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a b s t r a c t

Many applications like pointer analysis and incremental compilation require maintaining
a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic
updates. All known algorithms for this problem are either only analyzed for worst-case
insertion sequences or only evaluated experimentally on random DAGs. We present the
first average-case analysis of incremental topological ordering algorithms. We prove an
expected runtime ofO(n2 polylog(n)) under insertion of the edges of a complete DAG in a
random order for the algorithms of Alpern et al. (1990) [4], Katriel and Bodlaender (2006)
[18], and Pearce and Kelly (2006) [23].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There has been a growing interest in dynamic graph algorithms over the last two decades due to their applications in a
variety of contexts including operating systems, information systems, networkmanagement, assembly planning, VLSI design
and graphical applications. Typical dynamic graph algorithmsmaintain a certain property (e.g., connectivity information) of
a graph that changes (a new edge inserted or an existing edge deleted) dynamically over time. An algorithm or a problem is
called fully dynamic if both edge insertions and deletions are allowed, and it is called partially dynamic if only one (either only
insertion or only deletion) is allowed. If only insertions are allowed, the partially dynamic algorithm is called incremental;
if only deletions are allowed, it is called decremental. While a number of fully dynamic algorithms have been obtained
for various properties on undirected graphs (see [13] and references therein), the design and analysis of fully dynamic
algorithms for directed graphs have turned out to be much harder (e.g., [28,29,27,16]). Much of the research on directed
graphs is therefore concentrated on the design of partially dynamic algorithms instead (e.g., [10,5,18]). In this paper, we
focus on the analysis of algorithms for maintaining a topological ordering of directed graphs in an incremental setting.
For a directed graph G = (V , E) (with n := |V | and m := |E|), a topological order T : V → [1 . . . n] is a linear ordering

of its nodes such that for all directed paths from x ∈ V to y ∈ V (x 6= y), it holds that T (x) < T (y). A directed graph has a
topological ordering if and only if it is acyclic. There are well-known algorithms for computing the topological ordering of
a directed acyclic graph (DAG) in O(m+ n) time in an offline setting (see e.g. [11]). In a fully dynamic setting, each time an
edge is added or deleted from the DAG, we are required to update the bijectivemapping T . In the online/incremental variant
of this problem, the edges of the DAG are not known in advance but are inserted one at a time (no deletions allowed). As
the topological order remains valid when removing edges, most algorithms for online topological ordering can also handle
the fully dynamic setting. However, there are no good bounds known for the topological ordering algorithms in the fully
dynamic case. Most algorithms are only analyzed in the incremental setting.

I A conference version appeared in the 18th International Symposium on Algorithms and Computation (Ajwani and Friedrich, 2007 [1]). The first author
was partially supported by MADALGO — Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation. The second author
was partially supported by a postdoctoral fellowship from the German Academic Exchange Service (DAAD).
∗ Corresponding author. Tel.: +1 510 666 2956.
E-mail address: tobias.friedrich@mpi-inf.mpg.de (T. Friedrich).
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Given an arbitrary sequence of edges, the online cycle detection problem is to discover the first edge which introduces
a cycle. Till now, the best known algorithm for this problem involves maintaining an incremental topological order and
returning the edge after which no valid topological order exists. Hence, results for incremental topological ordering also
translate into results for the online cycle detection problem. Incremental topological ordering is required for incremental
evaluation of computational circuits [4] and in incremental compilation [20,22] where a dependency graph between
modules is maintained to reduce the amount of recompilation performed when an update occurs. An application for online
cycle detection is pointer analysis [25].
For inserting m edges, the naïve way of computing an incremental topological order each time from scratch with the

offline algorithm takesO(m2+mn) time. Marchetti-Spaccamela, Nanni, and Rohnert [21] gave an algorithm that can insert
m edges in O(mn) time. Alpern, Hoover, Rosen, Sweeney, and Zadeck [4] (AHRSZ) proposed an algorithm [4] which runs in
O(|〉K̂〈| log(|〉K̂〈|)) time per edge insertion with |〉K̂〈| being a local measure of the insertion complexity. However, there is
no analysis of AHRSZ for a sequence of edge insertions. Katriel and Bodlaender (KB) [18] analyzed a variant of the AHRSZ
algorithm and obtained an upper bound ofO(min{m

3
2 log n,m

3
2 + n2 log n}) for inserting an arbitrary sequence ofm edges.

The algorithmby Pearce andKelly (PK) [23] empirically outperforms the other algorithms for randomedge insertions leading
to sparse random DAGs, although its worst-case runtime is inferior to KB. Ajwani, Friedrich, and Meyer (AFM) [3] proposed
a new algorithm with runtime O(n2.75), which asymptotically outperforms KB on dense DAGs.
As noted above, the empirical performance on random edge insertion sequences (REIS) for the above algorithms are quite

different from their worst-cases. While PK performs empirically better for REIS, KB and AFM are the best known algorithms
for worst-case sequences. This leads us to the theoretical study of incremental topological ordering algorithms on REIS. A
nice property of such an average-case analysis is that (in contrast to worst-case bounds) the average of experimental results
on REIS converge towards the real average after sufficiently many iterations. This can give a good indication of the tightness
of the proven theoretical bounds.
Our contributions are as follows:

• We show an expected runtime of O(n2 log2 n) for inserting all edges of a complete DAG in a random order with PK
(cf. Section 4).
• For AHRSZ and KB, we show an expected runtime of O(n2 log3 n) for complete random edge insertion sequences
(cf. Section 5). This is significantly better than the known worst-case bound of O(n3) for KB to insertΩ(n2) edges.
• Additionally, we show that for such edge insertion sequences, the expected number of edges which force any algorithm
to change the topological order (‘‘invalidating edges’’) is O(n

3
2
√
log n) (cf. Section 6), which is the first such result.

A preliminary version of this paper appeared in [1]. The remainder of this paper is organized as follows. The Section 2
describes briefly the three algorithms AHRSZ, KB, and PK. In Section 3 we specify the random graph models used in our
analysis. Sections 4 and 6 prove our upper bounds for the runtime of the three algorithms and the number of invalidating
edges. Section 7 presents an empirical study, which provides deeper insight on the average-case behavior of AHRSZ and PK.

2. Algorithms

This section first introduces some notations and then describes the three algorithms AHRSZ, KB, and PK. We keep the
current topological order as a bijective function T : V → [1 . . . n]. In this and the subsequent sections, we will use the
following notations: d(u, v) denotes |T (u) − T (v)|, u < v is a short form of T (u) < T (v), u → v denotes an edge from u
to v, and u ; v expresses that v is reachable from u. Note that u ; u, but not u→ u. The degree of a node is the sum of its
in- and out-degree.
Consider the ith edge insertion u→ v. We say that an edge insertion is invalidating if u > v before the insertion of this

edge. Let R(i)B denote the set of nodes that have a path to u (in the DAGwith the first i−1 edges) andwhose topological order
is greater than or equal to that of v. Also, let R(i)F denotes the set of nodes that are reachable from v and whose topological
order is less than or equal to that of u. Formally, R(i)B := {x ∈ V | (v ≤ x) ∧ (x ; u)}, R(i)F := {y ∈ V | (y ≤ u) ∧ (v ; y)}
and δ(i) = R(i)F ∪ R

(i)
B . Furthermore, let |δ

(i)
| denote the number of nodes in δ(i) and let ‖δ(i)‖ denote the number of edges

incident to nodes of δ(i). Note that δ(i) as defined above is different from the adaptive parameter δ of the bounded incremental
computation model. If an edge is non-invalidating, then |R(i)B | = |R

(i)
F | = |δ

(i)
| = 0. Note that for an invalidating edge,

R(i)F ∩ R
(i)
B = ∅ as otherwise the algorithms will just report a cycle and terminate.

We now describe the insertion of the ith edge u → v for all the three algorithms. Assume for the remainder of this
section that u→ v is an invalidating edge, as otherwise none of the algorithms does anything for that edge. We define an
algorithm to be local if it only changes the ordering of nodes x with v ≤ x ≤ u to compute the new topological order T ′ of
G ∪ {(u, v)}. All three algorithms are local and they work in two phases — a ‘‘discovery phase’’ and a ‘‘relabeling phase’’.
In the discovery phase of PK, the set δ(i) is identified using a forward depth-first search from v (giving a set R(i)F ) and a

backward depth-first search from u (giving a set R(i)B ). The relabeling phase is also very simple. It sorts both sets R
(i)
F and R

(i)
B

separately in increasing topological order and then allocates newpriorities according to the relative position in the sequence
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R(i)B followed by R
(i)
F . It does not alter the priority of any node not in δ

(i), thereby greatly simplifying the relabeling phase. The
runtime of PK for the ith edge insertion isΘ(‖δ(i)‖ + |δ(i)| log |δ(i)|).
Alpern et al. [4] used the bounded incremental computation model [27] and introduced the measure |〉K̂〈|. For an

invalidated topological order T , the set K ⊆ V is a cover if for all x, y ∈ V : ((x ; y) ∧ (y < x) ⇒ (x ∈ K) ∨ (y ∈ K)).
This states that for any connected x and ywhich are incorrectly ordered, a cover K must include x or y or both. |K | and ‖K‖
denote the number of nodes and edges touching nodes in K , respectively. We define |〉K〈| := |K | + ‖K‖ and a cover K̂ to be
minimal if |〉K̂〈| ≤ |〉K〈| for any other cover K . Thus, |〉K̂〈| captures the minimal amount of work required to calculate the
new topological order T ′ of G∪ {(u, v)} assuming that the algorithm is local and that the adjacent edges must be traversed.
AHRSZs discovery phase marks the nodes of a cover K by marking some of the unmarked nodes x, y ∈ δ(i) with x ; y and
y < x. This is done recursively by moving two frontiers starting from v and u towards each other. Here, the crucial decision
is which frontier to move next. AHRSZ tries to minimize ‖K‖ by balancing the number of edges seen on both sides of the
frontier. The recursion stopswhen forward and backward frontiermeet. Note that we do not necessarily visit all nodes in R(i)F
(R(i)B ) while extending the forward frontier (backward frontier). It can be proven [4] that the marked nodes indeed form a
cover K and that |〉K〈| ≤ 3 |〉K̂〈|.
The relabeling phase employs the dynamic priority space data structure due to Dietz and Sleator [12]. This permits new

priorities to be created between existing ones inO(1) amortized time. This is done in two passes over the nodes in K . During
the first pass, it visits the nodes of K in reverse topological order and computes a strict upper bound on the new priorities
to be assigned to each node. In the second phase, it visits the nodes in K in topological order and computes a strict lower
bound on the new priorities. Both together allow to assign new priorities to each node in K . Thereafter they minimize the
number of different labels used to speed up the operations on the priority space data structure in practice. It can be proven
that the discovery phase with |〉K̂〈| priority queue operations dominates the time complexity, giving an overall bound of
O(|〉K̂〈| log |〉K̂〈|).
KB is a slight modification of AHRSZ. In the discovery phase AHRSZ counts the total number of edges incident on a node. KB
counts instead only the in-degree of the backward frontier nodes and only the out-degree of the forward frontier nodes.
In addition, KB also simplified the relabeling phase. The nodes visited during the extension of the forward (backward)
frontier are deleted from the dynamic priority space data structure and are reinserted, in the same relative order among
themselves, after (before) all nodes in R(i)B (R

(i)
F ) not visited during the backward (forward) frontier extension. The algorithm

thus computes a cover K ⊆ δ(i) and its complexity per edge insertion is O(|〉K〈| log |〉K〈|). The worst-case running time of
KB for a sequence ofm edge insertions is O(min{m

3
2 log n,m

3
2 + n2 log n}).

3. Random graph model

Erdös and Rényi [14,15] introduced and popularized random graphs. They defined two closely related models: G(n, p)
and G(n,M). The G(n, p)model (0 < p < 1) consists of a graph with n nodes in which each edge is chosen independently
with probability p. On the other hand, the G(n,M)model assigns equal probability to all graphs with n nodes and exactlyM
edges. Each such graph occurs with a probability of 1/

(
N
M

)
, where N :=

( n
2

)
.

For our study of incremental topological ordering algorithms, we use the random DAG model of Barak and Erdös [6].
They obtain a random DAG by directing the edges of an undirected random graph from lower to higher indexed vertices.
Depending on the underlying random graph model, this defines the DAG(n, p) and DAG(n,M)model. We will mainly work
on the DAG(n,M)model since it is better suited to describe incremental addition of edges.
The set of all DAGs with n nodes is denoted by DAGn . For a random variable X with probability space DAGn , EM [X] and

Ep [X] denotes the expected value of X in the DAG(n,M) and DAG(n, p)model, respectively. For the remainder of this paper,
we set E [X] := EM [X] and q := 1− p.
The following theorem shows that in most investigations the models DAG(n, p) and DAG(n,M) are practically inter-

changeable, providedM is close to pN .

Theorem 1. Given a random variable X:DAGn → [0, a] with a > 0 and X(G) ≤ X(H) for all G ⊆ H and functions p and M of
n with 0 < p < 1 and M ∈ N.

(1) If limn→∞ pqN = limn→∞
pN−M
√
pqN = ∞, then EM [X] ≤ Ep [X]+ o(1).

(2) If limn→∞ pqN = limn→∞
M−pN
√
pqN = ∞, then Ep [X] ≤ EM [X]+ o(1).

The analogous theorem for the undirected graph models G(n, p) and G(n,M) is well known. A closer look at the proof
for it given by Bollobás [9] reveals that the probabilistic argument used to show the close connection between G(n, p) and
G(n,M) can be applied in the same manner for the two random DAG models DAG(n, p) and DAG(n,M).
We define a random edge sequence to be a uniform random permutation of the edges of a complete DAG, i.e., all

permutations of
( n
2

)
edges are equally likely. If the edges appear to the incremental algorithm in the order in which they

appear in the random edge sequence, we call it a random edge insertion sequence (REIS). Note that a DAG obtained after
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insertingM edges of a REIS will have the same probability distribution as DAG(n,M). To simplify the proofs, we first show
our results in the DAG(n, p)model and then transfer them to the DAG(n,M)model by Theorem 1.

4. Analysis of PK

When inserting the ith edge u → v, PK only regards nodes in δ(i) := {x ∈ V | (v ≤ x ≤ u) ∧ ((v ; x) ∨ (x ; u))}
with ‘‘≤’’ defined according to the current topological order. As discussed in Section 2, PK performsO(‖δ(i)‖+|δ(i)| log |δ(i)|)
operations for inserting the ith edge. The intuition behind the proofs in this section is that in the early phase of edge insertions
(the first O(n log n) edges), the graph is sparse and so only a few edges are traversed during the DFS traversals. As the graph
grows, fewer and fewer nodes are visited in DFS traversals (|δ(i)| is small) and so the total number of edges traversed in DFS
traversals (bounded above by ‖δ(i)‖) is still small.
Since PK performsO(‖δ(i)‖+ |δ(i)| log |δ(i)|) operations for inserting the ith edge, the total cost of PK for inserting all the

edges is O(
∑N
i=1 ‖δ

(i)
‖ +

∑N
i=1(|δ

(i)
| log |δ(i)|)) = O(

∑N
i=1 ‖δ

(i)
‖ + log n · (

∑N
i=1 |δ

(i)
|)). The last equality follows from the

fact that |δ(i)| ≤ n (as R(i)F ∩ R
(i)
B = ∅ for all invalidating edges). Theorems 4 and 10 of this section show for a random edge

insertion sequence (REIS) ofN edges that
∑N
i=1 |δ

(i)
| = O(n2) and E

[∑N
i=1 ‖δ

(i)
‖

]
= O(n2 log2 n). This proves the following

theorem.

Theorem 2. For a random edge insertion sequence (REIS) leading to a complete DAG, the expected runtime of PK isO(n2 log2 n).

A comparable pair (of nodes) are two distinct nodes x and y such that either x ; y or y ; x. We define a potential
function Φi similar to Katriel and Bodlaender [18]. Let Φi be the number of comparable pairs after the insertion of i edges.
Clearly,

∆Φi := Φi − Φi−1 ≥ 0 for all 1 ≤ i ≤ M,
Φ0 = 0, and ΦM ≤ n(n− 1)/2.

(1)

Theorem 3. For all edge sequences, (i) |δ(i)| ≤ ∆Φi + 1 and (ii) |δ(i)| ≤ 2∆Φi.

Proof. Consider the ith edge (u, v). If u < v, the theorem is trivial since |δ(i)| = 0. Otherwise, each vertex of R(i)F and R
(i)
B (as

defined in Section 2) gets newly orderedwith respect to u and v, respectively. The set
⋃
x∈R(i)B

(x, v)∩
⋃
x∈R(i)F

(u, x) = {(u, v)}.

This means that overall at least |R(i)F | + |R
(i)
B | − 1 node pairs get newly ordered:

∆Φi ≥ |R
(i)
F | + |R

(i)
B | − 1 = |δ

(i)
| − 1.

Also, since in this case∆Φi ≥ 1, |δ(i)| ≤ 2∆Φi. �

Theorem 4. For all edge sequences,
∑N
i=1 |δ

(i)
| ≤ n(n− 1) = O(n2).

Proof. By Theorem 3(i), we get
∑N
i=1 |δ

(i)
| ≤

∑N
i=1(∆Φi + 1) = ΦN + N ≤ n(n− 1)/2+ n(n− 1)/2 = n(n− 1). �

The remainder of this section provides the necessary tools step by step to finally prove the desired bound on
∑N
i=1 ‖δ

(i)
‖

in Theorem 10. One can also interpretΦi as a random variable in DAG(n,M)withM = i. The corresponding function Ψ for
DAG(n, p) is defined as the total number of comparable node pairs in DAG(n, p). Pittel and Tungol [26] showed the following
theorem.

Theorem 5. For p := c log(n)/n and c > 1, Ep [Ψ ] = (1+ o(1)) n
2

2

(
1− 1

c

)2
.

Using Theorem 1, this result can be transformed toΦ as defined above for DAG(n,M) and gives the following bounds for
EM [Φk].

Theorem 6. For n log n < k ≤ N − 2n log n,

EM [Φk] = (1+ o(1))
n2

2

(
1−

(n− 1) log n
2(k+ n log n)

)2
.

For N − 2n log n < k ≤ N − 2 log n,

EM [Φk] = (1+ o(1))
n2

2

(
1−

(n− 1) log n
2(k+

√
log n (N − k))

)2
.
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Proof. The function Ψ :DAGn → [0,N] satisfies Ψ (G) ≤ Ψ (H) wherever G ⊆ H . The later inequality is true as the nodes
already ordered in Gwill still remain ordered in H . For n log n < k ≤ N − 2n log n, consider p := k+n log n

N . Then

lim
n→∞

pqN ≥ lim
n→∞

log n
n
log n
n
N ≥ lim

n→∞

(n− 1) log2 n
2n

= ∞

and

lim
n→∞

pN − k
√
pqN

≥ lim
n→∞

pN − k
√
N
≥ lim
n→∞

n log n
√
N

≥ lim
n→∞

n log n
n
≥ lim
n→∞

log n = ∞.

Since all the conditions of Theorem 1 are satisfied for these values of k and p, EM [Ψ ] = O(Ep [Ψ ]). In particular,

EM [Φk] = Ep=(k+n log n)/N [Ψ ]+ o(1) = (1+ o(1))
n2

2

(
1−

(n− 1) log n
2(k+ n log n)

)2
.

For N − 2n log n < k ≤ N − 2 log n, we choose p := k+
√
log n (N−k)
N . Clearly,

p ≥
N − 2n log n+

√
log n(N − (N − 2 log n))
N

≥
N − 2n log n+

√
2 log n

N
.

Using this, we get

lim
n→∞

pqN ≥ lim
n→∞

(N − 2n log n+
√
2 log n)

N
(N − k−

√
log n (N − k))N
N

.

Observe that f (k) := N − k −
√
log n (N − k) has its minimum at k0 = N − log(n)/4 since f ′(k0) = 0 and f ′′(k0) =

2/ log n > 0. Hence, we conclude that f (k) is monotonically decreasing in our interval (N − 2n log n,N − 2 log n) and
attains its minimum at N − 2 log n. Therefore, N − k −

√
log n (N − k) ≥ 2 log n −

√
2 log n → ∞, which in turn proves

limn→∞ pqN = ∞ and

lim
n→∞

pN − k
√
pqN

≥ lim
n→∞

√
log n (N − k)√

N − k−
√
log n (N − k)

≥ lim
n→∞

√
log n = ∞

Together with Theorem 5, this yields

EM [Φk] = Ep=(k+√log n (N−k))/N [Ψ ]+ o(1)

= (1+ o(1))
n2

2

(
1−

(n− 1) log n
2(k+

√
log n (N − k))

)2
. �

The degree sequence of a random graph is a well-studied problem. The following theorem is shown in [9].

Theorem 7. If pn/ log n→∞, then almost every graph G in the G(n, p)model satisfies∆(G) = (1+ o(1)) pn, where∆(G) is
the maximum degree of a node in G.

As noted in Section 3, the undirected graph obtained by ignoring the directions of DAG(n, p) is a G(n, p) graph. Therefore,
the above result is also true for the maximum degree (in-degree+ out-degree) of a node in DAG(n, p). Using Theorem 1, the
above result can be transformed to DAG(n,M), as well.

Theorem 8. With probability 1 − O( 1n ), there is no node with degree higher than 21
M
n for sufficiently large n and M > n log n

in DAG(n,M).

Proof. We examine the following two functions:

• f1(g): Number of nodes with degree at least g(n)
• f2(g) := f 21 (g).

For f1, f2 in G(n, p), g(n) := pn+ 2
√
pqn log n, and some constant c , Bollobás [8] showed

Ep [f1(g)] = O

(
1
n

)
,

σ 2p (f1(g)) = Ep [f2(g)]− E2p [f1(g)] ≤ c · Ep [f1(g)] .
(2)
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Consider any random DAG(n,M). It must have been obtained by taking a random graph G(n,M) and ordering the edges. The
degree of a node in DAG(n,M) is the same as the degree of the corresponding node in G(n,M).

We break down the analysis depending onM . At first, consider the simpler case ofM >
(
b

N
n log nc − 2

)
n log n. The degree

of any node in an undirected graph cannot be higher than n−1. However, asM > N−3n log n, 21 · Mn ≥
21
2 (n−1)−63 log n.

For sufficiently large n this is greater than n− 1 and therefore, no node can have degree higher than it.
Next, we consider M ∈ (kn log n, (k + 1) n log n] for 1 ≤ k < l, where l := b N

n log nc − 2, and we prove the theorem for

each interval. We choose pk := (k+ 2)
n log n
N , qk := 1− pk, and gk(n) := pkn+ 2

√
pkqkn log n and look for the conditions in

Theorem 1. Note that 0 < pk < 1, f1:Gn → [0, n], f2:Gn → [0, n2], and fi(G) ≤ fi(H)wherever G ⊆ H for i = 1, 2. The later
inequality holds as the degree of any node in H is greater than or equal to the corresponding degree in G. For 1 ≤ k < l,

pk ≥
3n log n
N

≥
6 log n
n− 1

and

qk ≥ 1−
(⌊

N
n log n

⌋
− 1

)
n log n
N
≥ 1−

(
N − n log n
n log n

)
n log n
N
≥
2 log n
n− 1

.

So for each interval,

lim
n→∞

pkqkN ≥ lim
n→∞

6 log n
n− 1

2 log n
n− 1

N ≥ lim
n→∞

6 log2 n = ∞

and byMk ≤ (k+ 1) n log n and k+ 2 ≤ b N
n log nc,

lim
n→∞

pN −M
√
pqN

≥ lim
n→∞

pN −M
√
pN
≥ lim
n→∞

n log n
√
(k+ 2) n log n

= lim
n→∞

√
n log n
√
k+ 2

≥ lim
n→∞

n log n
√
N
≥ lim
n→∞

log n = ∞.

In each interval, all the conditions of Theorem 1 are satisfied and therefore, EM [fi(gk)] = Epk [fi(gk)]+ o(1) for i = 1, 2 and
1 ≤ k < l. Using Eq. (2), we get EM [f1(gk)] = O(Epk [f1(gk)]) = O

( 1
n

)
and

σ 2M(f1(gk)) = EM [f2(gk)]− E2M [f1(gk)] = O
(
Epk [f2(gk)]− E2pk [f1(gk)]

)
= O(σ 2pk(f1(gk))) = O(Epk [f1(gk)]) = O

(
1
n

)
.

Therefore, by substituting X := f1(gk),µ := EM [f1(gk)] = O
( 1
n

)
, σ 2 := σ 2M(f1(gk)) = O

( 1
n

)
, and ν := 1−µ in Chebyshev’s

inequality (Pr{|X − µ| ≥ ν} ≤ σ 2

ν2
), we get

Pr{|f1(gk)− µ| ≥ 1− µ} ≤ O
(

1
n(1−µ)2

)
= O

( 1
n

)
.

However, Pr{|f1(gk)−µ| ≥ 1−µ} = Pr{(f1(gk) ≥ 1) or (f1(gk) ≤ 2µ−1)} and since,µ = O
( 1
n

)
and f1(gk) is non-negative

random variable, Pr{f1(gk) ≤ 2µ− 1} = 0 for sufficiently large n. Therefore, Pr{f1(gk) ≥ 1} = Pr{|f1(gk)− µ| ≥ 1− µ} =
O
( 1
n

)
. In other words, with probability (1−O( 1n )), there is no node with a degree higher than gk in any interval. However,

by pk ≥
log n
n we get

gk(n) = pkn+ 2
√
pkqkn log n ≤ 3pkn ≤ 6(k+ 2)

n log n
n− 1

.

For sufficiently large n, n
n−1 ≤

7
6 , and this implies

gk(n) ≤ 7(k+ 2) log n ≤
7(k+ 2)
k

M
n
≤
21M
n
.

Therefore, with probability 1−O( 1n ), there is no nodewith a degree higher than 21
M
n in G(n,M) and by the argument above,

in DAG(n,M). �

As the maximum degree of a node in DAG(n, i) is O(i/n), we finally just need to show a bound on
∑
i(i · |δ

(i)
|) to prove

Theorem 10. This is done in the following theorem.
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Theorem 9. For DAG(n,M) and r := N − 2 log n,

E

[
r∑
i=1

(i · |δ(i)|)

]
= O(n3 log2 n).

Proof. Let us decompose the analysis in three steps. First, we show a bound on the first n log n edges. By definition of δ(i),
|δ(i)| ≤ n. Therefore,

n log n∑
i=1

i · E
[
|δ(i)|

]
≤

n log n∑
i=1

i · n = O
(
n3 log2 n

)
. (3)

The second step is to bound
∑t
i=n log n i · |δ

(i)
| with t := N − 2n log n. For this, Theorem 3(ii) shows for all k such that

n log n < k < t that

E

[
t∑
i=k

|δ(i)|

]
≤ 2 E

[
t∑
i=k

∆Φi

]
= 2 E [Φt − Φk−1] = 2 E [Φt ]− 2E [Φk−1] . (4)

The function hidden in the o(1) in Theorem 5 is decreasing in p [26]. Hence, also the o(1) in Theorem 6 is decreasing in k.
Plugging this in Eq. (4) yields (with s := n log n and using k < t)

E

[
t∑
i=k

|δ(i)|

]
≤ (1+ o(1)) n2

((
1−

(n− 1) log n
2(t + s)

)2
−

(
1−

(n− 1) log n
2(k− 1+ s)

)2)

= (1+ o(1)) n2(n− 1) log n
(

2
2(k− 1+ s)

−
2

2(t + s)

+
(n− 1) log n

4

(
1

(t + s)2
−

1
(k− 1+ s)2

))
≤ (1+ o(1)) n2(n− 1) log n

(
1

k− 1+ s
−

1
t + s

)
≤ (1+ o(1)) n2(n− 1) log n

1
k− 1

. (5)

By linearity of expectation and Eq. (5),

E

[
t∑

i=s+1

i |δ(i)|

]
=

t∑
i=s+1

(
i E
[
|δ(i)|

])
≤

log(d ts e)∑
j=1

2js 2js∑
i=2(j−1)s+1

E
[
|δ(i)|

]
≤

log(d ts e)∑
j=1

(
2js

t∑
i=2(j−1)s+1

E
[
|δ(i)|

])

≤

log(d ts e)∑
j=1

(
2js(1+ o(1)) n2(n− 1) log n

1
2(j−1)s

)

=

log(d ts e)∑
j=1

(
2(1+ o(1)) n2(n− 1) log n

)
= 2(1+ o(1)) n2(n− 1) log2 n = O(n3 log2 n).

For the last step consider a k such that t < k < r . Theorem 3(ii) gives

E

[
r∑
i=k

|δ(i)|

]
≤ 2 E

[
r∑
i=k

∆Φi

]
= 2 E [Φr − Φk−1] = 2 E [Φr ]− 2E [Φk−1] .
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Using Theorem 6 and similar arguments as before, this yields (with s(k) :=
√
log n (N − k))

E

[
r∑
i=k

|δ(i)|

]
≤ (1+ o(1)) n2

((
1−

(n− 1) log n
2(r + s(r))

)2
−

(
1−

(n− 1) log n
2(k− 1+ s(k− 1))

)2)

= (1+ o(1)) n2(n− 1) log n
(

2
2(k− 1+ s(k− 1))

−
2

2(r + s(r))

+
(n− 1) log n

4

(
1

(r + s(r))2
−

1
(k− 1+ s(k− 1))2

))
.

Since k + s(k) is monotonically increasing for t < k < r , 1
(k+s(k))2

is a monotonically decreasing function in this interval.

Therefore, 1
(r+s(r))2

−
1

(k−1+s(k−1))2
< 0, which proves the following equation.

E

[
r∑
i=k

|δ(i)|

]
≤ (1+ o(1)) n2(n− 1) log n

(
1

k− 1+ s(k− 1)
−

1
r + s(r)

)
≤ (1+ o(1)) n2(n− 1) log n

1
k− 1

. (6)

By linearity of expectation and Eq. (6),

E

[
r∑

i=N−2n log n+1

i |δ(i)|

]
=

r∑
i=N−2n log n+1

(
i E
[
|δ(i)|

])
≤ (N − 2 log n)

r∑
i=N−2n log n+1

E
[
|δ(i)|

]
≤ (N − 2 log n) (1+ o(1)) n2(n− 1) log n

1
N − 2n log n− 1

= O(n3 log n). �

Theorem 10. For DAG(n,M), E
[∑N

i=1 ‖δ
(i)
‖

]
= O(n2 log2 n).

Proof. By definition of ‖δ(i)‖, we know ‖δ(i)‖ ≤ i and hence

n log n∑
i=1

‖δ(i)‖ = O(n2 log2 n).

Again, let r := N − 2 log n. Theorem 8 tells us that with probability greater than
(
1− c′

n

)
for some constant c ′, there is no

node with degree≥ c i
n (for c = 21). Since the degree of an arbitrary node in a DAG is bounded by n, we get with Theorems 4

and 9,

E

[
r∑

i=n log n+1

‖δ(i)‖

]
= O

(
E

[
r∑

i=n log n+1

c i |δ(i)|
n

]
+ E

[
r∑

i=n log n+1

n c ′ |δ(i)|
n

])

= O

(
1
n
E

[
r∑
i=1

(i |δ(i)|)

]
+ n2

)

= O

(
1
n

(
n3 log2 n

)
+ n2

)
= O(n2 log2 n).

By again using the fact that the degree of an arbitrary node in a DAG is at most n, we obtain

E

[
N∑

i=r+1

‖δ(i)‖

]
= O

(
n · E

[
N∑

i=r+1

|δ(i)|

])
= O

(
n ·

N∑
i=r+1

n

)
= O(n2 log n).
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Thus,

E

[
N∑
i=1

‖δ(i)‖

]
= E

[
n log n∑
i=1

‖δ(i)‖

]
+ E

[
r∑

i=n log n+1

‖δ(i)‖

]
+ E

[
N∑

i=r+1

‖δ(i)‖

]
= O(n2 log2 n)+ O(n2 log2 n)+ O(n2 log n) = O(n2 log2 n). �

5. Analysis of AHRSZ and KB

Katriel andBodlaender [18] introducedKB as a variant of AHRSZ forwhich aworst-case runtimeofO(min{m
3
2 log n,m

3
2+

n2 log n}) can be shown. In this section, we prove an expected runtime of O(n2 log3 n) under random edge insertion
sequences, both for AHRSZ and KB.
Recall from Section 2 that for every edge insertion there is a minimal cover K̂ (i). The following theorem shows that δ(i) is

also a valid cover in this situation.

Theorem 11. δ(i) is a valid cover.

Proof. Consider the insertion of the ith edge (u, v) and consider a node-pair x, y such that x ; y, but x > y. Since before
the insertion of this edge, the topological ordering was consistent, x ; u→ v ; y, x < u and v < y. Together with x > y,
it implies x > v. Now x ; u and x ≥ v imply x ∈ δ(i). Thus, for every node-pair (x, y) such that x ; y and x > y, x ∈ δ(i)
and hence, δ(i) is a valid cover. �

Therefore, by definition of |〉K̂ (i)〈|, |〉K̂ (i)〈| ≤ |〉δ(i)〈| = |δ(i)| + ‖δ(i)‖.

E

[
m∑
i=1

|〉K̂ (i)〈|

]
≤

m∑
i=1

|δ(i)| + E

[
m∑
i=1

‖δ(i)‖

]
= O(n2 log2 n).

The latter equality follows from Theorems 4 and 10. The expected complexity of AHRSZ on REIS is thus
O
(
E
[∑m

i=1 |〉K̂
(i)
〈| log n

])
= O(n2 log3 n).

KB also computes a cover K ⊆ δ(i) and its complexity per edge insertion is O(|〉K〈| log |〉K〈|). Therefore, |〉K〈| ≤ |δ(i)|
+ ‖δ(i)‖ and with a similar argument as above, the expected complexity of KB on REIS is O(n2 log3 n).

6. Bounding the number of invalidating edges

An interesting question in all this analysis is how many edges will actually invalidate the topological ordering and force
any algorithm to do something about them. Here, we show a non-trivial upper bound on the expected value of the number
of invalidating edges on REIS. Consider the following random variable: inval(i) = 1 if the ith edge inserted is an invalidating
edge; inval(i) = 0 otherwise.

Theorem 12. E
[∑m

i=1 inval(i)
]
= O(min{m, n

3
2 log

1
2 n}).

Proof. If the ith edge is invalidating, |δ(i)| ≥ 2; otherwise inval(i) = |δ(i)| = 0. In either case, inval(i) ≤ |δ(i)|/2. Thus, for
s := n

3
2 log

1
2 n and t := min{m,N − 2n log n},

E

[
t∑

i=s+1

inval(i)

]
≤ E

[
t∑

i=s+1

|δ(i)|

2

]
≤ (1+ o(1))

n2(n− 1) log n
2s

≤
(1+ o(1))

2
n
3
2 log

1
2 n.

The second inequality follows by substituting k := s + 1 in Eq. (5). Also, since the number of invalidating edges can be at
most equal to the total number of edges,

∑s
i=1 inval(i) ≤ s.

E

[
m∑
i=1

inval(i)

]
= E

[
s∑
i=1

inval(i)

]
+ E

[
t∑

i=s+1

inval(i)

]
+ E

[
m∑
i=t

inval(i)

]
≤ O(s)+ O(n

3
2 log

1
2 n)+ O(n log n) = O(n

3
2 log

1
2 n).

The second bound E
[∑m

i=1 inval(i)
]
≤ m is obvious by definition of inval(i). �
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(a) C(n)/(n2 log n). (b) C(n)/(n2 log2 n).

Fig. 1. Experimental results of AHRSZ for the insertion of the edges of a complete DAG in a random order. The horizontal axes describe the number of
vertices n. The vertical axes show the measured empirical insertion costs C(n) :=

∑
i |〉K〈| log |〉K〈| relative to (a) n

2 log n and (b) n2 log2 n, respectively.
The error bars specify the sample standard deviation.

7. Empirical observations

In addition to the achieved average-case bounds, we also examined AHRSZ and PK experimentally using the implemen-
tation of Pearce [23] available from www.mcs.vuw.ac.nz/~djp/dts.html. For varying number of vertices n = 100, 200, . . . ,
10000, we generated random edge insertion sequences (REIS) leading to complete DAGs and averaged the performance
parameter C(n) over 250 runs. The chosen C(n) upper bounds the respective runtimes.
The performance parameter taken for AHRSZ is C(n) :=

∑
i |〉K〈| log(|〉K〈|). We know E [C(n)] = O(n2 log3 n) from

Section 5 and know that the overall runtime isΩ(n2) since the algorithm has to inspect all the edges being inserted. In our
experimental setting, we discovered that C(n)/(n2 log2 n) is apparently a decreasing function and that C(n)/(n2 log n) is
an increasing function. This empirical evidence suggests that C(n) is possibly between Ω(n2 log n) and O(n2 log2 n). Fig. 1
shows our experimental results for AHRSZ.
We considerC(n) :=

∑
i(‖δ

(i)
‖+|δ(i)| log |δ(i)|) as a performance parameter for PK andobserve thatC(n)/n2 is decreasing

while C(n)/(n2 log−1 n) is increasing. This indicates that C(n) = o(n2), which implies an actual runtime ofΘ(n2) for PK on
REIS since all Ω(n2) edges have to be inspected. Pearce and Kelly [23] showed empirically that PK outperforms AHRSZ on
sparse DAGs. Our experiments extend this to dense DAGs.
Complementing Section 6, we also examined empirically the number of invalidating edges for AHRSZ. The same

experimental set-up as above suggests a quasilinear growth of
∑m
i=1 inval(i) betweenΩ(n log n) andO(n log2 n). Note that

the observed empirical bound for AHRSZ is significantly lower than the general bound O(n
3
2 log

1
2 n) of Theorem 12 which

holds for all algorithms.

8. Discussion

On random edge insertion sequences (REIS) leading to a complete DAG, we have shown an expected runtime of
O(n2 log2 n) for the incremental topological ordering algorithm PK andO(n2 log3 n) for the algorithms AHRSZ and KB while
the trivial lower bound isΩ(n2). Our analysis can be adapted to prove that for n log n < f (n) < N − n log n, the expected
time to insert m edges (in the REIS) after f (n) edges have already been inserted (in the REIS) is O( n

2m log n
f (n) ). In particular, if

O(n2) edges have already been inserted in a REIS, inserting the next m edges of the REIS will only require O(m log n) time.
This result is, however, only relevant when inserting edges in a random dense DAG. In order to prove interesting results for
the sparse case as well, one needs a deeper analysis of the relationship between |δ(i)| and∆Φi for sparse randomDAGs. This,
however, remains an interesting open problem.
Recently, there has been a lot of work on improving the worst-case upper bound for incremental topological ordering.

Haeupler et al. [17] gave two new algorithms for incremental topological ordering. Their algorithm for the sparse case
requires O(m3/2) time while their algorithm for the dense case requires O(n5/2) time. Bender et al. [7] gave an O(n2 log n)
algorithm for this problem, thereby improving the results of Haeupler et al. for the dense case.
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