
Average-Case Analysis of
Online Topological Ordering

Deepak Ajwani and Tobias Friedrich

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Many applications like pointer analysis and incremental com-
pilation require maintaining a topological ordering of the nodes of a
directed acyclic graph (DAG) under dynamic updates. All known al-
gorithms for this problem are either only analyzed for worst-case in-
sertion sequences or only evaluated experimentally on random DAGs.
We present the first average-case analysis of online topological ordering
algorithms. We prove an expected runtime of O(n2 polylog(n)) under
insertion of the edges of a complete DAG in a random order for the algo-
rithms of Alpern et al. (SODA, 1990), Katriel and Bodlaender (TALG,
2006), and Pearce and Kelly (JEA, 2006). This is much less than the
best known worst-case bound O(n2.75) for this problem.

1 Introduction

There has been a growing interest in dynamic graph algorithms over the last
two decades due to their applications in a variety of contexts including operating
systems, information systems, network management, assembly planning, VLSI
design and graphical applications. Typical dynamic graph algorithms maintain a
certain property (e. g., connectivity information) of a graph that changes (a new
edge inserted or an existing edge deleted) dynamically over time. An algorithm
or a problem is called fully dynamic if both edge insertions and deletions are
allowed, and it is called partially dynamic if only one (either only insertion or
only deletion) is allowed. If only insertions are allowed, the partially dynamic
algorithm is called incremental; if only deletions are allowed, it is called decre-
mental. While a number of fully dynamic algorithms have been obtained for
various properties on undirected graphs (see (9) and references therein), the de-
sign and analysis of fully dynamic algorithms for directed graphs has turned
out to be much harder (e. g., (12, 23, 24, 25)). Much of the research on directed
graphs is therefore concentrated on the design of partially dynamic algorithms
instead (e. g., (3, 6, 13)). In this paper, we focus on the analysis of algorithms for
maintaining a topological ordering of directed graphs in an incremental setting.

A topological order T of a directed graph G = (V, E) (with n := |V | and
m := |E|) is a linear ordering of its nodes such that for all directed paths from
x ∈ V to y ∈ V (x �= y), it holds that T (x) < T (y). A directed graph has a
topological ordering if and only if it is acyclic. There are well-known algorithms
for computing the topological ordering of a directed acyclic graph (DAG) in
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O(m + n) time in an offline setting (see e. g. (7)). In a fully dynamic setting,
each time an edge is added or deleted from the DAG, we are required to update
the bijective mapping T . In the online/incremental variant of this problem, the
edges of the DAG are not known in advance but are inserted one at a time (no
deletions allowed). As the topological order remains valid when removing edges,
most algorithms for online topological ordering can also handle the fully dynamic
setting. However, there are no good bounds known for the fully dynamic case.
Most algorithms are only analyzed in the online setting.

Given an arbitrary sequence of edges, the online cycle detection problem is
to discover the first edge which introduces a cycle. Till now, the best known
algorithm for this problem involves maintaining an online topological order and
returning the edge after which no valid topological order exists. Hence, results for
online topological ordering also translate into results for the online cycle detec-
tion problem. Online topological ordering is required for incremental evaluation
of computational circuits (2) and in incremental compilation (15, 17) where a
dependency graph between modules is maintained to reduce the amount of re-
compilation performed when an update occurs. An application for online cycle
detection is pointer analysis (20).

The näıve way of computing an online topological order each time from
scratch with the offline algorithm takes O(m2+mn) time. Marchetti-Spaccamela,
Nanni, and Rohnert (16) gave an algorithm that can insert m edges in O(mn)
time. Alpern, Hoover, Rosen, Sweeney, and Zadeck (AHRSZ) proposed an algo-
rithm (2) which runs in O

(
|〉K̂〈| log(|〉K̂〈|)

)
time per edge insertion with |〉K̂〈|

being a local measure of the insertion complexity. However, there is no analysis
of AHRSZ for a sequence of edge insertions. Katriel and Bodlaender (KB) (13)
analyzed a variant of the AHRSZ algorithm and obtained an upper bound of
O(min{m

3
2 log n, m

3
2 +n2 log n}) for inserting an arbitrary sequence of m edges.

The algorithm by Pearce and Kelly (PK) (18) empirically outperforms the other
algorithms for random edge insertions leading to sparse random DAGs, although
its worst-case runtime is inferior to KB. Recently, Ajwani, Friedrich, and Meyer
(AFM) (1) proposed a new algorithm with runtime O(n2.75), which asymptoti-
cally outperforms KB on dense DAGs.

As noted above, the empirical performances on random edge insertion se-
quences (REIS) for the above algorithms are quite different from their worst-
cases. While PK performs empirically better for REIS, KB and AFM are the
best known algorithms for worst-case sequences. This leads us to the theoretical
study of online topological ordering algorithms on REIS.

Our contributions are as follows:

• We show an expected runtime of O(n2 log2 n) for inserting all edges of a
complete DAG in a random order with PK (cf. Section 4).

• For AHRSZ and KB, we show an expected runtime of O(n2 log3 n) for com-
plete random edge insertion sequences (cf. Section 5). This is significantly
better than the known worst-case bound of O(n3) for KB to insert Ω(n2)
edges.
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• Additionally, we show that for such edge insertions the expected number of
edges which force any algorithm to change the topological order (“invalidat-
ing edges”) is O(n

3
2
√

log n) (cf. Section 6), which is the first such result.

The remainder of this paper is organized as follows. The next section describes
briefly the three algorithms AHRSZ, KB, and PK. In Section 3 we specify the
random graph models used in our analysis. Sections 4-6 prove our upper bounds
for the runtime of the three algorithms and the number of invalidating edges.

2 Algorithms

This section first introduces some notations and then describes the three al-
gorithms AHRSZ, KB, and PK. We keep the current topological order as a
bijective function T : V → [1..n]. In this and the subsequent sections, we will use
the following notations: d(u, v) denotes |T (u) − T (v)|, u < v is a short form of
T (u) < T (v), u → v denotes an edge from u to v, and u � v expresses that v is
reachable from u. Note that u � u, but not u → u. The degree of a node is the
sum of its in- and out-degree.

Consider the i-th edge insertion u → v. We say that an edge insertion is
invalidating if u > v before the insertion of this edge. We define R

(i)
B := {x ∈

V | v ≤ x ∧ x � u}, R
(i)
F := {y ∈ V | y ≤ u ∧ v � y} and δ(i) = R

(i)
F ∪ R

(i)
B .

Let |δ(i)| denote the number of nodes in δ(i) and let ‖δ(i)‖ denote the number
of edges incident to any node of δ(i). Note that δ(i) as defined above is different
from the adaptive parameter δ of the bounded incremental computation model.
If an edge is non-invalidating, then |R(i)

B | = |R(i)
F | = |δ(i)| = 0. Note that for an

invalidating edge R
(i)
F ∩ R

(i)
B = ∅ as otherwise the algorithms will just report a

cycle and terminate.
We now describe the insertion of the i-th edge u → v for all the three algo-

rithms. Assume for the remainder of this section that u → v is an invalidating
edge, as otherwise none of the algorithms do anything for that edge. We define
an algorithm to be local if it only changes the ordering of nodes x with v ≤ x ≤ u
to compute the new topological order T ′ of G ∪ {(u, v)}. All three algorithms
are local and they work in two phases - a “discovery phase” and a “relabelling
phase”.

In the discovery phase of PK, the set δ(i) is identified using a forward depth-
first search from v (giving a set R

(i)
F ) and a backward depth-first search from u

(giving a set R
(i)
B ). The relabelling phase is also very simple. They sort both

sets R
(i)
F and R

(i)
B separately in increasing topological order and then allocate

new priorities according to the relative position in the sequence R
(i)
B followed

by R
(i)
F . They do not alter the priority of any node not in δ(i), thereby greatly

simplifying the relabeling phase. The runtime of PK for a single edge insertion
is Θ(‖δ(i)‖ + |δ(i)| log |δ(i)|).

Alpern et al. (2) used the bounded incremental computation model (23) and
introduced the measure |〉K̂〈|. For an invalidated topological order T , the set
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K ⊆ V is a cover if for all x, y ∈ V : (x � y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). This
states that for any connected x and y which are incorrectly ordered, a cover K
must include x or y or both. |K| and ‖K‖ denote the number of nodes and edges
touching nodes in K, respectively. We define |〉K〈| := |K| + ‖K‖ and a cover
K̂ to be minimal if |〉K̂〈| ≤ |〉K〈| for any other cover K. Thus, |〉K̂〈| captures
the minimal amount of work required to calculate the new topological order T ′

of G ∪ {(u, v)} assuming that the algorithm is local and that the adjacent edges
must be traversed.

AHRSZs discovery phase marks the nodes of a cover K by marking some of
the unmarked nodes x, y ∈ δ(i) with x � y and y < x. This is done recursively
by moving two frontiers starting from v and u towards each other. Here, the
crucial decision is which frontier to move next. AHRSZ tries to minimize ‖K‖
by balancing the number of edges seen on both sides of the frontier. The recursion
stops when forward and backward frontier meet. Note that we do not necessarily
visit all nodes in R

(i)
F (R(i)

B ) while extending the forward frontier (backward
frontier). It can be proven that the marked nodes indeed form a cover K and
that |〉K〈| ≤ 3 |〉K̂〈|.

The relabeling phase employs the dynamic priority space data structure due to
Dietz and Sleator (8). This permits new priorities to be created between existing
ones in O(1) amortized time. This is done in two passes over the nodes in K.
During the first pass, it visits the nodes of K in reverse topological order and
computes a strict upper bound on the new priorities to be assigned to each node.
In the second phase, it visits the nodes in K in topological order and computes a
strict lower bound on the new priorities. Both together allow to assign new prior-
ities to each node in K. Thereafter they minimize the number of different labels
used to speed up the operations on the priority space data structure in practice.
It can be proven that the discovery phase with |〉K̂〈| priority queue operations
dominates the time complexity, giving an overall bound of O(|〉K̂〈| log |〉K̂〈|).

KB is a slight modification of AHRSZ. In the discovery phase AHRSZ counts
the total number of edges incident on a node. KB counts instead only the in-
degree of the backward frontier nodes and only the out-degree of the forward
frontier nodes. In addition, KB also simplified the relabeling phase. The nodes
visited during the extension of the forward (backward) frontier are deleted from
the dynamic priority space data-structure and are reinserted, in the same rela-
tive order among themselves, after (before) all nodes in R

(i)
B (R(i)

F ) not visited
during the backward (forward) frontier extension. The algorithm thus computes
a cover K ⊆ δ(i) and its complexity per edge insertion is O(|〉K〈| log |〉K〈|).
The worst case running time of KB for a sequence of m edge insertions is
O(min{m

3
2 log n, m

3
2 + n2 log n}).

3 Random Graph Model

Erdős and Rényi (10, 11) introduced and popularized random graphs. They
defined two closely related models: G(n, p) and G(n, M). The G(n, p) model
(0 < p < 1) consists of a graph with n nodes in which each edge is chosen
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independently with probability p. On the other hand, the G(n, M) model assigns
equal probability to all graphs with n nodes and exactly M edges. Each such
graph occurs with a probability of 1

/(
N
M

)
, where N :=

(
n
2

)
.

For our study of online topological ordering algorithms, we use the random
DAG model of Barak and Erdős (4). They obtain a random DAG by directing
the edges of an undirected random graph from lower to higher indexed vertices.
Depending on the underlying random graph model, this defines the DAG(n, p)
and DAG(n, M) model. We will mainly work on the DAG(n, M) model since it
is better suited to describe incremental addition of edges.

The set of all DAGs with n nodes is denoted by DAG n. For a random vari-
able f with probability space DAG n, EM (f) and Ep(f) denotes the expected
value in the DAG(n, M) and DAG(n, p) model, respectively. For the remainder
of this paper, we set E(f) := EM (f) and q := 1 − p.

The following theorem shows that in most investigations the models
DAG(n, p) and DAG(n, M) are practically interchangeable, provided M is close
to pN .

Theorem 1. Given a function f : DAG n → [0, a] with a > 0 and f(G) ≤ f(H)
for all G ⊆ H and functions p and M of n with 0 < p < 1 and M ∈ N.

1. If lim
n→∞ pqN = lim

n→∞
pN − M√

pqN
= ∞, then EM (f) ≤ Ep(f) + o(1).

2. If lim
n→∞ pqN = lim

n→∞
M − pN√

pqN
= ∞, then Ep(f) ≤ EM (f) + o(1).

The analogous theorem for the undirected graph models G(n, p) and G(n, M) is
well known. A closer look at the proof for it given by Bollobás (5) reveals that the
probabilistic argument used to show the close connection between G(n, p) and
G(n, M) can be applied in the same manner for the two random DAG models
DAG(n, p) and DAG(n, M).

We define a random edge sequence to be a uniform random permutation of the
edges of a complete DAG, i. e., all permutations of

(
n
2

)
edges are equally likely.

If the edges appear to the online algorithm in the order in which they appear in
the random edge sequence, we call it a random edge insertion sequence (REIS).
Note that a DAG obtained after inserting M edges of a REIS will have the same
probability distribution as DAG(n, M). To simplify the proofs, we first show our
results in DAG(n, p) model and then transfer them in the DAG(n, M) model by
Theorem 1.

4 Analysis of PK

When inserting the i-th edge u → v, PK only regards nodes in δ(i) := {x ∈ V |
v ≤ x ≤ u ∧ (v � x ∨ x � u)} with “≤” defined according to the current topo-
logical order. As discussed in Section 2, PK performs O(‖δ(i)‖ + |δ(i)| log |δ(i)|)
operations for inserting the i-th edge. Theorems 4 and 10 of this section show for
a random edge insertion sequence (REIS) of N edges that

∑N
i=1 |δ(i)| = O(n2)

and E
( ∑N

i=1 ‖δ(i)‖
)

= O(n2 log2 n). This proves the following theorem.
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Theorem 2. For a random edge insertion sequence (REIS) leading to a com-
plete DAG, the expected runtime of PK is O(n2 log2 n).

A comparable pair (of nodes) are two distinct nodes x and y such that either
x � y or y � x. We define a potential function Φi similar to Katriel and
Bodlaender (13). Let Φi be the number of comparable pairs after the insertion
of i edges. Clearly,

ΔΦi := Φi − Φi−1 ≥ 0 for all 1 ≤ i ≤ M ,
Φ0 = 0, and ΦM ≤ n(n − 1)/2. (1)

Theorem 3. For all edge sequences, (i) |δ(i)| ≤ ΔΦi + 1 and (ii) |δ(i)| ≤ 2ΔΦi.

Proof. Consider the i-th edge (u, v). If u < v, the theorem is trivial since
|δ(i)| = 0. Otherwise, each vertex of R

(i)
F and R

(i)
B (as defined in Sec-

tion 2) gets newly ordered with respect to u and v, respectively. The set⋃
x∈R

(i)
B

(x, v) ∩
⋃

x∈R
(i)
F

(u, x) = {(u, v)} as otherwise it will imply a discovered
cycle and the algorithm will report the cycle and terminate. This means that
overall at least |R(i)

F | + |R(i)
B | − 1 node pairs get newly ordered:

ΔΦi ≥ |R(i)
F | + |R(i)

B | − 1 = |δ(i)| − 1.

Also, since in this case ΔΦi ≥ 1, |δ(i)| ≤ 2ΔΦi.

Theorem 4. For all edge sequences,
N∑

i=1

|δ(i)| ≤ n(n − 1) = O(n2).

Proof. By Theorem 3 (i), we get
N∑

i=1

|δ(i)| ≤
N∑

i=1

(ΔΦi + 1) = ΦN + N ≤ n(n −

1)/2 + n(n − 1)/2 = n(n − 1).

The remainder of this section provides the necessary tools step by step to finally
prove the desired bound on

∑N
i=1 ‖δ(i)‖ in Theorem 10. One can also interpret

Φi as a random variable in DAG(n, M) with M = i. The corresponding function
Ψ for DAG(n, p) is defined as the total number of comparable node pairs in
DAG(n, p). Pittel and Tungol (21) showed the following theorem.

Theorem 5. For p := c log(n)/n and c > 1, Ep(Ψ) = (1 + o(1)) n2

2

(
1 − 1

c

)2.

Using Theorem 1, this result can be transformed to Φ as defined above for
DAG(n, M) and gives the following bounds for EM (Φk).

Theorem 6. For n log n < k ≤ N − 2n logn,

EM (Φk) = (1 + o(1))
n2

2

(
1 − (n − 1) log n

2(k + n logn)

)2

.

For N − 2n logn < k ≤ N − 2 logn,

EM (Φk) = (1 + o(1))
n2

2

(

1 − (n − 1) log n

2(k +
√

n (N − k))

)2

.
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The formal proof of the above theorem will be given in the full version of the paper.
The degree sequence of a random graph is a well-studied problem. The fol-

lowing theorem is shown in (5).

Theorem 7. If pn/ logn → ∞, then almost every graph G in the G(n, p) model
satisfies Δ(G) = (1+o(1)) pn, where Δ(G) is the maximum degree of a node in G.

As noted in Section 3, the undirected graph obtained by ignoring the directions
of DAG(n, p) is a G(n, p) graph. Therefore, the above result is also true for
the maximum degree (in-degree + out-degree) of a node in DAG(n, p). Using
Theorem 1, the above result can be transformed to DAG(n, M), as well.

Theorem 8. With probability 1 − O(1/n), there is no node with degree higher
than cM

n for n ≥ n0 and M > n log n in DAG(n, M), where c and n0 are fixed
constants.

The formal proof for c = 9 will be given in the full version of the paper.
As the maximum degree of a node in DAG(n, i) is O(i/n), we finally just

need to show a bound on
∑

i (i · |δ(i)|) to prove Theorem 10. This is done in the
following theorem.

Theorem 9. For DAG(n, M) and r := N − 2 logn,

E
( r∑

i=1

(i · |δ(i)|)
)

= O(n3 log2 n).

Proof. Let us decompose the analysis in three steps. First, we show a bound on
the first n log n edges. By definition of δ(i), |δ(i)| ≤ n. Therefore,

n log n∑

i=1

i · E(|δ(i)|) ≤
n log n∑

i=1

i · n = O
(
n3 log2 n

)
. (2)

The second step is to bound
∑t

i=n log n i · |δ(i)| with t := N − 2n logn. For this,
Theorem 3 (ii) shows for all k such that n logn < k < t that

E
( t∑

i=k

|δ(i)|
)

≤ 2E
( t∑

i=k

ΔΦi

)
= 2E(Φt − Φk−1) = 2E(Φt) − 2E(Φk−1).

Using Theorem 6 and the fact that the hidden functions of the o(1) are decreasing
in p (21), this yields (with s := n log n)

E
( t∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2

(
(
1 − (n − 1) log n

2(t + s)

)2
−

(
1 − (n − 1) log n

2(k − 1 + s)

)2
)

= (1 + o(1))n2(n − 1) log n
( 2

2(k − 1 + s)
− 2

2(t + s)
+

(n − 1) log n

4

( 1
(t + s)2

− 1
(k − 1 + s)2

))

≤ (1 + o(1))n2(n − 1) log n

(
1

k − 1 + s
− 1

t + s

)

≤ (1 + o(1))n2(n − 1) log n
1

k − 1
. (3)
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By linearity of expectation and Equation (3),

E
( t∑

i=s+1

i |δ(i)|
)

=
t∑

i=s+1

(
iE(|δ(i)|)

)
≤

log (� t
s �)∑

j=1

(
2js

2js∑

i=2(j−1)s+1

E(|δ(i)|)
)

≤
log (� t

s �)∑

j=1

(
2js

t∑

i=2(j−1)s+1

E(|δ(i)|)
)

≤
log (� t

s �)∑

j=1

(
2js(1 + o(1))n2(n − 1) log n

1
2(j−1)s

)

=
log (� t

s �)∑

j=1

(
2(1 + o(1))n2(n − 1) log n

)

= 2(1 + o(1))n2(n − 1) log2 n = O(n3 log2 n).

For the last step consider a k such that t < k < r. Theorem 3 (ii) gives

E
( r∑

i=k

|δ(i)|
)

≤ 2E
( r∑

i=k

ΔΦi

)
= 2E(Φr − Φk−1) = 2E(Φr) − 2E(Φk−1).

Using Theorem 6 and similar arguments as before, this yields (with s(k) :=√
log n (N − k))

E
( r∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2

(
(
1− (n − 1) logn

2(r + s(r))

)2
−

(
1− (n − 1) log n

2(k − 1 + s(k − 1))

)2
)

= (1 + o(1))n2(n − 1) log n

(
2

2(k − 1 + s(k − 1))
− 2

2(r + s(r))
+

(n − 1) log n

4

( 1
(r + s(r))2

− 1
(k − 1 + s(k − 1))2

)
)

.

Since k + s(k) is monotonically increasing for t < k < r, 1
(k+s(k))2 is a monotoni-

cally decreasing function in this interval. Therefore, 1
(r+s(r))2 − 1

(k−1+s(k−1))2 < 0,
which proves the following equation.

E
( r∑

i=k

|δ(i)|
)

≤ (1 + o(1))n2(n − 1) log n

(
1

k − 1 + s(k − 1)
− 1

r + s(r)

)

≤ (1 + o(1))n2(n − 1) log n
1

k − 1
. (4)

By linearity of expectation and Equation (4),
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E
( r∑

i=N−2n log n+1

i |δ(i)|
)

=
r∑

i=N−2n log n+1

(
iE(|δ(i)|)

)

≤ (N − 2 log n)
r∑

i=N−2n log n+1

E(|δ(i)|)

≤ (N − 2 log n) (1 + o(1))n2(n − 1) log n
1

N − 2n logn − 1
= O(n3 log n).

Theorem 10. For DAG(n, M), E
( N∑

i=1

‖δ(i)‖
)

= O(n2 log2 n).

Proof. By definition of ‖δ(i)‖, we know ‖δ(i)‖ ≤ i and hence

n log n∑

i=1

‖δ(i)‖ = O(n2 log2 n).

Again, let r := N − 2 logn. Theorem 8 tells us that with probability greater
than

(
1 − c′

n

)
for some constant c′, there is no node with degree ≥ c i

n . Since the
degree of an arbitrary node in a DAG is bounded by n, we get with Theorems 4
and 9,

E
( r∑

i=n log n+1

‖δ(i)‖
)

= O
(

E
( r∑

i=n log n+1

c i |δ(i)|
n

)
+ E

( r∑

i=n log n+1

n c′ |δ(i)|
n

))

= O
( 1

n
E

( r∑

i=1

(i |δ(i)|)
)

+ n2
)

= O
( 1

n

(
n3 log2 n

)
+ n2

)
= O(n2 log2 n).

By again using the fact that the degree of an arbitrary node in a DAG is at
most n, we obtain

E
( N∑

i=r+1

‖δ(i)‖
)

= O
(
n · E

( N∑

i=r+1

|δ(i)|
))

= O
(
n ·

N∑

i=r+1

n
)

= O(n2 log n).

Thus,

E
( N∑

i=1

‖δ(i)‖
)

= E
( n log n∑

i=1

‖δ(i)‖
)

+ E
( r∑

i=n log n+1

‖δ(i)‖
)

+ E
( N∑

i=r+1

‖δ(i)‖
)

= O(n2 log2 n) + O(n2 log2 n) + O(n2 log n) = O(n2 log2 n).
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5 Analysis of AHRSZ and KB

Katriel and Bodlaender (13) introduced KB as a variant of AHRSZ for which a
worst-case runtime of O(min{m

3
2 log n, m

3
2 +n2 log n}) can be shown. In this sec-

tion, we prove an expected runtime of O(n2 log3 n) under random edge insertion
sequences, both for AHRSZ and KB.

Recall from Section 2 that for every edge insertion there is a minimal cover
K̂(i). In appendix C, we show that δ(i) is also a valid cover in this situation.
Therefore, by definition of |〉K̂(i)〈|, |〉K̂(i)〈| ≤ |〉δ(i)〈| = |δ(i)| + ‖δ(i)‖.

E
( m∑

i=1

|〉K̂(i)〈|
)

≤
m∑

i=1

|δ(i)| + E
( m∑

i=1

‖δ(i)‖
)

= O(n2 log2 n)

The latter equality follows from Theorems 4 and 10. The expected complexity
of AHRSZ on REIS is thus O

(
E

( ∑m
i=1 |〉K̂(i)〈| log n

))
= O(n2 log3 n).

KB also computes a cover K ⊆ δ(i) and its complexity per edge insertion is
O(|〉K〈| log |〉K〈|). Therefore, |〉K〈| ≤ |δ(i)|+‖δ(i)‖ and with a similar argument
as above, the expected complexity of KB on REIS is O(n2 log3 n).

6 Bounding the Number of Invalidating Edges

An interesting question in all this analysis is how many edges will actually in-
validate the topological ordering and force any algorithm to do something about
them. Here, we show a non-trivial upper bound on the expected value of the
number of invalidating edges on REIS. Consider the following random variable:
inval(i) = 1 if the i-th edge inserted is an invalidating edge; inval(i) = 0
otherwise.

Theorem 11. E
( m∑

i=1

inval(i)
)

= O(min{m, n
3
2 log

1
2 n}).

Proof. If the i-th edge is invalidating, |δ(i)| ≥ 2; otherwise inval(i) = |δ(i)| = 0.
In either case, inval(i) ≤ |δ(i)|/2. Thus, for s := n

3
2 log

1
2 n and t := min{m, N −

2n logn},

E
( t∑

i=s+1

inval(i)
)

≤ E
( t∑

i=s+1

|δ(i)|
2

)
≤ (1 + o(1))

2
n

3
2 log

1
2 n.

The second inequality follows by substituting k := s + 1 in Equation (3). Also,
since the number of invalidating edges can be at most equal to the total number
of edges,

∑s
i=1 inval(i) ≤ s.

E
( m∑

i=1

inval(i)
)

= E
( s∑

i=1

inval(i)
)

+ E
( t∑

i=s+1

inval(i)
)

+ E
( m∑

i=t

inval(i)
)

≤ O(s) + O(n
3
2 log

1
2 n) + O(n log n) = O(n

3
2 log

1
2 n).

The second bound E (
∑m

i=1 inval(i)) ≤ m is obvious by definition of inval(i).
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7 Discussion

On random edge insertion sequences (REIS) leading to a complete DAG, we
have shown an expected runtime of O(n2 log2 n) for PK and O(n2 log3 n) for
AHRSZ and KB while the trivial lower bound is Ω(n2). Extending the average
case analysis for the case where we only insert m edges with m � n2 still
remains open. On the other hand, the only non-trivial lower bound for this
problem is by Ramalingam and Reps (22), who have shown that an adversary
can force any algorithm which maintains explicit labels to require Ω(n log n)
time complexity for inserting n − 1 edges. There is still a large gap between the
lower bound of Ω(max{n logn, m}), the best average-case bound of O(n2 log2 n)
and the worst-case bound of O(min{m1.5 +n2 log n, m1.5 log n, n2.75}). Bridging
this gap remains an open problem.
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[4] Barak, A.B., Erdős, P.: On the maximal number of strongly independent vertices
in a random acyclic directed graph. SIAM Journal on Algebraic and Discrete
Methods 5(4), 508–514 (1984)

[5] Bollobás, B.: Random Graphs. Cambridge Univ. Press, Cambridge (2001)
[6] Cicerone, S., Frigioni, D., Nanni, U., Pugliese, F.: A uniform approach to semi-

dynamic problems on digraphs. Theor. Comput. Sci. 203(1), 69–90 (1998)
[7] Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,

Cambridge (1989)
[8] Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Proc.

of STOC 1987, pp. 365–372 (1987)
[9] Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah,

M.J. (ed.) Algorithms and Theory of Computation Handbook. ch. 8, CRC Press
(1999)
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