodal landscape, fitness diversity does not help the (μ+1) EA avoid getting trapped
on a local optimum.

The following theorem proves that if the population is not too large, then with
high probability the individuals climbing one of the two branches will be extinguished
before any of them reaches the top. Since the two branches of the TWOMAX function are
symmetric, this also implies that the global optimum will not be found in polynomial
time with probability 1/2 − o(1).

THEOREM 3: The probability that the (μ+1) EA with fitness diversity and μ = poly(n)
optimizes TWOMAX in time 2cn, c > 0 being an appropriate constant, is at most 1/2 + o(1). Its
expected optimization time is 2�(n).
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The upcoming proof of Theorem 3 investigates a potential function of the current
population. The potential performs a random walk on a finite set of integers. In order to
analyze first hitting times of this random walk, we need two technical results concerned
with the so-called drift, that is, the expected movement of the random walk in one step
(see Oliveto et al. [2007] for a general description of drift analysis applied to evolutionary
algorithms).

If a random walk has a drift toward a target value, the expected first hitting time
of the target value can be bounded from above using a bound on the drift. The first
inequality of the following lemma has been proven by He and Yao (2004), and the
second inequality follows from the first one using the law of total expectation. A similar
result has been proven independently by Wegener and Witt (2005).

LEMMA 1 (Upper Bound, Drift Toward Target): Consider a Markov process {Xt }t≥0 with
state space N0. Let T := inf{t ≥ 0: Xt = 0}. If there exists δ > 0 such that for any time t ≥ 0
and any state Xt > 0 the condition E(Xt − Xt+1 | Xt ) ≥ δ holds, then

E(T | X0) ≤ X0

δ
and E(T ) ≤ E(X0)

δ
.

On the other hand, a random walk may have a drift leading away from the target
value on an interval of the state space. If, additionally, large jumps are unlikely, the
expected time to cross the interval is then bounded below by a value exponential in the
length of the interval. Such a technical result was first presented by Hajek (1982) for
the analysis of randomized search heuristics. The following major simplification was
obtained recently by Oliveto and Witt (2008).

LEMMA 2 (Lower Bound, Drift Away from Target): Consider a Markov process {Xt }t≥0
with state space S = {0, 1, . . . , N} for some N ∈ N. Let 0 ≤ a < b ≤ N and define the stopping
time T = min{t ≥ 0: Xt ≤ a | X0 ≥ b}. For i ∈ S and t ≥ 0 let �t (i) := (Xt+1 − Xt | Xt = i).
Suppose there are constants δ, ε, r > 0 such that for all t ≥ 0

• E(�t (i)) ≥ ε for a < i < b and

• P(�t (i) = −j ) ≤ 1/(1 + δ)j -r for i > a and j ≥ 1,

then there is a constant c > 0 such that P(T ≤ 2c(b-a)) = 2-�(b-a).

Now we are prepared to prove Theorem 3.

PROOF OF THEOREM 3: Obviously the second claim follows from the first one. W. l. o. g.
n/6 ∈ N. By Chernoff bounds, the probability that initialization creates a search point
with at most n/3 1-bits or at most n/3 0-bits is at a maximum μ · 2-�(n) = o(1). We assume
in the following that only search points x with n/3 < |x|1 < 2n/3 are created and keep
in mind an error probability of o(1).

Let individuals with i < n/2 0-bits be called xi and individuals with i < n/2 1-bits be
called yi . Initially there is neither xi nor yi in the population for 0 ≤ i ≤ n/3. Because of
the fitness diversity mechanism, there may be only one such xi or one yi in the population
at the same time for 1 ≤ i ≤ n/3 as xi and yi have the same fitness. For the current
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population Pt at time t define a potential ϕ = ϕ(Pt ) as follows:

ϕ = ϕ(Pt ) := min
{

min{i: yi+1 /∈ Pt }, n

6

}
.

The potential is capped at n/6 for technical reasons that will become obvious later
on. As n/6 < n/3, we can conclude from potential i that x0, . . . , xi /∈ Pt . Intuitively, the
potential is then a lower bound for the Hamming distance from the closest point in the
population to the global optimum. We first consider the case μ ≤ n/3 as then we do not
have to deal with the fact that the μ best fitness levels may contain multiple individuals.
Later on, we then argue how to deal with larger population sizes.

We now partition the run into phases and call such a phase good (for the lower
bound) if the global optimum is not found during the phase. Phase 1 ends when a
search point in {0n, 1n} is found for the first time. After the initialization, only one new
individual is created in each generation. Due to the symmetry of the TWOMAX function,
the probability that 0n is found first equals the probability that 1n is found first. Hence
Phase 1 is good with probability 1/2 − o(1).

At the end of Phase 1, we have a current potential of ϕ ≥ 1. Let m1 := min{μ − 1, 3
√

n}
and m2 := min{μ − 1, n/6} be the maximum potential. Define Phase 2 to start after a
good Phase 1 and to end when either the global optimum is found or the potential
increases to ϕ ≥ m1.

We inspect changes of the potential. It may happen that the next step creates yϕ+1.
Then xϕ+1 is removed from the population and ϕ increases by 1. Such a step is called a
good step. On the other hand, if xi for i ≤ ϕ is created, then yi is removed and ϕ decreases
to i − 1. This is referred to as a bad step. All other steps do not change the potential.
For proving a lower bound, given a current potential ϕ, we consider the following
population as a worst case:

Pt = {y0, . . . , yϕ, xϕ+1, . . . , xμ-1}.

In Pt we have y0, . . . , yϕ ∈ Pt by definition of the potential ϕ and the x-individuals are
stacked one after another. The latter maximizes the probability of reaching the global
optimum in a single step. More generally for every i ≤ ϕ the probability of creating xi

is maximized—this event is equivalent to a bad step decreasing the potential to i.
Furthermore, the probability of a good step is minimized as all x-individuals have the
largest possible Hamming distance to search points yϕ+1. Recall that every fitness level
contains at most one search point, hence there cannot be a worse constellation for the
x-individuals.

We now simplify the analysis by making pessimistic assumptions that reduce the
algorithm towards a simple Markov chain. After a step has been made, we compute the
new potential and then pessimistically replace the resulting population by the worst-
case population corresponding to the new potential. Even in this pessimistic setting, ϕ

increases to m1 with high probability before a bad step happens. If xϕ+j is chosen as
the parent, a necessary condition for a bad step is that j out of ϕ + j 0-bits flip. Using
( n

k
) ≤ (ne/k)k , the probability of a bad step is at most

1
μ

n/3−ϕ∑
j=1

(
j + ϕ

j

) (
1
n

)j

≤ 1
μ

n/3−ϕ∑
j=1

(
j + m1 − 1

j

) (
1
n

)j
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≤ 1
μ

n/3−ϕ∑
j=1

(
e(j + m1 − 1)

jn

)j

≤ 1
μ

∞∑
j=1

(em1

n

)j

= 1
μ

· em1

n − em1
<

3
μ

· m1

n

as m1 = o(n). If ϕ < m1, the probability of a good step is at least 1
μ

· n−ϕ

en
≥ 1

μ
· n−m1

en
≥ 1

2eμ

since it suffices to select yϕ and to flip exactly one out of n − ϕ bits. Thus, the probability
of a good step happening before a bad step is at least

1/(2eμ)
1/(2eμ) + 3/μ · m1/n

= 1
1 + 6em1/n

= 1 − 6em1/n

1 + 6em1/n
≥ 1 − 6em1

n
.

The probability of increasing ϕ from 1 to m1 by subsequent good steps before a bad step
happens is bounded by

(
1 − 6em1

n

)m1-1

≥ 1 − 6em2
1

n
= 1 − o(1)

since m2
1 = o(n).

Next, Phase 3 starts after a good Phase 2 and ends when either the global optimum
is found or the potential increases to ϕ ≥ m2. In case m1 = μ the goals of Phase 2
and Phase 3 coincide and Phase 3 is empty. We consider the expected increase of the
potential in one generation. Let �ϕ = �ϕ(t) := ϕ(Pt+1) − ϕ(Pt ). If the current potential
is not maximal, the probability of increasing the potential by 1 can be estimated by the
probability of selecting yϕ and making one out of n − ϕ 1-bit mutations, thus increasing
the number of 1-bits . Define �+

ϕ := �ϕ · I
(
�ϕ > 0

)
and �−

ϕ := �ϕ · I
(
�ϕ < 0

)
where

I (A) = 1 if condition A is true and 0 otherwise. Then for ϕ < m2

E(�+
ϕ ) ≥ 1

μ
· n − ϕ

en
.

If xϕ+j is selected, in order to decrease the potential it is necessary that j out of ϕ + j 0-
bits flip. The probability for this event is clearly bounded by 1/(j !). Under the condition
that at least j 0-bits flip, the expected number of flipping 0-bits among ϕ + j 0-bits is
bounded by j + ϕ/n, where the term ϕ/n represents the expected number of flipping
0-bits among ϕ 0-bits. The conditional expected decrease of the potential is then at most
ϕ/n, leading to an unconditional expectation of

E(�-
ϕ) ≤ 1

μ

n/3−ϕ−1∑
j=1

1
j !

· ϕ

n
≤ 1

μ
· ϕ

n

∞∑
j=1

1
j !

= 1
μ

· (e − 1)ϕ
n

using e = ∑∞
j=0 1/(j !). Putting E(�+

ϕ ) and E(�-
ϕ) together, along with ϕ < m2 ≤ n/6,

E(�ϕ ) ≥ 1
μ

·
(

n − ϕ

en
− (e − 1)ϕ

n

)
= 1

μ
· n − (e2 − e + 1)ϕ

en
≥ ε

μ

Evolutionary Computation Volume 17, Number 4 465



T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

for some ε > 0. One conclusion is that by Lemma 1, applied to random variables Xt :=
m2 − ϕ(Pt ), the expected time until the potential has reached its maximum value m2 or
the optimum is found beforehand is bounded by O(nμ). In other words, Phase 3 ends
in expected time O(nμ).

In order to estimate the error probability in this phase, we apply Lemma 2 to the
potential in the interval between a := 0 and b := 3

√
n. Note that b cannot be chosen to be

larger as the lemma requires the starting point to be at least b. Another obstacle is that
the drift ε/μ decreases with μ. Thus, we consider the potential only in relevant steps,
defined as steps where �ϕ 
= 0. The arguments from our estimation of E(�+

ϕ ), along
with ϕ ≤ n/6, yield the lower bound P(�ϕ 
= 0) ≥ 1

μ
· n−ϕ

en
≥ 5

6eμ
. We also need an upper

bound on this probability. If yϕ-k is selected for 0 ≤ k ≤ ϕ, at least k bits have to flip in
order to have a relevant step. The same holds if xϕ+1+k is selected for 0 ≤ k ≤ μ − ϕ − 2.
As all these solutions are selected with probability 1/μ, the probability of a relevant
step is bounded from above by P(�ϕ 
= 0) ≤ 1

μ
· 2

∑∞
k=0

1
k! = 2e

μ
. This yields for i < n/6

E(�ϕ | �ϕ 
= 0) = E(�ϕ)
P(�ϕ 
= 0)

≥ ε

2e

and the first condition for Lemma 2 is fulfilled. For the second condition, it is necessary
for �ϕ = −j , j ∈ N, to select some xϕ+k and to flip k + j bits simultaneously. Using
(k + j )! ≥ k! · j ! for k, j ∈ N0 yields

P(�ϕ = −j ) ≤ 1
μ

·
∞∑

k=0

1
(k + j )!

≤ 1
μ

· 1
j !

∞∑
k=0

1
k!

= e

μ
· 1
j !

.

For the conditional probabilities in relevant steps, this means that

P(�ϕ = −j | �ϕ 
= 0) = P(�ϕ = −j )
P(�ϕ 
= 0)

≤ 6e2

5j !
≤ 2-j+5

and the second condition holds for δ := 1 and r := 5. Lemma 2 shows that the probability
of reaching the global optimum within 2c 3√n steps is 2-�( 3√n) = o(1) for an appropriate
constant c > 0. By Markov’s inequality, the probability that Phase 3 is not finished after
this number of steps is also o(1). Concluding, Phase 3 is good with probability 1 − o(1).

The fourth and last phase starts after a good Phase 3 and ends when the global
optimum has been found. Phase 4 therefore starts with a maximum potential of m2.
If μ ≤ n/6 + 1, then at least 2n/3 bits have to flip simultaneously in order to create an
accepted x-individual. The probability of this event is n-�(n) and the claim follows. If
μ > n/6 + 1, then we apply Lemma 2 to the larger interval from a := 0 to b := n/6. In the
analysis of Phase 3, we have already shown the preconditions for this larger interval,
hence the algorithm needs at least 2�(n) steps with probability o(1). Summing up all
error probabilities proves the claim for μ ≤ n/3.

Finally, we argue how to deal with larger population sizes, μ > n/3. We relax our
condition on worst-case populations Pt to

Pt ⊇ {y0, . . . , yϕ, xϕ+1, . . . , xn/3},
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where the remaining individuals all have a number of ones in between n/3 and 2n/3.
These individuals therefore have Hamming distance at least n/6 to all search points that
determine the current potential. The probability that such a search point interferes with
our previous arguments is therefore at most 1/(n/6)! = n-�(n). Reinspecting the analysis
for Phases 2–4, we see that compared to the setting for μ ≤ n/3, the probabilities for
bad and relevant steps only increase by additive terms of n-�(n). Similarly, E(�ϕ) is
only decreased by n-�(n) for 0 < ϕ < n/6. In particular, Phase 2 remains good with
probability 1 − o(1) and the application of Lemma 2 in Phases 3 and 4 remains possible
for appropriate constants ε, δ, r . �

6 Deterministic Crowding

In the deterministic crowding mechanism offspring compete directly with their re-
spective parents. According to Mahfoud (1997), in a genetic algorithm with crossover,
deterministic crowding works as follows. In every generation, the population is par-
titioned into μ/2 pairs of individuals, assuming μ to be even. These pairs are then
recombined and mutated. Every offspring then competes with one of its parents and
may replace it if the offspring is not worse.

As we do not consider crossover, we adapt the main idea of offspring competing
with their parents for a steady-state mutation-based algorithm. More precisely, in the
following algorithm an offspring replaces its parent if its fitness is at least as good.

Algorithm 4 (μ+1) EA with deterministic crowding

Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if f (y) ≥ f (x) then Pt+1 = Pt \ {x} ∪ {y} else Pt+1 = Pt .
Let t = t + 1.

The algorithm closely resembles a parallel (1+1) EA, since μ individuals explore the
landscape independently. However, in contrast to parallel runs, interactions between
the individuals may be obtained by using other operators together with mutation.
Recently, the mechanism together with crossover has proved to be useful in vertex
cover problems by making the difference between polynomial and exponential runtimes
for some instances (Oliveto et al., 2008). Here we concentrate on the capabilities of
guaranteeing diversity of the mechanism by analyzing the (μ+1) EA with deterministic
crowding on the TWOMAX function. For sufficiently large populations, the algorithm can
easily reach both local optima.

THEOREM 4: The (μ+1) EA with deterministic crowding and μ = poly(n) reaches on
TWOMAX a population consisting of only local or global optima in expected time O(μn log n). In
that case, the population contains at least one global optimum with probability at least 1 − 2-μ.

PROOF: The main observation for the second statement is that the individuals of
the population are independent due to the crowding mechanism. Due to the symmetry
of TWOMAX , the ith individual in the population reaches the global optimum with
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probability 1/2. The probability that at least one individual finds the global optimum is
1 − (1/2)μ.

Let T be the random time until all the individuals have reached local or global
optima on TWOMAX . It is easier to find a local optimum on TWOMAX than to find a global
optimum on ONEMAX , hence we estimate E(T ) by the expected global optimization
time on ONEMAX .

Consider the following game of balls and bins (cf. the coupon collector’s theorem in
Motwani and Raghavan [1995]), where bins represent bits and balls represent 1-values.
Imagine a bin for every bit in the initial population, that is, a set of μn bins labeled
with their respective bits. Place a ball in each bin if the associated bit is set to 1 in
the initial population. In the following generations, balls may be put into empty bins
according to certain rules. The game ends when all bins contain a ball—this corresponds
to a population where all bits have been set to 1 and every individual represents the
optimum 1n.

Consider a generation where some individual x is selected as the parent. The
probability that mutation only flips a specific 0-bit xi into a 1-bit is 1/μ · 1/n · (1 −
1/n)n-1 ≥ 1/(enμ). As a consequence of this mutation, the offspring replaces its parent
x. Compared to the previous population, the bit xi is being switched to value 1 and we
imagine that in this case a new ball is put into the empty bin for xi . If mutation creates
an offspring y with ONEMAX (y) = ONEMAX (x), y again replaces x and we imagine the
bins for x being rearranged so that their occupancy matches the 1-bits in y. Note that
rearranging bins of an individual, that is, rearranging bits within an individual, does
not make a difference for the algorithm as all bits are treated equally. In the case where
ONEMAX (y) > ONEMAX (x), we imagine that ONEMAX (y) − ONEMAX (x) balls are added
to arbitrary empty bins of x and afterward the bins are again rearranged to match the
offspring y.

Fix an arbitrary empty bin. The probability that it receives a ball in one generation
is at least 1/(enμ). The probability that the bin does not receive a ball within t := enμ ·
ln(2nμ) steps is bounded by (1 − 1

enμ
)enμ·ln(2nμ) ≤ e- ln(2nμ) = 1

2nμ
. By the union bound,

the probability that there is still an empty bin left in the game after t steps is at most
1/2. In case the game has not ended after t steps, we consider another period of t

steps and continue waiting for the game to end. The expected number of periods
until the game ends is at most 2. Hence the expected time of the game is bounded by
E(T ) ≤ 2t = O(μn log n) since ln(2nμ) = O(log n) follows from μ = poly(n). �

7 Fitness Sharing

Fitness sharing (see, e.g., Mahfoud [1997]) derates the real fitness of an individual x by
an amount that represents the similarity of x to other individuals in the population. The
similarity between x and y is measured by a so-called sharing function sh(x, y) ∈ [0, 1]
where a large value corresponds to large similarities and value 0 implies no similarity.
The idea is that if there are several copies of the same individual in the population, these
individuals have to share their fitness. As a consequence, selection is likely to remove
such clusters and to keep the individuals apart. We define the shared fitness of x in the
population P and the fitness f (P ) of the population, respectively, as

f (x, P ) = f (x)∑
y∈P sh(x, y)

and f (P ) =
∑
x∈P

f (x, P ).
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It is common practice to use a so-called sharing distance σ such that individuals only
share fitness if they have a distance less than σ . Given some distance function d, a
common formulation for the sharing function is

sh(x, y) = max{0, 1 − (d(x, y)/σ )α}

where α is a positive constant that regulates the shape of the sharing function. We use
the standard setting α = 1 and, following Mahfoud (1997), we set the sharing distance to
σ = n/2 as this is the smallest value allowing discrimination between the two branches.
As TWOMAX is a function of unitation, we allow the distance function d to depend
on the number of ones: d(x, y) := ||x|1 − |y|1|. Such a strategy is known as phenotypic
sharing (Mahfoud, 1997). Our precise sharing function is then

sh(x, y) = max
{

0, 1 − 2
||x|1 − |y|1|

n

}
.

We now incorporate fitness sharing into the (μ+1) EA . Our goal is to evolve a good pop-
ulation, hence selection works by comparing candidates for next generation’s popula-
tion with respect to their f (P )-values. This selection strategy has already been analyzed
by Sudholt (2005).

Algorithm 5 (μ+1) EA with fitness sharing

Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
Let P ∗

t := Pt ∪ {y}.
Choose z ∈ P ∗

t such that f (P ∗
t \ {z}) is maximized.

Let Pt+1 = P ∗
t \ {z} and t = t + 1.

Note that when evaluating f (P ∗
t \ {z}), the shared fitness values have to be recom-

puted for all these populations. However, with the use of dictionaries it suffices to
compute f (y) and the sharing values sh(x, y) for x ∈ Pt only once. In addition, fitness
evaluations are often the most expensive operations in evolutionary computation, so
the additional effort is negligible.

We now show that the (μ+1) EA with fitness sharing can find both optima on
TWOMAX . Imagining all parents and the new offspring on a scale of |x|1, the individuals
with the smallest and the largest number of ones have the largest distance to all indi-
viduals in the population. Therefore, fitness sharing makes these outer individuals very
attractive in terms of shared fitness, hence these individuals are taken over to the next
generation. This even holds if an outer individual has the worst fitness in the population.

LEMMA 3: Consider the (μ+1) EA with fitness sharing and μ ≥ 2 on TWOMAX . Let P ∗
t be the

enlarged parent population at some point in time t and w. l. o. g. let P ∗
t = {x1, . . . , xμ+1} with

|x1|1 ≤ |x2|1 ≤ . . . ≤ |xμ+1|1. If |xμ|1 < |xμ+1|1, then xμ+1 ∈ Pt+1. Also, if |x1|1 < |x2|1, then
x1 ∈ Pt+1.

Evolutionary Computation Volume 17, Number 4 469



T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

PROOF: We only prove xμ+1 ∈ Pt+1 for |xμ|1 < |xμ+1|1. The second claim for the case
|x1|1 < |x2|1 follows by symmetry. Let P - := P ∗

t \ {xμ+1} be a “bad” new population
without xμ+1, contradicting our claim that xμ+1 remains in the population. Let P + :=
P ∗

t \ {xμ} be one “good” new population where xμ is removed instead and let P ∩ :=
P + ∩ P - contain all other individuals. We will prove f (P -) < f (P +). This implies that
the bad population P - does not have maximal population fitness among all possible
next populations P ∗

t \ {z} examined in the selection step, hence P + or another “good”
population is chosen and xμ+1 remains in the population.

We first deal with the case f (xμ) ≤ f (xμ+1). Intuitively, xμ+1 is better than xμ both
in terms of real fitness and in terms of sharing distance to the other individuals in P ∩.
More precisely, we have sh(xμ, x) > sh(xμ+1, x) for x ∈ P ∩ due to the ordering of the xi

and the definition of the sharing function. Hence,
∑

y∈P - sh(x, y) >
∑

y∈P + sh(x, y) for
x ∈ P ∩ and

∑
y∈P - sh(xμ, y) >

∑
y∈P + sh(xμ+1, y). Together, we obtain

f (P -) =
∑
x∈P ∩

f (x)∑
y∈P - sh(x, y)

+ f (xμ)∑
y∈P - sh(xμ, y)

<
∑
x∈P ∩

f (x)∑
y∈P + sh(x, y)

+ f (xμ+1)∑
y∈P + sh(xμ+1, y)

= f (P +).

It remains for us to show f (P -) < f (P +) for the case f (xμ) > f (xμ+1). This means that xμ

is better than xμ+1 in terms of real fitness, but worse with respect to the shared distance
to all individuals in P ∩. We want to examine the impact of the distance between the
two individuals on the fitness and the sharing function. Therefore, we define

d := min
{
|xμ+1|1, n

2

}
− |xμ|1.

Note that d ≥ 0 as |xμ|1 < n/2 follows from f (xμ) > f (xμ+1). The minimum in the defi-
nition of d implies the following inequality.

∀ x ∈ P ∩: sh(x, xμ+1) ≤ sh(x, xμ) − 2d

n
, (1)

which is immediate from the definition of sh(·, ·) if xμ+1 is within sharing distance
from x. Otherwise, it follows from

sh(x, xμ+1) = 0 ≤ sh(x, xμ) − 2
(

n
2 − |xμ|1

)
n

= sh(x, xμ) − 2d

n
.

The inequality in Equation (1) can now be used to relate the shared fitness f (x, P -) to
the shared fitness f (x, P +) for x ∈ P ∩. This reflects the gain in total shared fitness for
the individuals in P ∩ if P + is selected instead of P -. Using the inequality in Equation (1)
and the fact that the sharing function is at most 1, for all x ∈ P ∩:

f (x, P -)
f (x, P +)

=
∑

y∈P + sh(x, y)∑
y∈P - sh(x, y)

≤
∑

y∈P ∩ sh(x, y) + sh(x, xμ) − 2d/n∑
y∈P ∩ sh(x, y) + sh(x, xμ)

≤ μ − 2d/n

μ
= 1 − 2d

nμ
. (2)
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As f (xμ+1) < f (xμ), the total real fitness of the individuals is worse for P + than for P -.
We also relate the shared fitness f (xμ, P -) to f (xμ+1, P

+) in order to estimate the loss of
shared fitness. By definition of d and TWOMAX , it is easy to see that f (xμ) − d ≤ f (xμ+1).
Along with f (x) ≥ n/2 for every x ∈ {0, 1}n, we have

f (xμ+1)
f (xμ)

≥ f (xμ) − d

f (xμ)
≥ n/2 − d

n/2
= 1 − 2d

n
.

Also, using the inequality in Equation (1), we obtain

∑
y∈P + sh(xμ+1, y)∑

y∈P - sh(xμ, y)
= 1 + ∑

y∈P ∩ sh(xμ+1, y)

1 + ∑
y∈P ∩ sh(xμ, y)

≤ 1 + ∑
y∈P ∩ (sh(xμ, y) − 2d/n)

1 + ∑
y∈P ∩ sh(xμ, y)

≤ 1 + (μ − 1)(1 − 2d/n)
μ

.

Taking the last two estimations together,

f (xμ, P -)
f (xμ+1, P +)

=
∑

y∈P + sh(xμ+1, y)∑
y∈P - sh(xμ, y)

· f (xμ)
f (xμ+1)

≤ 1 + (μ − 1)(1 − 2d/n)
μ(1 − 2d/n)

=
1 − 2d

n
+ 2d

nμ

1 − 2d
n

< 1 + 2d

nμ
. (3)

Thus, when comparing P - with P +, we have a gain of shared fitness for all x ∈ P ∩ and a
loss of shared fitness for the remaining individual when exchanging xμ for xμ+1. Putting
the inequalities in Equations (2) and (3) together yields

f (P -) =
∑
x∈P ∩

f (x, P -) + f (xμ, P -)

<
∑
x∈P ∩

f (x, P +) ·
(

1 − 2d

nμ

)
+ f (xμ+1, P

+) ·
(

1 + 2d

nμ

)

≤ f (P +) − 2d

nμ

( ∑
x∈P ∩

f (x, P +) − f (xμ+1, P
+)

)
.

Now f (P -) < f (P +) follows if the term in parentheses is non-negative, that is

∑
x∈P ∩

f (x, P +) ≥ f (xμ+1, P
+). (4)

Recall that |xμ|1 ≤ n/2 and consider the left-hand side of the inequality in Equation (4).
This term is minimized if all x ∈ P ∩ equal xμ-1 since then for all individuals in P ∩,
fitness is minimized and sharing is maximized. Along with f (xμ-1) > f (xμ+1) and
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μ − 1 ≥ 1,

∑
x∈P ∩

f (x, P +) ≥ (μ − 1) · f (xμ−1)
μ − 1 + sh(xμ-1, xμ+1)

>
f (xμ+1)

1 + sh(xμ-1, xμ+1)
≥ f (xμ+1)∑

y∈P + sh(xμ+1, y)
= f (xμ+1, P

+).

�

Now it is easy to prove an upper bound on TWOMAX . To the best of our knowledge,
the following theorem provides the first runtime analysis of an EA with fitness sharing
for population sizes greater than 2.

THEOREM 5: The (μ+1) EA with fitness sharing and μ ≥ 2 reaches on TWOMAX a population
containing both optima in expected optimization time O(μn log n).

PROOF: For a population P , we consider the following characteristic values as potential
functions: m0(P ) denotes the maximum number of zeros and m1(P ) the maximum
number of ones for the individuals in P . We are interested in the expected time until
both potentials become n.

According to Lemma 3, both potentials cannot decrease. If m0(P ) = k, then we wait
for an individual with k zeros to be chosen and for the number of zeros to be increased.
The expected time for this to happen is bounded from above by O(μ · n/(n − k)). Hence,
the expected time until the m0-potential reaches its maximum value n is O(μn log n). A
symmetrical statement holds for the m1-potential, hence the expected time until both
optima are found is bounded by O(μn log n). �

8 Experiments

Our negative results for the (μ+1) EA without diversification and the genotype diversity
mechanism only hold for relatively small population sizes. We believe that the same
results also hold for larger values of μ, but a theoretical analysis is challenging. Initial
experiments have shown that with larger μ, extinction is still likely, but the questions
concerning which branch becomes extinct and when extinction happens are determined
by long-term dynamics that are very difficult to handle analytically.

A typical behavior is that one branch starts lagging behind a little. Then chances to
create offspring on higher fitness levels are lower for this branch, while the other branch
has an advantage in this respect. When climbing up the next fitness levels, this effect
may intensify until the branch that is behind becomes extinct. However, it may also
happen that by chance the branch that is behind creates an offspring on a good fitness
level 
 and then the branch is safe from extinction until level 
 becomes the worst fitness
level in the population. This gives the branch some time to recover, which makes it hard
to predict when a branch will become extinct. It is even hard to tell which branch is
“behind.” One branch may consist of few good individuals and the other one of many
inferior solutions. Which one is more likely to survive in the long run? We feel that
completely new methods have to be developed in order to understand these long-term
dynamics of the processes.
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We rely on experiments to find out how large a population has to be to avoid extinc-
tion. This also allows a more detailed comparison of diversity-preserving mechanisms.
We consider exponentially increasing population sizes μ = 2, 4, 8, . . . , 1024 for n = 30
and perform 100 runs in each setting. An obvious performance measure is the num-
ber of runs where the global optimum is found. However, for hill climbers such as the
(1+1) EA, this measure fluctuates around 50 runs. In order to obtain a more clear picture
without this random fluctuation, we instead consider the number of runs where both
0n and 1n were present in the population at the same time. Such a run is called successful
hereinafter. In all nonsuccessful runs, we have a conditional probability of exactly 1/2
that the global optimum was found due to the symmetry of TWOMAX , provided that
μ ≥ 2. Moreover, we record the maximum progress on the branch that becomes extinct,
computed as min {m0(Pt ), m1(Pt )}, where m0(Pt ) (m1(Pt )) denotes the maximum num-
ber of zeros (ones) in the population Pt at time t . In case both 0n and 1n are contained
in the population, the maximum progress equals n. For fitness sharing, we present our
theoretical results, as the outcome of experiments is predetermined. The number of
successful runs is clearly 100 and the maximum progress is n = 30.

The choice of the stopping criterion is nontrivial. A natural design choice is to stop
the algorithm after convergence to local or global optima. For fitness sharing, determin-
istic crowding, and the (μ+1) EA without diversification, we stop the run when either
the run is successful or when the whole population only consists of copies of 0n or 1n.
For genotype diversity and, especially, fitness diversity, there is no such convergence
as copies of 0n and 1n are not allowed. The genotype diversity mechanism gets stuck
when all individuals are as close to 0n or 1n as possible. The same happens for fitness
diversity when μ � n/2 and all individuals are stacked one after another on one branch.
However, the fitness diversity mechanism for μ > n/2 does not converge at all because
the population performs a random walk with a drift pointing away from the optimum
when it gets close enough. Therefore, we stop a run for these two mechanisms after
3600μ generations. The time bound 3600μ was chosen for the following reason. For
n = 30 we have 360μ > μ · en(ln n + 1). This term is the upper bound for the expected
time to reach either 0n or 1n mentioned in Section 2. This bound holds for all algorithms
presented in this work. Moreover, the random time is concentrated around the expecta-
tion as can be seen from the proof of Theorem 4. Our bound 3600μ is more than 10 times
larger than the expectation. This is enough time for the two algorithms to converge or
to reach a meaningful equilibrium state.

Figure 2 shows the number of successful runs. While fitness sharing is always suc-
cessful, fitness diversity was never found to be successful. Using deterministic crowd-
ing, the success probability increases very steeply compared to the scenarios of no
diversification and genotype diversity. Although genotype diversity is a rather weak
mechanism, it turns out to be more successful than no diversification.

Figure 3 shows the average maximum progress in 100 runs. It is obvious that fitness
sharing and deterministic crowding perform well due to their high success probabilities.
But here also fitness diversity has an effect as its progress indicator increases with
increasing μ, although more slowly than the indicator of all the other algorithms.
Concerning the (μ+1) EA without diversification and with genotype diversity, we can
see from Figure 3 that for small population sizes, extinction occurs very early and for low
fitness values. Contrarily, our theoretical arguments were based on the very last fitness
levels where our estimates of the extinction probabilities were best. This strengthens
our impression that extinction is due to much more complex long-term effects than
used in our proofs.
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Figure 2: The number of successful runs among 100 runs for n = 30 and μ =
2, 4, 8, . . . , 1024. A run is called successful if 0n and 1n were present in the popula-
tion at the same time.

Figure 3: The average maximum progress on the branch that is behind, measured
among 100 runs, for n = 30 and μ = 2, 4, 8, . . . , 1024.

9 Conclusions

We have examined the behavior of different diversity-preserving mechanisms on a
fitness landscape consisting of two hills with symmetric slopes. We rigorously proved
that without any diversification the whole population of the (μ+1) EA runs into the
local optimum with probability almost 1/2 (Theorem 1). This still holds if we avoid
genotype duplicates or fitness duplicates. One implication is that for these algorithms
the population is nearly useless as we experience the same performance as for simple
hill climbers like local search or the (1+1) EA .

On the other hand, stronger diversity-preserving mechanisms such as fitness shar-
ing and deterministic crowding allow the (μ+1) EA to find both optima of our test
function TWOMAX with high probability. Deterministic crowding performs as well as in-
dependent runs and the probability of not finding both optima decreases exponentially
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with μ. Fitness sharing using a phenotypic distance function always finds both optima
efficiently for arbitrary populations of size μ ≥ 2.

Our theoretical results and the experiments from Section 8 have also revealed im-
portant open problems. Theorems 1 and 2 apply only to sublinear population sizes. Our
experimental results indicate a similar behavior for larger populations, but a theoreti-
cal analysis is difficult. It seems that a more thorough understanding of the long-term
dynamics of genetic drift is required to strengthen the theorems.
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Mahfoud, S. W. (1997). Niching methods. In T. Bäck, D. B. Fogel, and Z. Michalewicz (Eds.), Hand-
book of evolutionary computation (pp. C6.1:1–4). Bristol, UK: Institute of Physics Publishing
and New York: Oxford University Press.

Motwani, R., and Raghavan, P. (1995). Randomized algorithms. Cambridge, UK: Cambridge
University Press.

Oliveto , P. S., He, J., and Yao, X. (2007). Time complexity of evolutionary algorithms for combi-
natorial optimization: A decade of results. International Journal of Automation and Computing,
4(3):281–293.

Oliveto, P. S., He, J., and Yao, X. (2008). Population-based evolutionary algorithms for the vertex
cover problem. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’08),
pp. 1563–1570.

Evolutionary Computation Volume 17, Number 4 475



T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

Oliveto, P. S., and Witt, C. (2008). Simplified drift analysis for proving lower bounds in evolu-
tionary computation. In Proceedings of the International Conference on Parallel Problem Solving
From Nature (PPSN X), Vol. 5199 of LNCS, pp. 82–91. Berlin: Springer.

Pelikan, M., and Goldberg, D. E. (2000). Genetic algorithms, clustering, and the breaking of
symmetry. In Proceedings of the International Conference on Parallel Problem Solving From
Nature (PPSN VI), pp. 385–394.

Storch, T., and Wegener, I. (2004). Real royal road functions for constant population size. Theoretical
Computer Science, 320:123–134.

Sudholt, D. (2005). Crossover is provably essential for the Ising model on trees. In Proceedings of
the Annual Conference on Genetic and Evolutionary Computation (GECCO ’05), pp. 1161–1167.

Sudholt, D. (2008). Memetic algorithms with variable-depth search to overcome local optima.
In Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO ’08),
pp. 787–794.

Ursem, R. K. (2002). Diversity-guided evolutionary algorithms. In Proceedings of the International
Conference on Parallel Problem Solving From Nature (PPSN VII), pp. 462–471.

Wegener, I., and Witt, C. (2005). On the optimization of monotone polynomials by simple ran-
domized search heuristics. Combinatorics, Probability and Computing, 14:225–247.

Witt, C. (2006). Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions. Evolu-
tionary Computation, 14(1):65–86.

476 Evolutionary Computation Volume 17, Number 4


