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Abstract
We study the parameterized complexity of classical problems that arise in the profiling of rela-
tional data. Namely, we characterize the complexity of detecting unique column combinations
(candidate keys), functional dependencies, and inclusion dependencies with the solution size as
parameter. While the discovery of uniques and functional dependencies, respectively, turns out
to be W [2]-complete, the detection of inclusion dependencies is one of the first natural problems
proven to be complete for the class W [3]. As a side effect, our reductions give insights into the
complexity of enumerating all minimal unique column combinations or functional dependencies.
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pendency, inclusion dependency, profiling relational data

1 Introduction

Data profiling is the process of gathering metadata from a given database, which in turn
facilitates various tasks such as data cleansing, normalization and integration as well as
query optimization. A common problem in data profiling is the detection of different
types of dependencies between pieces of data, most notably unique column combinations,
functional dependencies, and inclusion dependencies. Due to their practical relevance, these
three problems have received much attention, which lead to numerous detection as well as
enumeration algorithms, see e.g. the survey by Abedjan, Golab and Naumann [1]. Despite
the fact that these algorithms perform well in practice, there are usually no theoretical
performance guarantees. This is not very surprising as all three problems are known to be
intractable: finding a minimum unique column combination is NP-complete [3] and cannot
be approximated within a factor of 1/4 logn (under reasonable complexity assumptions) [2],
finding a minimum functional dependency is also NP-complete [7] and finding a maximum
inclusion dependency is NP-complete even for restricted cases [14].

One approach to overcome these difficulties is to exploit properties that are usually
observed in realistic data to design algorithms that guarantee a polynomial run time in
case these features are present in the problem instance. Consider for example the his-
tograms in Figure 1, showing the size distribution of minimal unique column combinations,
minimal functional dependencies, and maximal inclusion dependencies in the MusicBrainz
database [18]. Usually the majority of functional dependencies (as well as unique column
combinations and inclusion dependencies) are rather small. Beside surrogate keys, giving rise
to multiple functional dependencies of size 1, natural causalities also lead to small functional
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Figure 1 The number of minimal unique column combinations, minimal functional dependencies
and maximal inclusion dependencies for given solution sizes in the MusicBrainz database.

dependencies. For example, the name of an event together with the year in which it starts
determines the year in which it ends, implying a functional dependency of size 2. Note that
the starting year alone is not enough to infer this information. The name of the action,
however, seems to indicate whether the event ends in the starting year or the following one.

Although the size k of the minimum functional dependency can in principle be (almost)
as large as the total number of attributes, it appears to be a reasonable assumption that
k is significantly smaller. It is thus very natural to ask whether the problem of finding a
minimum functional dependency is fixed-parameter tractable (FPT) with respect to k, i.e.,
whether it can be solved in time O(f(k) · p(n)), where p is a polynomial in the input size n,
while f is an arbitrary function in the parameter k, but not in n. Note that the running
time of an FPT-algorithm in general can still be superpolynomial. However, when assuming
the parameter k to be bounded by a constant, one obtains a polynomial running time, in
O(p(n)), whose order of growth does not depend on k. Hence, one can think of parameterized
complexity as being a more fine-grained approach to complexity theory.

Parameterized complexity has been a great success in the design and analysis of al-
gorithms [5, 8]. Nevertheless, its techniques have rarely been employed in the context of
database theory so far. A notable exception is the complexity of database queries. Papadim-
itriou and Yannakakis [17] considered this problem for different query languages using the
size of the query or alternatively the number of variables as the parameter. They showed
that presumably none of the variants admits an FPT-algorithm, as the resulting problems
are at least W [1]-hard (some are actually W [t]-hard for any positive integer t, W [SAT]-hard
or even W [P]-hard). For further results on the parameterized complexity of database queries
see the survey by Grohe [13]. Besides queries, we are not aware of any algorithmic database
problems that have been considered through the lens of parameterized complexity.

Our Contribution and Outline. We show that detecting minimum unique column combi-
nations and minimum functional dependencies are both W [2]-complete problems. Also, we
prove that finding maximum inclusion dependencies isW [3]-complete. Thereby we completely
settle the parameterized complexity of these problems with the solution size as parameter.
We would like to point out that the completeness for the class W [3] of a well-studied problem
like the discovery of inclusion dependencies is quite surprising as natural problems are rarely
W [3]-complete. In fact, besides a result by Chen and Zhang [4] related to supply chain
management, we are not aware of any natural W [t]-complete problem for t > 2.

In Section 2 we give basic definitions and formal problem statements. In Section 3,
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we examine the detection of minimum unique column combinations as well as minimum
functional dependencies. For the latter, we actually consider two variants, one for which the
right hand side of the functional dependency is fixed and one in which it is variable. We
show that all three problems are W [2]-complete. As a byproduct, our reductions (involving
the problem Hitting Set) have certain implications on the computational hardness of
enumerating all unique column combinations or functional dependencies of a given relation.
See the end of Section 3 for more details. In Section 4 we show that finding minimum
inclusion dependencies for a pair of relations is W [3]-complete. We also show that the
problem remains W [3]-complete if both relations are defined over the same schema together
with a fixed mapping between the columns of the tables. In Section 5, we conclude this paper
by discussing alternative parameter choices as well as possible future research in general.

2 Notation and Problems

2.1 Parameterized Complexity
For an instance I of a decision problem and a parameter k ∈ N+, the pair (I, k) is an instance
of the corresponding parameterized problem. The running time of an algorithm is then
considered not only in terms of the input size |I| but also in terms of k. A parameterized
problem is fixed-parameter tractable, i.e., it belongs to the complexity class FPT, if a given
instance can be solved in time O(f(k) ·p(|I|)), where p is a polynomial while f is an arbitrary
computable function. We then also say that the algorithm runs in FPT-time.

Let P and P ′ be two parameterized problems. A parameterized reduction from P to P ′
is an algorithm running in FPT-time that maps an instance (I, k) of P to an equivalent
instance (I ′, k′) of P ′ such that the parameter k′ depends only on the value of k (and not on
|I|). Note that an (hypothetical) FPT-algorithm for P ′ would also yield an FPT-algorithm
for P via this reduction. Hence, considering their parameterized complexity, P is at most as
hard as P ′, which we denote by P ≤FPT P ′. If conversely P ′ ≤FPT P also holds, we say that
P and P ′ are FPT-equivalent.

The parameterized reduction leads to a hierarchy of complexity classes, the so-called
W -hierarchy, by specifying a complete problem for each class. To define the desired family of
problems, we employ Boolean formulas in propositional logic. Let ϕ be such a formula. A
satisfying truth assignment for ϕ has Hamming weight k if exactly k variables are set to true
in this assignment; we also call the set of these k variables a solution for ϕ. The formula
ϕ is t-normalized if it can be written as a conjunction of disjunctions of conjunctions of
disjunctions (and so on) of literals with t−1 alternations between conjunction and disjunction.
Observe that a Boolean formula is 2-normalized if it is in conjunctive normal form (CNF)
and 3-normalized if it is a conjunction of subformulas in disjunctive normal form (DNF).

The problem Weighted t-normalized Satisfiability is to decide for a given t-nor-
malized formula ϕ and a positive integer k whether ϕ has a weight k satisfying assignment;
here k serves as the parameter. For any t ≥ 1, a parameterized problem P is said to be in
the complexity class W [t] in case P ≤FPT Weighted t-normalized Satisfiability.1

The classes FPT ⊆W [1] ⊆W [2] ⊆ . . . form an ascending hierarchy and all inclusion are
assumed to be proper, which is however still unproven [8]. The higher a problem ranks in
the W -hierarchy the lower we consider the chances of finding an FPT-algorithm to solve it.

1 We tacitly avoid the classical definition of W [t] via weft-t-depth-d-families of decision circuits. This is
justified by the Normalization Theorem by Downey and Fellows [10, 11].
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2.2 Dependencies in Relational Databases

If not explicitly stated otherwise, notation regarding relational databases follows the survey
by Abedjan et al. [1]. We let R and S be relational schemata, i.e., sets of columns; each
column is associated with a set of admissible values. Symbols X,Y refer to sets of columns
and symbols A,B refer to a single column, an attribute. We denote with ri, rj tuples whose
entries, respectively, are indexed by some schema R and, for any subset X ⊆ R of columns,
we let ri[X] denote the sub-tuple of ri consisting only of the entries indexed by X. In
particular, ri[A] denotes the value of attribute A in ri. A set r of such tuples is an instance
of schema R if, for any ri ∈ r and A ∈ R, value ri[A] is admissible for attribute A. Instances
of schematas are called relations or relational databases (over the corresponding schema).
With r[X] we denote the collection of all sub-tuples ri[X] for ri ∈ r.

Let r be an instance of schema R. A collection X ⊆ R of columns is called a unique column
combination or unique if, for any two distinct tuples ri 6= rj in r, we have ri[X] 6= rj [X].
So the combination of values for X fully identifies a tuple of relation r. Otherwise, X is
called a non-unique. The size of a unique X is the cardinality |X|. Clearly, any superset of a
unique is unique and any subset of a non-unique is again non-unique. The problem Unique
is to decide for a given relational database r and a positive integer k whether r has a unique
column combination of size at most k. Unique is known to be NP-complete [3].

A functional dependency (FD) over a schema R is an expression of the form X → A

for some set X ⊆ R of columns and an attribute A ∈ R. The set X is called the left-hand
side (LHS) of the dependency and attribute A the right-hand side (RHS). A functional
dependency X → A holds in an instance r (of schema R) if any pair of tuples that agree on
X also agree on A, i.e., if ri[X] = rj [X] implies ri[A] = rj [A] for any two tuples ri, rj ∈ r.
Otherwise, the FD is said to fail in r. A functional dependency is non-trivial if A /∈ X
(X → A evidently holds if A ∈ X). The size of an FD is the cardinality of its LHS. The
problem FD is to decide for a given relational database r and a positive integer k whether
there is a non-trivial functional dependency of size at most k that holds in r. The problem
FDfixed is to decide for a given attribute A ∈ R, whether there is such a functional dependency
with right-hand side A. The restricted variant FDfixed is known to be NP-complete [7].

At last we define inclusions between columns among different relations. Let r be an
instance of schema R and s be an instance of S. For some X ⊆ R, let σ : X → S be an
injective map. Then the pair (X,σ) is an inclusion dependency (IND) if, for each tuple ri ∈ r,
there exists a tuple sj ∈ s such that ri[A] = sj [σ(A)] for every A ∈ X, i.e., r[X] ⊆ s[σ(X)].
If the map σ is given in the input, we simply say that X is the inclusion dependency. The
size of an inclusion dependency is |X|. The problem IND is to decide for two relations r and
s (over schemata R and S, respectively) and a positive integer k whether there is an inclusion
dependency (X,σ) of size at least k. In case of R = S and σ being the identity mapping over
R, the problem INDfixed is to decide whether there is an inclusion dependency X of size at
least k. Detecting an inclusion dependency in a relational database is NP-complete [14].

Note that the decision problems defined above do not depend upon asking for a solution
of size at most/at least k as opposed to one of size exactly k. A functional dependency stays
valid when adding arbitrary additional columns to the LHS. The same holds for unique
column combinations. Conversely, if a pair of relations admits an inclusion dependency of
size at least k, one can obtain one comprising exactly k columns by removing dispensable
attributes. In this paper, we consider all the decision problems to be parameterized by the
size of the respective solution. Thus, Unique, FD, FDfixed , IND and INDfixed refer to the
corresponding parameterized problems with parameter k.
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Figure 2 (a) An instance of Hitting Set and its equivalent instance of Unique. (b) An instance
r of problem FDfixed with fixed RHS A and the resulting instance r′ of problem FD. Note that the
functional dependency AB → D holds in r but not in r′.

3 Unique Column Combinations and Functional Dependencies

It is a well-known phenomenon that throughout the fields of database design and data
profiling theoreticians as well as practitioners are frequently confronted with the task of
finding an inclusion-minimal collection of items that has a non-empty intersection with each
member of a prescribed family of sets [1, 6, 16]. Thus, they aim to solve instances of the
so-called Hitting Set problem. In this section we show that this encounter is somewhat
inevitable in the sense that detecting uniques or functional dependencies is both exactly as
hard as finding a hitting set in terms of parameterized complexity.

Hitting Set is formally defined as follows. For a finite system of subsets Z ⊆ P(U) of
some finite ground set U , a set H ⊆ U is called hitting set iff for all Z ∈ Z, H ∩ Z 6= ∅. The
problem Hitting Set is to decide for a positive integer k whether there is a hitting set H
with |H| ≤ k. Hitting Set is NP-complete [15] and W [2]-complete with respect to k [8].
Hence, we can utilize it to show the W [2]-completeness of the dependency problems at hand.

More precisely, in this section we establish a (seemingly ascending) chain of problems via
parameterized reductions. This chain consists of problems Hitting Set, Unique, FDfixed ,
FD and Weighted 2-normalized Satisfiability in that order. As the first and last
problem are both W [2]-complete and thus FPT-equivalent, this in fact proves equivalence
(and hence W [2]-completeness) for the other problems as well. Due to space constraints, we
only sketch key ideas for the first three reductions (Hitting Set to Unique, Unique to
FDfixed and FDfixed to FD).

I Lemma 1. Hitting Set ≤FPT Unique ≤FPT FDfixed ≤FPT FD.

Proof (sketch). The first reduction regarding Hitting Set and Unique is a straight-
forward translation of the sets to hit into tuples of a relational database, cf. Figure 2.(a).
For the second reduction, the main idea is to add an extra column serving as a tuple ID and
to subsequently show that a column combination is unique just in case it is the LHS of a
functional dependency pointing to this ID. The last reduction is established by adding to a
given relation copies of an already present tuple, “ruling out” a different entry in each copy,
see Figure 2.(b). This then invalidates functional dependency with unwanted RHS. J

In the next lemma we prove that every instance of FD can be expressed by an equivalent
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Boolean CNF-formula, establishing the reduction from FD to Weighted 2-normalized
Satisfiability. This is the main result of this section.

I Lemma 2. FD ≤FPT Weighted 2-normalized Satisfiability.

Proof. Given a relation r (over some schema R), we derive a propositional formula that has
a satisfying truth assignment of weight k + 1 if and only if there is a non-trivial functional
dependency of size k that holds in r. The formula will be in CNF and hence 2-normalized.
We use two types of variables distinguished by their semantic purpose, namely, the elements
of VarR = {xA | A ∈ R} and Var′R = {x′A | A ∈ R}. A variable from VarR being set to true
denotes that the corresponding attribute appears on the LHS of the FD; for Var′R, this
denotes that the attribute is the RHS. Consequently, we want to ensure that any satisfying
assignment chooses exactly one variable from Var′R while the corresponding variable in VarR

is not chosen. We achieve this as follows. First, define some clause

cR =
∨

x′
A
∈Var′

R

x′A.

Then, for any two distinct attributes A 6= B, the clause

cA,B = ¬x′A ∨ ¬x′B .

Finally, we set, for every A ∈ R,

cA = ¬x′A ∨ ¬xA.

We note that the clauses cA,B and cA are only added to smooth the analysis, the correctness
of the reduction does not depend upon their presence. Clause cR however is essential. Now,
for any possible RHS A ∈ R and any two tuples ri, rj ∈ r with ri[A] 6= rj [A], let

cA,ri,rj = ¬x′A ∨
∨

B∈R\A
ri[B] 6=rj [B]

xB .

That is, clause cA,ri,rj
contains the negative literal of the variable from Var′R corresponding

to the RHS and the positive literal of any variable in VarR that corresponds to another
attribute on which ri and rj disagree. Intuitively speaking, clause cA,ri,rj

states that if A is
the RHS of a non-trivial FD holding in r, then the LHS has to contain at least one of the
attributes B 6= A such that ri[B] 6= rj [B]. We assemble the following Boolean formulas:

ϕRHS = cR ∧
∧

A,B∈R
A 6=B

cA,B ∧
∧

A∈R

cA;

as well as, for each possible RHS A ∈ R,

ϕA =
∧

ri,rj∈r
ri[A] 6=rj [A]

cA,ri,rj

and their conjunction

ϕLHS =
∧

A∈R

ϕA.
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At last, we take ϕFD = ϕLHS ∧ ϕRHS as the result of the reduction. In total, ϕFD has at
most |R|2 + |R| |r|2 clauses with at most |R| literals each and a representation of ϕFD is
computable in time polynomial in the input size.

Regarding the correctness of this reduction, recall that we claimed ϕFD to have a weight
k + 1 satisfying assignment just in case there is a non-trivial functional dependency of size k
in r. First assume we are given a satisfying assignment for subformula ϕRHS. This ensures
that exactly one variable x′A ∈ Var′R is set to true, which uniquely determines an attribute
A. The variables in VarR that are set to true determine a set X, i.e., B ∈ X iff xB is set to
true. Note that A /∈ X is enforced by clause cA. Thus, a satisfying assignment for ϕRHS
defines a non-trivial functional dependency X → A. We show that this FD holds in r if and
only if the assignment additionally fulfills subformula ϕLHS.

Suppose that X → A holds in r. Then all variables in Var′R are set to false, except x′A,
automatically satisfying clauses cB,ri,rj for all attributes B 6= A. It remains to show that
cA,ri,rj

is satisfied for every pair of tuples ri, rj ∈ r with ri[A] 6= rj [A]. Since X → A holds,
X includes, for every such pair, an attribute B such that ri[B] 6= rj [B]. Clause cA,ri,rj

in
turn comprises the literal xB, which is satisfied by above assignment. Conversely, assume
X → A fails in r. Then there is a pair of tuples ri, rj ∈ r such that ri[A] 6= rj [A] but
ri[X] = rj [X]. The clause cA,ri,rj does not contain any variables xB such that B ∈ X. As a
result, all literals in cA,ri,rj

for variables from VarR evaluate to false. Literal ¬x′A, however,
is false as well as A is the RHS. J

The reductions in Lemma 1 and 2, and the fact that Hitting Set and Weighted
2-normalized Satisfiability are both W [2]-complete yield the following theorem.

I Theorem 3. The problems Unique, FDfixed and FD are W [2]-complete.

We point out that our reductions have some further implications beyond the scope of
parameterized complexity. Our reduction from FDfixed to FD, is actually a polynomial-time
reduction and thus proves that FD is NP-hard. As the problem is also trivially contained
in NP, it is in fact NP-complete. This is not very surprising, but has only been proven
for the restricted case FDfixed before. More importantly, the parameterized reduction
from Hitting Set to Unique, also runs in polynomial time and establishes a one-to-one
correspondence between inclusion-wise minimal hitting sets and unique column combinations.
Thus, enumerating all uniques is at least as hard as enumerating all hitting sets. Using the
techniques presented in this section, it is not hard to extend this observation to the task
of enumerating all FDs with a fixed RHS or all FDs in general. Finding all hitting sets is
also known by the name Transversal Enumeration for hypergraphs and is notoriously
difficult [12]. Up until now, there is no output-polynomial algorithm known for this problem.
Hence, it is quite astonishing that the enumeration problems arising in data profiling can be
solved in reasonable time on practical data sets [1]. Regarding the opposite direction, we
would like to mention that there is a straight-forward polynomial reduction from FDfixed to
Hitting Set that additionally shows that enumerating FDs with fixed RHS or (and thus
uniques) is also at most as hard as enumerating hitting sets. It is still unknown, however,
whether this holds for arbitrary functional dependencies as well.

4 Inclusion Dependencies

In this section, we identify the detection of inclusion dependencies as one of the first natural
problems to be complete for the parameterized class W [3]. More precisely, we show that
both IND and INDfixed are FPT-equivalent to a W [3]-complete parameterized version of
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the satisfiability problem for certain Boolean formulas. Recall that a propositional formula
is 3-normalized if it is a conjunction of disjunctions of conjunctions of literals. A formula is
antimonotone if it only contains negative literals as, e.g., in the following expression

((¬a ∧ ¬b) ∨ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬c) ∨ (¬b ∧ ¬d)).

It is antimonotone, 3-normalized and admits a satisfying assignments of Hamming weight 0
and 1, but none of larger weight. The problem Weighted Antimonotone 3-normalized
Satisfiability (WA3NS) is to decide for a 3-normalized antimonotone formula ϕ and a
positive integer k whether ϕ has a weight k satisfying assignment. Although it seems to be
a unreasonably restricted case of Weighted 3-normalized Satisfiability, WA3NS is
W [3]-complete in its own right when parameterized by k [9, 10]. As all literals in WA3NS
are negative, every subset of a solution is a solution. Thus, asking for a solution of size
exactly k is again equivalent to asking for a solution of size at least k.

4.1 IND is in W [3]
In this subsection, we show that both variants of the IND problem are members of the
parameterized class W [3]. As a first step, we reduce the special case INDfixed to the
(seemingly) more general problem IND.

I Lemma 4. INDfixed ≤FPT IND.

Proof. Let r and s be two relations over the same schema R forming an instance of problem
INDfixed . We introduce a new tuple t− = (−A)A∈R, where each “−A” is a unique symbol not
used anywhere in the relations r or s. Note that (r, s) has an inclusion dependency of size k
with the identity as the fixed mapping if and only if (r ∪ {t−}, s ∪ {t−}) has one. It is easy
to see that (r ∪ {t−}, s ∪ {t−}) interpreted as an instance of IND (now without prescribed
mapping) has an inclusion dependency (X,σ) if and only if σ is the identity and X is an
inclusion dependency for (r, s), which implies the claim. J

To reduce IND to WA3NS we construct from the two relations an antimonotone formula
which has a weight k satisfying assignment if and only if the relations have an inclusion
dependency of the same size. For this, we use a correspondence between pairs of attributes
of the relational schemata and Boolean variables.

I Theorem 5. IND ≤FPT WA3NS.

Proof. Let R = {A1, . . . , A|R|} and S = {B1, . . . , B|S|} be two schemata. We introduce a
Boolean variable xm,n for each pair of attributes Am ∈ R and Bn ∈ S. We let VarP denote
the set of variables corresponding to a collection P ⊆ R× S of such pairs. Consider subsets
X ⊆ R and Y ⊆ S together with a bijection σ : X → Y . From this we can construct a truth
assignment by setting variable xm,n to true iff Am ∈ X and σ(Am) = Bn (implying Bn ∈ Y ).
The resulting assignment has weight |X| and the collection of all possible configurations (X,σ)
is uniquely described by VarR×S and the truth assignments obtained this way. Moreover,
these assignments all satisfy the following Boolean formula.

ϕmap =

 |R|∧
m=1

|S|−1∧
n=1

|S|∧
n′>n

(¬xm,n ∨ ¬xm,n′)

 ∧

 |S|∧
n=1

|R|−1∧
m=1

|R|∧
m′>m

(¬xm,n ∨ ¬xm′,n)

 .

The first half of ϕmap states that, for every pair of variables xm,n and xm,n′ such that n 6= n′, at
most one of them is set to true; the second half is satisfied if the same holds for all pairs xm,n
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and xm′,n such that m 6= m′. Conversely, given a satisfying assignment for ϕmap, we obtain
sets X = {Am | ∃ 1 ≤ n ≤ |S| : xm,n = true} and Y = {Bn | ∃ 1 ≤ m ≤ |R| : xm,n = true}
as well as a bijection σ : X → Y by setting σ(Am) = Bn iff xm,n is true. So ϕmap is exactly
fulfilled by the assignments described above.

We now formalize the requirement that (X,σ), for some set X ⊆ R, actually is an
inclusion dependency. First, assume that the relations r and s consist of a single tuple ri and
sj , respectively. We say a pair (Am, Bn) is forbidden for ri and sj if ri[Am] 6= sj [Bn]. Let
Fi,j be the set of all forbidden pairs. Then (X,σ) is an inclusion dependency if xm,n is set
to false for all pairs (Am, Bn) ∈ Fi,j . In terms of Boolean formulas, this is represented as

ϕi,j =
∧

x∈VarFi,j

¬x.

It follows that (X,σ) is an inclusion dependency if and only if the corresponding variable
assignment satisfies both ϕmap and ϕi,j .

Now suppose s has multiple tuples (while r is still considered to have only one). (X,σ) is
an inclusion dependency for (r, s) just in case it is an inclusion dependency for at least one
instance (r, {sj}), 1 ≤ j ≤ |s|. If also r has more than one tuple, then (X,σ) is an inclusion
dependency for (r, s) if it is one in each instance ({ri}, s), 1 ≤ i ≤ |r|. Thus, we obtain an
inclusion dependency if and only if ϕmap and the formula

ϕ =
|r|∧

i=1

|s|∨
j=1

ϕi,j

are simultaneously satisfied by the assignment corresponding to (X,σ).
The formula ϕ ∧ ϕmap is antimonotone and 3-normalized and a representation can be

computed in polynomial time. Moreover, by the above observation that any solution for
the sub-formula ϕmap that corresponds to (X,σ) has size |X|, the reduction preserves the
parameter. J

I Corollary 6. INDfixed and IND are both in class W [3].

4.2 IND is W [3]-hard
In the remainder of this section, we argue that the existence of weight k satisfying assignments
for 3-normalized antimonotone formulas can be decided by solving INDfixed instances. As a
result, we prove that both variants of problem IND are hard for the class W [3]. For this
reduction we make use of indicator functions, which we will define in a moment. First, we
would like to point out that in the following we interpret propositional formulas ϕ over n
variables as functions fϕ : {0, 1}n → {0, 1} in the obvious way. For an instance (r, s) of
INDfixed , we encode any subset X ⊆ R using its characteristic vector (of length |R|). Then
we define the indicator function f(r,s) : {0, 1}|R| → {0, 1}, where f(r,s)(X) = 1 iff X is an
inclusion dependency. We claim that for any antimonotone and 3-normalized formula ϕ, there
is an instance (r, s) of INDfixed computable in FPT-time such that fϕ = f(r,s). This clearly
gives an FPT-reduction from WA3NS to INDfixed . The remaining lemmas are dedicated to
proving this claim.

Recall that an antimonotone, 3-normalized formula is a conjunction of antimonotone
sub-formulas in DNF. Thus, the top level connective is a conjunction. Next we show how to
model this connective in terms of relational databases.
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I Lemma 7. Let (r(1), s(1)) and (r(2), s(2)) be two instances for the problem INDfixed (all
relations are over the same schema R) with indicator functions f (1) and f (2), respectively.
Then there exists an instance (r, s) (over R), having size |r| = |r(1)| + |r(2)| and |s| =
|s(1)|+ |s(2)|, with indicator function f(r,s) = f (1) ∧ f (2).

Proof. W.l.o.g. assume that the values appearing in r(1) and s(1) are disjoint from those
in r(2) and s(2). We straightforwardly construct instance (r, s) by defining r = r(1) ∪ r(2)

and s = s(1) ∪ s(2). Obviously, the construction matches the requirements on both the
computability and size of the resulting instance. It remains to show that f(r,s) = f (1) ∧ f (2).

Equivalently, we show that X is an inclusion dependency in (r, s) if and only if it is one
in both sub-instances (r(1), s(1)) and (r(2), s(2)). First, suppose the condition holds. Then,
for every tuple r(1)

i ∈ r(1), there exists a tuple s(1)
j ∈ s(1) with r(1)

i [X] = s
(1)
j [X], and the

same holds for r(2) and s(2). As all said tuples are also present in (r, s), X is an inclusion
dependency there as well. Conversely, suppose X is not an inclusion dependency in, say,
(r(1), s(1)). Then r(1) has a tuple r(1)

i such that r(1)
i disagrees on X with every s(1)

j ∈ s(1).
By construction, r(1)

i is also in r. Moreover, all tuples in s belong either to s(1) or have
completely disjoint values. This results in r(1)

i [X] 6= sj [X] for every sj ∈ s as desired. J

One could hope that there is a similar method treating disjunctions. However, we believe
that there is none that is both computable in FPT-time and compatible with a complementing
method for conjunctions (e.g. the one shown above). The reasoning is as follows: Negative
literals are easily expressible as instances of INDfixed using pairs of single-tuple relations.
Together with FPT-time procedures of constructing conjunctions as well as disjunctions one
could encode antimonotone Boolean formulas of arbitrary logical depth. According to the
Antimonotone Collaps Theorem by Downey and Fellows [8] this would render INDfixed to be
hard for all classes W [t]. As a consequence of Theorem 5 (in conjunction with Lemma 4) the
W -hierarchy would collapse to the level W [3]. That being said, there is a method specifically
tailored to antimonotone formulas in DNF.

I Lemma 8. Let ϕ be an antimonotone formula in DNF. Then there is an instance (r, s)
for problem INDfixed of size polynomial in |ϕ| such that fϕ = f(r,s).

Proof. Let x1, . . . , xn be the variables of formula ϕ. Define schema R = {A1, . . . , An} by
identifying each variable xi with attribute Ai. To build the instance (r, s) over the schema
R, we first describe the relation r and then construct s accordingly.

As ϕ is a DNF formula, it is the disjunction of conjunctive clauses c1, . . . , cm. For each
clause cj , we create the tuple rj by setting rj [Ai] = j if xi occurs in cj and rj [Ai] = 0
otherwise. For example, the clause c1 = (¬x1 ∧ ¬x2 ∧ ¬x3) in Figure 3 leads to the tuple
(1, 1, 1, 0, 0, 0). Relation s is obtained by first creating m copies of r. In the j-th copy we
then set the value for attribute Ai to the special symbol “−” whenever xi occurs in the
conjunctive clause cj ; see Figure 3 again. Note that |R| equals the number of variables of ϕ
and |r| is linear while |s| is quadratic in the number of conjunctive clauses in ϕ. In total, the
size of the instance (r, s) is polynomial in |ϕ|. It is left to show that fϕ = f(r,s).

First, suppose fϕ(X) = 1 for some binary vector X of length |R| or, equivalently, a
subset X ⊆ R. We show that f(r,s)(X) = 1. Necessarily, we have fcj

(X) = 1 for at least one
conjunctive clause cj and since the clause contains only negative literals, all of its variables
evaluate to 0. This is equivalent to X not containing any attributes corresponding to variables
occurring in cj . In the j-th copy of r in s the values were changed to “−” for exactly those
attributes. Thus, restriction s[X] comprises an exact copy of r[X], resulting in f(r,s)(X) = 1
by definition.
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ϕ = c1 ∨ c2 ∨ c3

c1 = (¬x1 ∧ ¬x2 ∧ ¬x3)
c2 = (¬x2 ∧ ¬x4 ∧ ¬x5)
c3 = (¬x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x6)

1 1 1 0 0 0
0 2 0 2 2 0
3 0 3 3 0 3

A1 A2 A3 A4 A5 A6

0 0 0
2 2 0
3 0 3

A1 A2 A3 A4 A5 A6

1 1 0
0 0 0
3 3 3

1 0
2 2
0 0

− − −
− − −
− − −
− − −
− − −
− − −

− − − −
− − − −
− − − −

Figure 3 Illustration of Lemma 8. Formula ϕ is on the left (with the three conjunctive clauses
c1, c2, c3), relation r in the center and relation s on the right.

For the opposite direction, suppose fϕ(X) = 0. Then, for each conjunctive clause, at
least one variable evaluates to 1 and, consequently, for each tuple in s, the value of at least
one attribute in X was replaced by “−”. As r does not contain the special symbol “−” at all,
X is not an inclusion dependency, i.e., f(r,s)(X) = 0. J

Lemma 8 in combination with Lemma 7 implies that, given an antimonotone 3-normalized
formula ϕ, we can build an instance (r, s) of problem INDfixed in FPT-time (even polynomial)
such that fϕ = f(r,s). Using the findings of Section 4.1, this proves the desired theorem.

I Theorem 9. INDfixed and IND are W [3]-complete.

5 Conclusion

We have determined the complexity of various dependency problems when parameterized by
the solution size. Our results imply that these problems do not admit FPT algorithms unless
the W -hierarchy at least partially collapses. This is unfortunate, the choice of parameter
appears to be very natural in the sense that the requirement of a small solution size is
regularly met in practice (Figure 1). Notwithstanding our results, one can still obtain FPT
algorithms by using other parameters. As an example, to solve the problem Unique for a
relation r over the schema R (and similar considerations hold for FD and IND), one can
consider all subsets of R and check for each whether it is a unique column combination. This
takes polynomial time for each of the 2|R| subsets. Thus, this leads to an FPT-algorithm
with |R| as parameter. This is of course not very satisfying, as assuming |R| to be small is a
much stronger assumption than assuming the solution size to be small.

Similarly, one could consider the maximum number d of attributes on which two tuples
in a relation r disagree. Then any pair of tuples yields up to d candidate attributes such
that at least one of these attributes must be contained in every unique column combination.
Thus, one can check whether there is a solution of size k to the problem Unique by using a
bounded search tree of height k with nodes of degree at most d. This gives an FPT algorithm
with respect to the parameter d + k. However, assuming that any two pairs in a relation
differ only on a few columns seems to be an unrealistic assumption for most data sets.

We leave it as an open problem for future research to figure out properties of realistic
instances that can explain and hopefully even improve the running times of practical methods
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for dependency detection in relational databases. For example, by designing a multivariate
algorithm with more than one parameter.
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