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ABSTRACT
We study the convergence behavior of (µ + λ)-archiving algo-
rithms. A (µ + λ)-archiving algorithm defines how to choose in
each generation µ children from µ parents and λ offspring together.
Archiving algorithms have to choose individuals online without
knowing future offspring. Previous studies assumed the offspring
generation to be best-case. We assume the initial population and
the offspring generation to be worst-case and use the competitive
ratio to measure how much smaller hypervolumes an archiving al-
gorithm finds due to not knowing the future in advance. We prove
that all archiving algorithms which increase the hypervolume in
each step (if they can) are only µ-competitive. We also present a
new archiving algorithm which is (4 + 2/µ)-competitive. This al-
gorithm not only achieves a constant competitive ratio, but is also
efficiently computable. Both properties provably do not hold for
the commonly used greedy archiving algorithms, for example those
used in SIBEA, SMS-EMOA, or the generational MO-CMA-ES.

Categories and Subject Descriptors
F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

Keywords
Multiobjective Optimization, Theory,
Performance Measures, Selection

1. INTRODUCTION
As many real-world optimization problems have multiple objec-

tives (like time vs. cost), they have in general no unique optimum,
but an often very large (or even infinite) set of incomparable so-
lutions which form the Pareto front. Multi-objective optimizers
deal with this by trying to find a small set of trade-off solutions
which approximate the Pareto front. They typically keep a bounded
archive of µ points (population) in order to capture the output of
the search process. In each round they generate λ new points (off-
spring) by mutation and crossover. The key question is then how
to select µ individuals from a larger population. We consider the
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so-called plus selection strategy, where the next population is cho-
sen out of the λ offspring and µ parents together. We call a specific
replacement strategy a (µ+ λ)-archiving algorithm which defines
how to choose a new population of µ children from the union of µ
parents and λ offspring.

The goal for hypervolume-based multi-objective evolutionary al-
gorithms (MOEAs) is to maximize the hypervolume indicator of
the output population, which is the volume of the dominated por-
tion of the objective space (see Section 2 for a formal definition).
For this type of MOEA, two archiving algorithms are known in the
literature:

• A locally optimal archiving algorithm returns a subset of
µ points from the given µ + λ points such that the hyper-
volume indicator is maximized.

• A greedy archiving algorithm deletes a point such that the
hypervolume of the remaining points is maximal. This is
repeated until only µ points are left.

We prove in this paper that all locally optimal and all greedy archiv-
ing algorithms are NP-hard (cf. Theorem 3.1 and Observation 2.8)
and therefore not efficiently computable unless P=NP. Many hy-
pervolume based algorithms like SIBEA [12], SMS-EMOA [1],
or the generational MO-CMA-ES [8] use greedy archiving algo-
rithms. As locally optimal algorithms have to choose the best out
of a large number,

(
µ+λ
µ

)
, of subsets of the given points, they are

generally considered to be computationally infeasible. Note that a
locally optimal archiving algorithm in general does not maximize
the hypervolume over multiple generations. However, it still seems
to have superior theoretical properties: It has long been known that
the resulting point sets of both algorithms differ [3], and that the
deleted hypervolume (the contribution of the deleted points) can
even be arbitrarily larger for greedy archiving algorithms compared
to locally optimal algorithms [5].

We want to study the intrinsic limitations of and the potential
provided by hypervolume-based archiving algorithms. Beyond the
smaller classes of locally optimal and greedy archiving algorithms
we thus also consider the following two natural classes of archiving
algorithms:

• A non-decreasing archiving algorithm chooses the popula-
tion of children such that the dominated hypervolume does
not decrease compared to the parent generation.

• An increasing archiving algorithm chooses the population
of children such that the dominated hypervolume increases
compared to the parent generation, unless there is no subset
of population and offspring with larger dominated hypervol-
ume.
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Both are intuitively desirable properties for hypervolume-based
archiving algorithms. We will see that there are algorithms which
are non-decreasing, but not increasing (cf. Algorithms 3 and 4).
Moreover, we prove that both classes significantly differ. There
are non-decreasing archiving algorithms which are better and faster
than all increasing archiving algorithms (see Sections 1.2 and 1.3
for more detailed statements).

To rigorously study the impact of archiving algorithms on con-
vergence, we cannot concentrate only on single iterations, but have
to consider multiple generations of populations. We model this
long run behavior with the initial population being worst-case in-
put to the archiving algorithm, followed by some kind of offspring
generation, and we then ask whether we arrive at a population with
large hypervolume. There are two natural assumptions on the off-
spring generation: best-case and worst-case. Each assumption cor-
responds to one of the following result sections.

1.1 Known results on effectiveness
All previous work in this setting [7, 10, 13] assumes a best-case

perspective on the offspring generation. This means that we ask
whether, for each population, there exists a sequence of offspring
sets such that the archiving algorithm ends up in a population max-
imizing the hypervolume. This was formalized by Bringmann and
Friedrich [7] with the notion of effectiveness: An archiving algo-
rithm is effective if there is a sequence of offspring such that the
algorithm reaches an optimum. Zitzler et al. [13] proved that all
non-decreasing (µ + 1)-archiving strategies are ineffective and all
locally optimal (µ + µ)-archiving strategies are effective. Bring-
mann and Friedrich [7] proved that all non-decreasing (µ + λ)-
archiving strategies are ineffective for λ < µ.

In order to measure how close to an optimal set the best reachable
sets for λ < µ are, we call an archiving algorithm α-approximate if
it can always reach a set with a hypervolume at least 1/α times the
largest possible hypervolume. Bringmann and Friedrich [7] proved
that no non-decreasing (µ + λ)-archiving algorithm can be bet-
ter than

(
1 + 0.1338

(
1
λ
− 1

µ

))
-approximate. This bound can be

tightened if the hypervolume is defined relative to a reference set
instead of a single reference point. For this more general defini-
tion of the hypervolume indicator, Ulrich and Thiele [10] showed a
lower bound of 1 + 1

2λ
for λ < µ.

On the other hand, Bringmann and Friedrich [7] showed
that every increasing (µ + λ)-archiving algorithm reaches a
2-approximation. Ulrich and Thiele [10] showed that every increas-
ing (µ+1)-archiving algorithm reaches a

(
2− 1

µ

)
-approximation.

More precisely, they showed that every non-decreasing (µ + λ)-
archiving algorithm reaches a

(
2 − λ−p

µ

)
-approximation, where

µ = q λ− p with p < λ and p, q ∈ N>0. Note that in these results
we omitted all summands and factors of arbitrarily small ε > 0.

1.2 New results on competitiveness
In this paper we assume a worst-case perspective on the off-

spring generation. This corresponds to the well-known concept
of competitive analysis. It has already been observed that archiv-
ing algorithms fit nicely in this classical theory developed for on-
line algorithms [2]. López-Ibáñez, Knowles, and Laumanns [9,
p. 59] suggested it as an open problem “to use competitive analysis
techniques from the field of online algorithms to obtain worst-case
bounds, in terms of a measure of ‘regret’ for archivers.”

We consider the initial population and offspring as worst-case
input and ask again how large a hypervolume we can get. In this
case, however, the adversary, who selects the offspring, can limit
the search to a very small part of the search space, and it is there-
fore impossible in general to reach the optimum hypervolume. This

motivates the following definition. We say an archiving algorithm
is α-competitive if for all initial populations and offspring it reaches
a hypervolume which is only a factor 1/α smaller than the hyper-
volume of the best µ points seen (cf. Definition 2.9).

On the negative side, we prove that all increasing archiving al-
gorithms are exactly µ-competitive (see Theorem 3.2 for the upper
bound and Theorem 3.3 for the lower bound). This means that
there is a sequence of offspring such that the hypervolume of the
µ individuals chosen iteratively by an algorithm which maximizes
the hypervolume in each step is µ times larger than the maximum
hypervolume achievable by another choice of µ individuals. This
result seems to suggest that the notion of competitiveness does not
help in comparing archiving algorithms, as all reasonable archiving
algorithms meet exactly the same bound.

However, on the positive side, we are able to design an archiv-
ing algorithm that is 4+2/µ-competitive (cf. Theorem 4.1), which
implies a constant competitive ratio compared to the unbounded
ratio of µ. It is a non-decreasing archiving algorithm which is not
increasing, i.e., there are populations and offspring where we stay
with the current population, although the offspring allows an in-
crease in hypervolume. This proves that significantly better com-
petitive ratios can be achieved for archiving algorithms which are
not increasing compared to the typically used increasing archiving
algorithms. The algorithm works as follows (for details see Algo-
rithm 3): It adds offspring one by one to the current population.
Considering the population and an offspring, we compute the hy-
pervolume for exchanging the offspring with any other point in the
population. We take the best exchange only if it increases the pop-
ulation’s hypervolume by at least a certain minimal factor.

1.3 New results on computational efficiency
We prove that all increasing archiving algorithms are NP-hard

to compute (cf. Theorem 3.1). This also implies that all com-
mon greedy archiving algorithms are not efficiently computable
unless P=NP (cf. Observation 2.8). This still allows archiving al-
gorithms which are not increasing to be efficiently computable. In-
deed, we also prove that a randomized variant of our aforemen-
tioned archiving algorithm can be made to run efficiently (cf. The-
orem 4.3). Note that this is in sharp contrast to the large set of
increasing archiving algorithms, which all have a worse competi-
tive ratio (cf. Theorem 3.3) and a worse computational complexity
(cf. Theorem 3.1) compared to the proposed new archiving algo-
rithm. The underlying reason why the new algorithm can beat all
increasing archiving algorithms is that approximating the hypervol-
ume is tractable [4] and for the new algorithm it is sufficient only to
approximate the hypervolume, as it checks only for constant factor
increases. Although the new archiving algorithm might not be used
as-is in any practical MOEAs, it is a proof of concept that there
are efficiently computable archiving algorithms which can beat the
competitive ratio of the thus far typically used locally optimal and
greedy archiving algorithms.

The outline is as follows. In Section 2 we introduce the basic
concepts and notation. Section 3 presents the tight bound on the
competitiveness of increasing archiving algorithms and proves that
all of them are NP-hard. We propose a non-decreasing algorithm
with constant competitiveness in Section 4, and show that it can
even be computed efficiently.

2. PRELIMINARIES
This section formally introduces all necessary notation. The two

most fundamental concepts are the hypervolume indicator (Sec-
tion 2.1) and archiving algorithms (Section 2.2). The combination
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of both, i.e. hypervolume-based archiving algorithms, are intro-
duced in Section 2.3. These first three parts of this section closely
follow [7]. Our new quality measure of competitiveness is then
defined in Section 2.4.

We consider maximization problems with vector-valued objec-
tive functions f : X → Rd, where X denotes an arbitrary search
space. The feasible points Y := f(X ) are called the objective
space. Consider the following abstract framework of a MOEA:

Algorithm 1: General (µ+ λ)-MOEA

1 P 0← initialize with µ individuals
2 for i← 1 to N do
3 Qi← generate λ offspring
4 P i← select µ individuals from P i−1 ∪Qi

We make no assumptions about the specific search space X .
We assume that both the initialization (cf. line 1 of Algorithm 1)
and the offspring generation (cf. line 3 of Algorithm 1) are worst-
case. Our main concern is how the population of children is chosen
(cf. line 4 of Algorithm 1). We will formally define and discuss
different archiving algorithms in Sections 2.2 and 2.3.

We use the terms archive and population synonymously for the
set of current solutions P i of Algorithm 1. In concrete MOEAs,
populations are subsets of the search space. As we do not want to
assume any structural properties of the search space, we abstract
from the search space and will only work on the objective space
Y ⊆ Rd in the remainder. We therefore also identify individuals
with points in the d-dimensional Euclidean space.

DEFINITION 2.1. A population P is a finite multiset and a sub-
set of Rd. If an objective spaceY ⊆ Rd is fixed, we require P ⊆ Y .
We call P a µ-population if |P | 6 µ.

2.1 Hypervolume indicator
The hypervolume indicator HYP(P ) [11] of a population P is

the volume of the union of regions of the objective space which
are dominated by P and bounded by a reference point R. Here
domination refers to the following dominance relation for points in
the objective space Y ⊆ Rd:

(x1, x2, . . . , xd) � (y1, y2, . . . , yd)

iff x1 6 y1, x2 6 y2, . . . , and xd 6 yd.

Formally, the hypervolume HYP(P ) of a population P is defined
as

HYP(P ) :=

∫
Rd

AP (x) dx

where the attainment function AP : Rd → {0, 1} is an indicator
function on the objective space that describes the space above the
reference point R which is dominated by P , that is, AP (x) = 1
if R � x and there is a p ∈ P such that x � p, and AP (x) = 0
otherwise.

We fix the reference point w.l.o.g. to R = 0d, since translations
do not change any of our results. This means that the reference
point is globally fixed and known to the archiving algorithm.

The aim of a hypervolume-based MOEA is finding a set P ∗ of
size µ which maximizes the hypervolume, that is,

HYP(P ∗) = maxHYPµ(Y)

where we define for all Y ⊂ Rd,

maxHYPµ(Y ) := sup
P⊆Y
|P |6µ

HYP(P ).

In the remainder of the paper, the set Y will often be finite. In these
cases, the supremum in the definition of maxHYPµ(Y ) becomes a
maximum. However, for infinite sets the supremum is necessary in
general.

The contribution of a point p to a population P is

CONP (p) := HYP(P )− HYP(P − p),

where we use the notation P − p for P \ {p}. We also use P + p
to shortcut P ∪ {p} throughout the paper.

Note that according to the definition of CONP (p), the contribut-
ing hypervolume of a dominated individual is zero.

2.2 Archiving algorithms
We now specify more formally how to choose the µ offsprings in

line 4 of Algorithm 1. For this, we consider the following general
framework of an archiving algorithm.

Algorithm 2: General (µ+ λ)-archiving algorithm
input : µ-population P , λ-population Q
output: µ-population P ′ with P ′ ⊆ P ∪Q

Note that any (µ + λ)-archiving algorithm is also a (µ + λ′)-
archiving algorithm for any λ′ < λ, as we then allow only a
subset of the inputs, namely with smaller offspring population Q.
We do not make any assumptions on the runtime of an archiving
algorithm. In fact, as hypervolume computation is #P-hard [4],
most hypervolume-based archiving algorithms are not computable
in polynomial time in the number of objectives d. We will use the
following notation to describe an archiving algorithm.

DEFINITION 2.2. A (µ+λ)-archiving algorithmA is a partial
mapping A : 2R

d

× 2R
d

7→ 2R
d

such that for a µ-population P
and a λ-population Q,A(P,Q) is a µ-population andA(P,Q) ⊆
P ∪Q.

For convenience, we sometimes drop the prefix (µ+ λ) and just
refer to an archiving algorithm (or even shorter: algorithm) with-
out specifying µ and λ. With this notation, we can now formally
describe the generation process of Algorithm 1 as follows.

DEFINITION 2.3. Let P 0 be a µ-population and Q1, . . . , QN

a sequence of λ-populations. Then

P i := A(P i−1, Qi) for all i = 1, . . . , N .

With slight abuse of notation we also set

A(P 0, Q1, . . . , Qi) := P i for all i = 1, . . . , N .

2.3 Hypervolume-based archiving algorithms
We now specify three classes of hypervolume-based archiving

algorithms. The first one only requires the archiving algorithms to
never return a solution with a smaller hypervolume:

DEFINITION 2.4. A (µ + λ)-archiving algorithm A is non-
decreasing, if for all inputs P and Q we have

HYP(A(P,Q)) > HYP(P ).
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All reasonable hypervolume-based archiving algorithms are non-
decreasing. However, the class also contains ineffective algorithms
like the algorithm which always returns P .

The second, slightly smaller class of hypervolume-based archiv-
ing algorithms is defined as follows.

DEFINITION 2.5. A (µ+ λ)-archiving algorithm A is increas-
ing, if it is non-decreasing and for all inputs P and Q with

maxHYPµ(P ∪Q) > HYP(P )

we have

HYP(A(P,Q)) > HYP(P ).

Moreover, we define locally optimal and greedy archiving algo-
rithms. Note that for both classes there are more than one archiving
algorithm fulfilling the respective definition, as ties may be broken
arbitrarily.

DEFINITION 2.6. A (µ + λ)-archiving algorithm A is locally
optimal, if for all inputs P and Q we have

HYP(A(P,Q)) = maxHYPµ(P ∪Q).

DEFINITION 2.7. A (µ + λ)-archiving algorithm A is greedy,
if there are functionsA′(P ) = P \ {argminp∈P CONP (p)} such
that for all inputs P and Q we have

A(P,Q) = A′ ◦ . . . ◦ A′︸ ︷︷ ︸
λ times

(P ∪Q).

The rest of the paper focuses on increasing and non-decreasing
archiving algorithms. Their relation to locally optimal and greedy
archiving algorithms is as follows.

OBSERVATION 2.8. Greedy (µ + 1)-archiving algorithms and
locally-optimal (µ+λ)-archiving algorithms are increasing archiv-
ing algorithms. Greedy (µ+ λ)-archiving algorithms are not nec-
essarily non-decreasing archiving algorithms for λ > 1.

This observation allows us to translate all forthcoming bounds
for increasing archiving algorithms to locally-optimal archiving al-
gorithms. Observation 2.8 also implies that all our negative re-
sults hold for greedy algorithms, since the computational hardness
(cf. Theorem 3.1) and the lower bound for the competitive ratio
(cf. Theorem 3.2) apply to the restriction of a greedy algorithm to
λ = 1 and, thus, also to greedy algorithms in general. There is
only one result for increasing algorithms which does not directly
apply to greedy algorithms, which is the upper bound for the com-
petitive ratio (cf. Theorem 3.3). As we are more interested in the
lower bound for the competitive ratio of greedy algorithms, we do
not prove an additional upper bound, but conjecture that the bound
is still tight for greedy archiving algorithms for arbitrary λ.

2.4 Competitiveness
We take a worst-case view on the initial population as well as

offspring generation, so we want to bound A(P 0, Q1, . . . , QN )
for any initial population P 0 and any offspring generations
Q1, . . . , QN . Observe that in this setting all results have to be in-
dependent of the specific objective space Y and we cannot hope to
reach maxHYPµ(Y) in general. The only aim can be achieving
a hypervolume as good as the maximum hypervolume among all
µ-populations which are subsets of the points we have seen so far,
that is,

maxHYPµ

(
P 0 ∪

N⋃
i=1

Qi
)
,

which can be arbitrarily smaller than maxHYPµ(Y).
This allows us to view archiving algorithms as an online problem

where the algorithm is fed with new offspring in a serial fashion
and has to decide which individual it should keep in the population
without knowing the entire input. To measure the ‘regret’ of an
archiving algorithm we define its competitive ratio α as follows.

DEFINITION 2.9. Let P 0 be a µ-population and Qi be λ-
populations for 1 6 i 6 N . Then I := (P 0, Q1, . . . , QN ) is
an instance. We also set

Obs(I) := P 0 ∪
N⋃
i=1

Qi.

An archiving algorithm A is α-competitive (for some α > 1) if
for all instances I = (P 0, Q1, . . . , QN ) we have

A(P 0, Q1, . . . , QN ) >
1

α
maxHYPµ(Obs(I)).

3. INCREASING ALGORITHMS
We first study the large class of increasing archiving algorithms,

which also includes locally optimal and greedy archiving algo-
rithms (cf. Observation 2.8). We prove that all increasing archiving
algorithms are NP-hard to compute (Section 3.1) and only achieve
a competitive ratio of µ (Section 3.2).

3.1 Increasing algorithms are inefficient
By reduction from the known hardness of computing a least con-

tributor of a set of points, we show the following theorem.

THEOREM 3.1. All increasing archiving algorithm are
NP-hard to compute (in µ+ d).

Proof. We reduce from the problem of computing a least contrib-
utor of a set of points: Given P ⊆ Rd of size n, compute a
point p ∈ P with CONP (p) minimal (see Section 2.1 for the defi-
nition). This problem is NP-hard according to [6].

Let P be an instance to the least contributor problem, and let A
be an efficiently computable increasing archiving algorithm. We
compute A(p) := P \ A(P − p, {p}) for each p ∈ P . This is
the point with which the archiving algorithm A exchanges p given
population P − p and offspring {p}.

Consider the graph with vertex set P and directed edges
(p,A(p)) for each p ∈ P . This graph may have self-loops. It
includes a directed cycle as a subgraph: Starting at any point and
always following the unique out-edge we will at some point see an
already visited point again; this means we traversed a cycle (after
some initial path).

Let (p0, . . . , pk−1) be such a cycle. It can have length k = 1,
if the cycle is a self-loop. Since A(pi) = pi+1 (with indices mod-
ulo k) and the archiving algorithm is increasing — thus also non-
decreasing — we have HYP(P − pi+1) > HYP(P − pi) for all
i ∈ {0, . . . , k − 1}. Hence, all HYP(P − pi) are equal; in par-
ticular HYP(P − p0) = HYP(P − A(p0)). Since the archiv-
ing algorithm is increasing, this means that no increase was possi-
ble given population P − p0 and offspring {p0}, and, hence, that
HYP(P − p0) = HYP(P ) − CONP (p0) is maximal among all
HYP(P − p). In other words, CONP (p0) is minimal and p0 is a
least contributor. The same holds for all other points p ∈ P that lie
on a directed cycle in the constructed graph. Thus, we can compute
a least contributor efficiently.
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3.2 Increasing algorithms are not competitive
It is easy to show an upper bound on the competitive ratio of µ

for a very large class of archiving algorithms. It applies to all non-
decreasing archiving algorithms with the following property: If a
single offspring point q ∈ Q alone dominates a larger hypervolume
than all points in the current population together, then the algorithm
should take this point q (or do something even better). Note that all
increasing — and thus also all locally optimal — archiving algo-
rithms satisfy this condition.

THEOREM 3.2. LetA be a non-decreasing archiving algorithm
such that for all inputs P and Q and points q ∈ Q we have

HYP(A(P,Q)) > HYP({q}).

Then A is µ-competitive.
In particular: All increasing (µ + λ)-archiving algorithms are

µ-competitive.

Proof. Let I := (P 0, Q1, . . . , QN ) be an instance and P ∗ ⊆
Obs(I) be a µ-population with HYP(P ∗) = maxHYPµ(Obs(I)).
We have

HYP(P ∗) 6
∑
p∈P∗

HYP({p}),

so there is a point p∗ ∈ P ∗ with

HYP({p∗}) > 1

|P |HYP(P ∗) >
1

µ
HYP(P ∗).

Either p∗ ∈ P 0 (in which case we set r := 0) or p∗ ∈
Qr for some r. Consider P i = A(P 0, Q1, . . . , Qi). We
have HYP(P r) > HYP({p∗}) by the extra assumption and
HYP(P r) 6 HYP(P r+1) 6 . . . 6 HYP(PN ) by A being non-
decreasing. Taken together these prove the claim.

Observe that even a very simple algorithm fulfills the premises
of the above theorem: It considers the offspring one-by-one and
replaces its current population P i with {q}, if the offspring point
q has greater hypervolume than P i. This requires only one costly
computation of HYP(P 0); all other populations consist of only a
single point in the objective space.

Perhaps surprisingly, no increasing archiving algorithm is better
than this simple algorithm in the worst case: For them, the bound
of Theorem 3.2 is tight.

THEOREM 3.3. No increasing (µ + λ)-archiving algorithm is
(µ− ε)-competitive for any ε > 0.

Proof. We construct an instance I = (P 0, Q1, . . . , QN ) as fol-
lows. For reals a,A > 0 to be chosen later and j ∈ {1, . . . , µ−1},
we set

pj = (A+ j a, (µ− j)a),

and B := (µ − 1)a. Moreover, for δ, ρ > 0, ρ < 1 to be chosen
later and i ∈ {0, . . . , N}, we set qi = (xi, yi) with

xi := Aρi,

yi := B +
1 + δ i

xi
.

These points are depicted in figure Figure 1. Setting P 0 :=
{q0, p1, . . . , pµ−1} and Qi := {qi} (or λ copies of qi), we get
an instance I .

We show that A(P i−1, Qi) = P i with P i =
{qi, p1, . . . , pµ−1} for A being an increasing archiving algo-
rithm. To do this, we have to show that the exchange of qi−1

y

x

qi’s

p1
p2
p3
p4

Figure 1: Illustration of the example used in the proof of Theo-
rem 3.3.

with qi is increases the hypervolume and is the only increasing
exchange. This means we have to show HYP(P i) > HYP(P i−1)
and HYP(P i−1) > HYP(P i−1+ qi−pj) for any 1 6 j 6 µ−1,
as those are the only possible exchanges. We have

HYP(P i) = HYP({p1, . . . , pµ−1}) + CONP i(qi),

where CONP i(qi) = xi(yi −B) = 1 + δi, and p1, . . . , pµ−1 are
collinear points, so that their hypervolume can be easily calculated,
yielding

HYP(P i) = AB +
(
µ
2

)
a2 + 1 + δ i. (1)

This gives HYP(P i) > HYP(P i−1) right away. Moreover, we
have

HYP(P i−1 + qi − pj)

= HYP(P i−1)− CONP i−1(pj) + CONP i−1+qi
(qi),

with CONP i−1(pj) > a2 and

CONP i−1+qi
(qi) = xi(yi − yi−1)

= 1 + δ i− ρ(1 + δ(i− 1))

= (1− ρ)(1 + δ(i− 1)) + δ.

Hence, for

a2 > (1− ρ)(1 + δ N) + δ, (2)

we have HYP(P i−1) > HYP(P i−1 + qi − pj) for any 1 6 j 6
µ− 1, and P i = A(P i−1, Qi) indeed holds.

Lastly, we need a lower bound on maxHYPµ(Obs(I)). For this
we require that µ divides N and consider P = {qiN/µ | 0 6
i 6 µ − 1}. If we consider instead P ′ = {q′iN/µ | 0 6 i 6
µ − 1}, with q′i = (xi, y

′
i), y

′
i = B + 1/xi, the hypervolume

decreases only, as we decrease the y-coordinates. Hence, we have
maxHYPµ(Obs(I)) > HYP(P ) > HYP(P ′). All that is left to
show is

HYP(P ′) > (µ− ε)HYP(PN ). (3)
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We compute HYP(P ′) to be

HYP(P ′) = HYP({q′0}) +
µ−1∑
i=1

xiN/µ(y
′
iN/µ − y′(i−1)N/µ)

= A(B + 1/A) +

µ−1∑
i=1

(1− ρN/µ)

= AB + µ− (µ− 1)ρN/µ. (4)

Then equation (3) is fulfilled (using equations (1) and (4)) if

AB + µ− (µ− 1)ρN/µ >

(µ− ε)
(
AB +

(
µ
2

)
a2 + 1 + δ N

)
.

Rearranging this, we get

ε >(µ− 1− ε)AB + (µ− ε)
(
µ
2

)
a2+

(µ− 1)ρN/µ + (µ− ε)δ N.

This inequality is fulfilled by setting A := ε/(4µB),
a2 := ε/(4µ3), δ := min{ε/(4µN), a2/2}, and N :=
µdlogρ(ε/(4µ))e. As we can assume ε 6 1, we have δ 6
min{1/N, a2/2}, so that requirement (2) can be simplified to
a2 > 2(1− ρ) + a2/2. We set ρ := 1− a2/4 to satisfy it. Noting
that there is no cyclic dependence in these definitions, we conclude
the proof.

In the proof of Theorem 3.3, we explicitly construct a bad
2-dimensional instance; see Figure 1 for an example with µ = 5.
The initial population consists of the points p1, . . . , p4 and the
rightmost point of the qi’s. Then every offspring consists of (λ
copies of) a qi slightly to the left and above the old one, so that any
increasing algorithm has to exchange the two points. This way, the
population will always consist of the points p1, . . . , p4 and one of
the qi’s, with the latter point being dragged to the left. The optimal
population, however, consists of 5 nicely spaced qi’s, which has
(by choosing the free parameters correctly) a hypervolume that is
nearly a factor µ larger than the hypervolume of the population of
the increasing algorithm.

4. NON-DECREASING ALGORITHMS
Section 3 showed that increasing archiving algorithms are

NP-hard to compute and only achieve an unbounded competitive
ratio of µ. We now present a non-decreasing (and not increas-
ing) archiving algorithm which achieves constant competitiveness
(cf. Section 4.1). Afterwards, we present a randomized variant of
the algorithm which is also efficiently computable (cf. Section 4.2).

4.1 A competitive non-decreasing algorithm
The results of Section 3.2 show that all increasing archiving al-

gorithms have a very bad competitive ratio, and, even worse, that
the notion of competitiveness is not suited for comparing different
increasing archiving algorithms: All of them have the same com-
petitiveness. This leaves open whether there are non-decreasing,
but not increasing archiving algorithms with, say, a constant com-
petitive ratio. This would imply that some archiving algorithm, that
is not locally optimal, achieves a better competitive ratio than all lo-
cally optimal archiving algorithms. We show that this is indeed the
case.

THEOREM 4.1. There is a (4 + 2/µ)-competitive non-
decreasing (µ+ 1)-archiving algorithm.

Note that we can easily build a (µ+λ)-archiving algorithm with
the same competitiveness from the (µ + 1)-archiving algorithm
guaranteed by Theorem 4.1 by feeding the λ offspring one by one
to the (µ+ 1)-archiving algorithm.

We do not prove Theorem 4.1 directly, as it follows from the
proof of Theorem 4.3 below. However, one such archiving algo-
rithm Acomp is given in Algorithm 3. This non-locally-optimal al-
gorithm improves on the locally optimal algorithms with respect to
the competitive ratio and hence is is better suited for hypervolume-
based selection in the worst case. Note that this does not imply that
this algorithm should be used in practice, as worst-case optimality
is usually not needed.

Algorithm 3: Competitive (µ+ 1)-archiving algorithm Acomp

input : µ-population P , offspring {q}
output: µ-population P ′

1 foreach p ∈ P + q do
2 Hp← HYP(P + q − p)
3 p′ ← argmax{Hp | p ∈ P}
4 if Hp′ > (1 + 1/µ)Hq then
5 return P + q − p′

6 else
7 return P

Unfortunately, the runtime ofAcomp cannot be polynomial in µ+
d (unless P = NP) as the exact hypervolume calculation in line 2
of Algorithm 3 is #P-hard [4]. However, this also holds for all
increasing archiving algorithms as shown in Theorem 3.1.

4.2 An efficient randomized competitive non-
decreasing archiving algorithm

We now propose a randomized variant of Acomp which improves
on all increasing algorithms not only with respect to the competi-
tive ratio, but also the runtime. It is a randomized algorithm which
meets the competitive ratio bound only with a certain high proba-
bility. Hence, we need to redefine competitiveness to include ran-
domized algorithms.

DEFINITION 4.2. Let α > 1 and p : N→ [0, 1]. A randomized
archiving algorithmA is α-competitive with probability p if for all
instances I = (P 0, Q1, . . . , QN ) we have

A(P 0, Q1, . . . , QN ) >
1

α
maxHYPµ(Obs(I))

with probability > p(N).

Our proposed algorithm Aeff is given in Algorithm 4. It takes
additional parameters ε, δ > 0 and is (4 + 2/µ + ε)-competitive
with probability p(N) = 1−Nδ.

The critical feature ofAeff is line 4. It makes use of the hypervol-
ume approximation scheme of Bringmann and Friedrich [4] which
computes with probability at least 1 − δ a (1 + ε)-approximation
of the hypervolume of a given set of µ points in Rd in time
O(log(1/δ)µd/ε2). It is clear from the hypervolume approxima-
tion algorithm used here thatAeff is efficiently computable, namely
with a run-time of at most O(log(µ/δ)µ4d/ε2). Note that we
aimed only for a polynomial runtime and did not try to optimize
the algorithm for a better runtime bound.

We can prove that Aeff is competitive. The following theorem
states our result.
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Algorithm 4: Randomized Efficient Competitive (µ + 1)-
archiving algorithm Aeff

input : µ-population P , offspring {q},
error bound ε, error probability δ

output: µ-population P ′

1 ε′← ε/104
2 c← 1 + 2ε′

3 foreach p ∈ P + q do
4 Hp← compute (1 + ε′/µ)-approximation of

HYP(P + q − p) with error probability δ/(µ+ 1)

5 p′ ← argmax{Hp | p ∈ P}
6 if Hp′ > (1 + c

µ
)Hq then

7 return P + q − p′

8 else
9 return P

THEOREM 4.3. Let 0 < ε 6 1. Algorithm Aeff is a ran-
domized (µ+1)-archiving algorithm which is non-decreasing and
(4 + 2/µ + ε)-competitive with probability p(N) = 1 − Nδ and
has a deterministic runtime polynomial in µ, λ, d, log(1/δ), and
1/ε.

Proof. Let I = (P 0, Q1, . . . , QN ) be an instance. Consider the
probability that every hypervolume approximation of Acomp on I
indeed lies in the specified bounds, i.e., we have

(1− ε′/µ)HYP(P + q− p) 6 Hp 6 (1+ ε′/µ)HYP(P + q− p)

for every computation of a Hp inAcomp. For a single call, this hap-
pens with probability at least 1− δ/(µ+1). Furthermore, we have
at most N(µ + 1) hypervolume approximations running Acomp on
I , as in every invocation of Acomp, at most µ+ 1 hypervolume ap-
proximations are computed. With the union bound, we arrive at a
probability of at least 1−Nδ that all the hypervolume approxima-
tions lie within the specified bounds.

Either we stay with the current population or the hypervolume
increases by a constant factor, in which case(

1 +
ε′

µ

)
HYP(P i) > Hp′

>

(
1 +

c

µ

)
Hq >

(
1− ε′

µ

)(
1 +

c

µ

)
HYP(P i−1).

For c = 1 + 2ε′ > 1, µ > 1 and ε′ 6 1/3, which is true by

assumption, we have
(
1− ε′

µ

)(
1 + c

µ

)
>
(
1 + ε′

µ

)
, implying

that the algorithm is non-decreasing.
We prove that Acomp is (4 + 2/µ + ε)-competitive if all the

hypervolume approximations lie in the specified bounds. To do
this, let P i = Acomp(P

i−1, Qi) for i = 1, . . . , N . Consider
P̂ :=

⋃N
i=0 P

i, the set of all points in Obs(I) that were taken
by Acomp at some point. Let P ∗ ⊆ Obs(I) be a µ-population with
HYP(P ∗) = maxHYPµ(Obs(I)). We have

maxHYPµ(Obs(I)) = HYP(P ∗) 6 HYP(P̂ ∪ P ∗)

6 HYP(P̂ ) +
∑

q∈P∗\P̂

CONP̂+q(q) (5)

To continue, we bound HYP(P̂ ) as well as the contribution of any
point q ∈ P ∗ \ P̂ to P̂ in terms of HYP(PN ). This will yield the
desired bound for HYP(PN ). We start with the latter.

Consider a point not chosen by the algorithm, q ∈ Obs(I) \ P̂ .
We have Qi = {q} for some 1 6 i 6 N . Let p̃ ∈ P i−1 + q with
CONP i−1+q(p̃) minimal among all p ∈ P i−1 + q. Then we have

CONP i−1+q(p̃) 6
1

µ+ 1

∑
p∈P i−1+q

CONP i−1+q(p)

6
1

µ+ 1
HYP(P i−1 + q)

=
1

µ+ 1

(
HYP(P i−1) + CONP i−1+q(q)

)
. (6)

Let p′ = argmax{Hp | p ∈ P i−1}, see Algorthm 4. The point q
was not taken by the algorithm, so we have

(1− ε′

µ
)HYP(P i−1 + q − p̃)

6 Hp̃ 6 Hp′ 6 (1 +
c

µ
)Hq

6 (1 +
c

µ
)(1 +

ε′

µ
)HYP(P i−1),

where the factors (1 ± ε′/µ) stem from the Hp being approx-
imations. Using HYP(P i−1 + q − p̃) = HYP(P i−1) +
CONP i−1+q(q) − CONP i−1+q(p̃), equation (6) and 1

1−ε′/µ 6

1 + 2ε′

µ
for ε′ 6 1/2, this can be simplified to

CONP i−1+q(q) 6 βHYP(P i−1),

where

β =
µ+ 1

µ

((
1 +

c

µ

)(
1 +

ε′

µ

)(
1 +

2ε′

µ

)
− 1

)
+

1

µ
.

As HYP(PN ) > HYP(P i−1) and P̂ ⊇ P i−1, this implies

CONP̂+q(q) 6 βHYP(PN ). (7)

Plugging in the definition of c = 1 + 2ε′, simplifying and roughly
bounding the number of terms involving ε′/µ together with their
coefficients, and using µ > 1, we get

β 6
2

µ
+

1

µ2
+ 64

ε′

µ
. (8)

Now we bound HYP(P̂ ). Consider I = {i | P i 6= P i−1, 1 6
i 6 N}, the indices where P i changed, and let pi be the unique
point in P i−1 \ P i, i.e., the point we deleted in round i ∈ I . Then
we have for i ∈ I and every p ∈ P i + pi(

1 +
ε′

µ

)
HYP(P i) > Hpi > Hp

>

(
1− ε′

µ

)
HYP(P i + pi − p).

Since HYP(P i + pi − p) = HYP(P i) + CONP i+pi(p
i) −

CONP i+pi(p), this is equivalent to

2ε′

µ

(
1− ε′

µ

)−1

HYP(P i) + CONP i+pi(p) > CONP i+pi(p
i).

Summing over all p ∈ P i + pi and using HYP(P ) >∑
p∈P CONP (p) we get

2ε′
(
1 +

1

µ

)(
1− ε′

µ

)−1

HYP(P i) + HYP(P i + pi)

> (µ+ 1)CONP i+pi(p
i),
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which yields, after substituting HYP(P i + pi) = HYP(P i) +
CONP i+pi(p

i) again,

CONP i+pi(p
i) 6 γHYP(P i),

with γ = 1
µ

(
1 + 2ε′

(
1 + 1

µ

)(
1− ε′

µ

)−1
)

. Now,

HYP(P̂ ) = HYP(PN ) +
∑
i∈I

CONPN∪...∪P i+pi(p
i)

6 HYP(PN ) +
∑
i∈I

CONP i+pi(p
i)

6 HYP(PN ) + γ
∑
i∈I

HYP(P i).

As we go to a new population only if we have an improve-
ment of a factor (1 + c/µ), but we have approximations, we get
δ ·HYP(P i) > HYP(P i−1) for i ∈ I and δ := (1+ c/µ)−1(1−
ε′/µ)−1(1 + ε′/µ), yielding

HYP(P̂ ) 6 HYP(PN )

(
1 + γ

N−1∑
i=0

δi
)

6 HYP(PN )

(
1 +

γ

1− δ

)
. (9)

Plugging in the definition of c = 1 + 2ε′, δ and γ, simple cal-
culations and rough estimations using µ > 1 and ε′ 6 1/6 show
that

γ

1− δ 6 1 +
1

µ
+ 40ε′. (10)

Now we can take equation (5), plug in equations (7) and (9), and
simplify using equations (8) and (10) to get

HYP(P ∗) 6 HYP(P̂ ) +
∑

q∈P∗\P̂

CONP̂+q(q)

6

(
1 +

γ

1− δ + µβ

)
HYP(PN )

6

(
4 +

2

µ
+ 104ε′

)
HYP(PN )

=

(
4 +

2

µ
+ ε

)
HYP(PN ).

Observe that by setting ε = 0, so that all hypervolume approx-
imations are in fact exact computations, Algorithm 4 becomes the
same as Algorithm 3. This implies that the proof of Theorem 4.3 is
a proof of Theorem 4.1, too.

The perhaps surprising probability bound is caused by the (nec-
essary) assumption that every call to the hypervolume approxima-
tion algorithm indeed returns a (1+ε′/µ)-approximation. The fac-
tor N in the probability can be easily canceled out by a sufficiently
small δ, as the runtime depends only logarithmically on 1/δ.

5. CONCLUSION
Hypervolume based MOEAs like SIBEA [12], SMS-EMOA [1],

and the generational MO-CMA-ES [8] use greedy archiving algo-
rithms. We have proven that such increasing archiving algorithms
are computationally inefficient, and achieve only an unbounded
competitive ratio of µ. In sharp contrast to this, we presented a non-
decreasing archiving algorithm which not only achieves a constant
competitive ratio of 4 + 2/µ, but is also efficiently computable.
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