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Abstract. The standard algorithm for fast generation of Erdős-Rényi
random graphs only works in the Real RAM model. The critical point
is the generation of geometric random variates Geo(p), for which there
is no algorithm that is both exact and efficient in any bounded precision
machine model. For a RAM model with word size w = Ω(log log(1/p)),
we show that this is possible and present an exact algorithm for sam-
pling Geo(p) in optimal expected time O(1 + log(1/p)/w). We also give
an exact algorithm for sampling min{n,Geo(p)} in optimal expected
time O(1 + log(min{1/p, n})/w). This yields a new exact algorithm for
sampling Erdős-Rényi and Chung-Lu random graphs of n vertices and
m (expected) edges in optimal expected runtime O(n + m) on a RAM
with word size w = Θ(log n).

1 Introduction

Random Graph Generation. A large fraction of empirical research on graph
algorithms is performed on random graphs. Random graph generation is also
commonly used for simulating networking protocols on the Internet topology
and the spread of epidemics (or rumors) on social networks (e.g. [16]) It is also
an important tool in real world applications such as detecting motifs in biological
networks (e.g. [21]). We focus on homogenous and inhomogenous random graphs
and consider Erdős-Rényi [9] and Chung-Lu graphs [5]. The key ingredient for
generating such graphs with n vertices faster than the obvious Θ(n2) algorithm
is an efficient algorithm for exact sampling of geometric random variates.

Efficient Random Variate Generation. Non-uniform random variates are
typically generated from random variates that are uniformly distributed on [0, 1].
With the introduction of Intel’s Ivy Bridge microarchitecture with built-in hard-
ware digital random number generation, we can assume that we have fast access
to a stream of high quality random bits. However, most non-uniform random
variate generation algorithms [8, 26] assume a Real RAM, which can manipu-
late real numbers. This assumption is highly problematic as real numbers are
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infinite objects and all physical computers can only handle finite portions of
these objects. Typical implementations, with e.g. double floating point preci-
sion, are efficient, but not exact (e.g. in C++11); that is, some outcomes might
not be reachable and others might become more likely than they should.

Exact Random Variate Generation. Knuth and Yao [18] initiated the study
of exact nonuniform random number generation. They discuss the power of var-
ious restricted machine models. Several authors [10, 11, 18] provided additional
results along these lines, but only presented efficient algorithms for single dis-
tributions. There also exist implementations of exact and efficient random num-
ber generators for exponential and normal distributions [15]. For parameterized
families of distributions such as the geometric distribution, one can study the
expected asymptotic runtime in the parameter. However, in this regard there
are no exact and efficient algorithms known on any bounded precision machine
model. For sampling Geo(p), the trivial algorithm of repeatedly sampling a coin
with Bernoulli distribution Ber(p) until it falls heads up has expected runtime
O(1/p), which is not efficient for p close to 0.

Exact and Efficient Random Variate Generation. Our aim is the design
of exact and efficient algorithms for random variate generation. We show that
this is possible in many cases and give a particularly fast algorithm for geometric
random variates. This allows exact and efficient generation of Erdős-Rényi and
Chung-Lu random graphs. It also allows exact and efficient generation of very
large non-uniform random variates (e.g. for cryptographic applications [13]),
which has been open so far.

Related Work on Random Graph Generation. There is a large body of
work on generating random regular graphs (e.g. [17]), graphs with a prescribed
degree distribution (e.g. [3]), and graphs with a prescribed joint degree distri-
bution (e.g. [23]). All these algorithms converge to the desired distribution for
n→∞. Note that this typically implies for finite n that only an approximation
of the true distribution is reached.

The most studied random graphmodel is certainly the Erdős-Rényi [9] random
graph G(n, p), where each edge of a graph of n vertices is present independently
and uniformly with probability p ∈ [0, 1]. Many experimental papers use algo-
rithms with runtime Θ(n2) to draw from G(n, p). The reason for this is probably
that most graph algorithm software libraries such as JUNG, LEDA, BGL, and
JDSL also do not contain efficient random graph generators. However, there are
several algorithms which can sample from G(n, p) in expected time O(m + n)
on a Real RAM, where m = Θ(pn2) is the expected number of edges [1, 20].
This is done by using the fact that in an ordered list of all Θ(n2) pairs of ver-
tices the distance between two consecutive edges is geometrically distributed.
The resulting distribution is not exact if the algorithm is run on a physical
computer, which can only handle bounded precision, as it ignores the bias intro-
duced by fixed-length number representations. The available implementation in
the library NetworkX [14] therefore also does not return the desired distribution
exactly. It is not obvious how to get an exact implementation even by using
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algebraic real numbers [19] and/or some high accuracy floating-point represen-
tation. The problem of sampling G(n, p) on a bounded precision model has been
studied by Blanca and Mihail [2]. They showed how to achieve an approximation
of the desired distribution efficiently. Our aim is an exact and efficient generation
on a bounded precision model instead.

Generating Random Geometric Distributions. As discussed above, all
previous algorithms to sample a geometric random variate which are efficient on
a Real RAM become inexact when implemented on a bounded precision machine.
We assume the more realistic model of a Word RAM with word size w that can
sample a random word in constant time; for a definition of the machine models
see Section 2. We first observe the following lower bound for any exact sampling
algorithm.

Theorem 1. On a RAM with word size w, any algorithm sampling a geometric
random variate Geo(p) with parameter p ∈ (0, 1) needs at least expected runtime
Ω(1 + log(1/p)/w).

Theorem 1 follows from Lemma 1, which shows that the expected output size
is Ω(log(1/p)) bits. To get a first upper bound we translate the well-known
inversion method (typically used on a Real RAM [8]) to our bounded precision
model by using multi-precision arithmetic, obtaining the following result.

Theorem 2. On a RAM with word size w = Ω(log log(1/p)), a geometric ran-
dom variate Geo(p) with parameter p ∈ (0, 1) can be sampled in expected runtime
O(1 + log(1/p) poly log log(1/p)/w).

To the best of our knowledge, this observation is not discussed in the literature
so far. However, as the following Theorem 3 is strictly stronger, we defer the
presentation of the inversion method and Theorem 2 to the full version of this
paper. It not only applies to geometric distributions, but to all distributions
where the inverse of the cumulative distribution is efficiently computable on a
Word RAM. The assumption on w is needed to handle pointers to an array as
large as the expected output size in constant time. This result is independent
of the rest of the paper and demonstrates that the classical inversion method
does not give an optimal runtime matching Theorem 1, since this algorithm, as
well as many other approaches, does not avoid taking logarithms. Note that it
is a long-standing open problem in analytic number theory and computational
complexity whether the logarithm can be computed in linear time.

Our aim is a Word RAM algorithm which returns the exact geometric distri-
bution in optimal runtime. In Section 3 we give a simple algorithm for this and
prove the following theorem. Note that our algorithm also works for bitstreams p,
see Section 2.

Theorem 3. On a RAM with word size w = Ω(log log(1/p)), a geometric ran-
dom variate Geo(p) with parameter p ∈ (0, 1) can be sampled in expected runtime
O(1 + log(1/p)/w), which is optimal.

Observe that, as a sample of a geometric random variate can be arbitrarily large,
the aforementioned sampling algorithm cannot work in bounded worst-case time
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or space. Also note that on a parallel machine with P Word RAM processors
the runtime decreases to O(1 + log(1/p)/(wP )).

Generating Bounded Random Geometric Distributions. In the full ver-
sion of this paper we extend this to sampling bounded geometric random distri-
butions Geo(p, n) = min{n,Geo(p)} and observe the following lower bound.

Theorem 4. On a RAM with word size w, any algorithm sampling a bounded
geometric random variate Geo(p, n) = min{n,Geo(p)} with parameters n ∈ N

and p ∈ (0, 1) needs at least expected runtime Ω(1 + log(min{1/p, n})/w).
We present an algorithm which achieves this optimal runtime bound and prove
the following theorem.

Theorem 5. On a RAM with word size w = Ω(log log(1/p)), a bounded geo-
metric random variate Geo(p, n) = min{n,Geo(p)} with parameters n ∈ N and
p ∈ (0, 1) can be sampled in expected runtime O(1+ log(min{1/p, n})/w), which
is optimal.

If p is a rational number with numerator and denominator fitting in O(1)
words, then this algorithm needs O(n) space in the worst case.

If p is a bitstream, we cannot bound the worst-case space usage of a sampling
algorithm for Geo(n, p) in general. However, if p is a rational with numerator and
denominator fitting in a constant number of words of the Word RAM, Theorem 5
shows that this is indeed possible.

Random Graph Generation. We believe our new exact and efficient sampling
algorithms for bounded and unbounded geometric distributions are of indepen-
dent interest, but also present in Section 4 one particular application, which is
the generation of random graphs. For generating graphs with n vertices it is
natural to assume w = Ω(log n).

Theorem 6. On a RAM with word size w = Ω(log n), the random graph G(n, p)
can be sampled in expected time Θ(n + m), where m = Θ(pn2) is the expected
number of edges. This is optimal if w = O(logn). If p is a rational number with
numerator and denominator fitting in O(1) words, then the worst-case space
complexity of the algorithm is asymptotically equivalent to the size of the output
graph, which is optimal.

A similar algorithm achieves optimal runtime for the more general Chung-Lu
random graphs G(n,W ) [5], generating a random graph with a given sequence
of expected degrees.

Theorem 7. Let W = (W1, . . . ,Wn) be rationals with common denominator,
where each numerator and the common denominator fit in O(1) words. Then on
a RAM with word size w = Ω(log n), the random graph G(n,W ) can be sampled
in expected time Θ(n + m), where m = Θ(

∑n
i=1 Wi) is the expected number of

edges. This is optimal if w = O(logn). The worst-case space complexity of the
algorithm is asymptotically equivalent to the size of the output graph, which is
optimal.
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Both theorems follow from plugging our algorithm for sampling geometric ran-
dom variables into the best algorithm known for sampling the respective graph
class.

Note that due to tight space constraints many proofs, in particular for Theo-
rems 2, 4, 5, and 7, are defered to the full version of this paper.

2 Preliminaries

Machine Models.We discuss two variants of random access machines (RAMs).
Both are abstract computational machine models with an arbitrary number of
registers that can be indirectly addressed. In the classic RAM, each register
can contain an arbitrarily large natural number N0 and all basic mathematical
functions can be performed in constant time.

The two models relevant for this paper are the Real RAM, which allows
computation even with real numbers, and the Word RAM, which only allows
computation with bounded precision. In addition to the standard definitions,
we assume that a uniform random number can be sampled in constant time.
As we are dealing with randomized algorithms and a sample of a geometric
random variate can be arbitrarily large, we also allow potentially unbounded
space usage1.

The Real RAM is the main model of computability in computational geome-
try and is also used in numerical analysis. Here, each register can contain a real
number in the mathematical sense. All basic mathematical functions including
the logarithm of a real number can be computed in constant time. The disad-
vantage of the model is that real numbers are infinite objects and all physical
computers can only handle finite portions of these objects.

The Word RAM is a more realistic model of computation. It is parameterized
by a parameter w which determines the word length. The registers are called
words and contain integers in the range {0, . . . , 2w − 1}. The execution of basic
arithmetic instructions on words takes constant time; our algorithms only need
constant time addition, subtraction and comparison, as well as constant time
generation of random words. Long integers are represented by a string of words.
Floating point numbers are represented by an exponent (a string of words of
some length k) and a mantissa (a string of words of some length �). Addition
and multiplication can then be done in time O(poly(�, k)) and with error 2−w�.
Note that the Word RAM offers an intrinsic parallelism where, in constant time,
an operation on w bits can be performed in parallel.

Random Graph Models. In the Erdős-Rényi [9] random graph model G(n, p),
each edge of an n vertex graph is independently present with probability p. This
yields a binomial degree distribution and approaches a Poisson distribution in the

1 We assume that accessing the i-th memory cell costs O(1) although it might make
more sense to assume cost proportional to the length of a pointer to i (which is
Θ(1 + log(i)/w)) or larger. However, our results remain valid as long as this cost is
O((2 − ε)i/2

w

) for some ε > 0.
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limit. As many real-world networks have power-law degree distributions, we also
study inhomogenous random graphs. We consider Chung-Lu [5] graphs G(n,W )
with n vertices and weights W = (W1,W2, . . . ,Wn) ∈ R

n
�0. In this model, an

edge between two vertices i and j is independently present with probability
pi,j := min{WiWj/

∑
k Wk, 1}. For sufficiently large graphs, the expected degree

of i converges to Wi. The related definitions of generalized random graph [25]
with pij = WiWj/(

∑
k Wk +WiWj) and Norros-Reittu random graphs [22] with

pi,j = 1 − exp(−WiWj/
∑

k Wk) can be handled in a similar way. However, we
will focus on Chung-Lu random graphs.

Probability Distributions. Let p ∈ (0, 1). The Bernoulli distribution Ber(p)
takes values in {0, 1} such that Pr[Ber(p) = 1] = 1 − Pr[Ber(p) = 0] = p. The
geometric distribution Geo(p) takes values in N0 such that for any i ∈ N0, we
have Pr[Geo(p) = i] = p(1 − p)i. For n ∈ N0, we define the bounded geometric
distribution Geo(p, n) to be min{n,Geo(p)}. This means that Geo(p, n) takes
values in {0, . . . , n} such that for any i ∈ N0, i < n, we have Pr[Geo(p, n) = i] =
p(1 − p)i, and Pr[Geo(p, n) = n] = (1 − p)n. The uniform distribution Uni[0, 1]
takes values in [0, 1] with uniform probability. For n ∈ N, we define the uniform
distribution Uni(n) to be the uniform distribution over {0, . . . , n− 1}.
Input Model. We assume the input p to be given in the following form: We
are given a number k ∈ N0 such that 2−k � p > c2−k for some fixed constant2

c > 0. Moreover, for any i ∈ N we are able to compute a number pi � 1 such
that |pi − 2kp| � 2−i. We can assume that pi has at most i + 1 bits (otherwise
take the first i+1 bits of pi+1, which are a 2−i-approximation of 2kp). Since we
assumed w = Ω(log log(1/p)), k fits into O(1) words; this resembles the usual
assumption that we can compute with numbers as large as the input/output size
in constant time. Furthermore, we want to assume that pi can be computed in
time poly(i). This means that p can be approximated efficiently. However, it is
sufficient even if the runtime is O((2−ε)i) for some constant ε > 0. All numbers
other than the input parameter p will be encoded as simple strings of words or
floating point numbers, as discussed in the paragraph “machine models”.

Notations. The base of all logarithms is 2. For integer division we use a div b :=
�a/b� for a, b ∈ Z. We typically use xi to denote the i-th bit (approximation) of
x. We denote the set {1, . . . , n} by [n].

3 Sampling Geometric Random Variates

In this section we show a Word RAM algorithm for generating a geometric ran-
dom variate Geo(p) in optimal expected runtime. We assume that the parame-
ter p is given by a bitstream, i.e., we are given k ∈ N0 and can approximate p∗
such that p = 2−kp∗ and c < p∗ � 1 for some c > 0. Approximating p∗ with pre-
cision i needs time O((2− ε)i) for some ε > 0. We first prove that the expected

2 One could set c = 1/2, but our results hold more generally, in the case where we
cannot compute such a good approximation of p.
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output size is Θ(log(1/p)), which gives a lower bound of Ω(1 + log(1/p)/w) for
the expected runtime of any algorithm sampling Geo(p) on the Word RAM as
(at most) w bits can be processed in parallel.

Lemma 1. For any p ∈ (0, 1), we have E[log(1+Geo(p))] = Θ(log(1/p)), where
the lower bound holds for 1/p large enough.

We now present an algorithm achieving this optimal expected runtime. The main
trick is that we split up Geo(p) into Geo(p) div 2k and Geo(p)mod 2k. It is easy
to see that both parts are independent random variables. Now, Geo(p) div 2k has
constant expected value, so we can iteratively check whether it equals 0, 1, 2, . . ..
On the other hand, Geo(p)mod 2k is sufficiently well approximated by the uni-
form distribution over {0, . . . , 2k−1}; the rejection method suffices for fast sam-
pling. These ideas are brought together in Algorithm 1.

Algorithm 1. GenGeo(p) samples Geo(p) given a bitstream p = 2−kp∗.
D ← 0
while Ber((1− p)2

k

) do
D ← D + 1

repeat

M
lazy←−− Uni(2k)

until Ber((1 − p)M )
fill up M with random bits
return 2kD +M

Here, D represents Geo(p) div 2k, initialized to 0. It is increased by 1 as long

as a Bernoulli random variate Ber((1− p)2
k

) turns out to be 1. Then M , corre-
sponding to Geo(p)mod 2k, is chosen uniformly from the interval {0, . . . , 2k−1},
but rejected with probability (1 − p)M . We sample M lazily, i.e., a bit of M is
sampled only if needed by the test Ber((1− p)M ). After we leave the loop, M is
filled up with random bits, so that we return the same value as if we had sam-
pled M completely inside of the second loop. The result is, naturally, 2kD+M .

We will next discuss correctness of this algorithm, describe the details of how
to implement it efficiently, and analyze its runtime. We postpone the issue of
how to sample Ber((1− p)n) to the end of this section. For the moment we will
just assume that this can be done in expected constant time, looking at the first
expected constant many bits of p and n.

Correctness. Let n � 0. The probability of outputting n = 2kD + M should
be p(1− p)n, i.e., it should be proportional to (1− p)n. Following the algorithm
step by step we see that the probability is

(
(1− p)2

k)D · (1− (1− p)2
k)

︸ ︷︷ ︸
first loop

·
∑

t�0

(

1−
2k−1∑

i=0

2−k(1− p)i
)t

2−k(1− p)M

︸ ︷︷ ︸
second loop

,
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where t is the number of iterations of the second loop; note that 2−k(1 − p)i

is the probability of outputting i in the first iteration of the second loop, so

that
∑2k−1

i=0 2−k(1 − p)i is the probability of leaving the second loop after the
first iteration. Collecting the factors dependent on D and M we see that this

probability is proportional to (1 − p)2
kD+M = (1 − p)n, showing correctness of

the algorithm.

Runtime. We show that the expected runtime of Algorithm 1 is O(1 +
log(1/p)/w). Again, assume that we can sample Ber((1 − p)n) in expected con-
stant time. By the last section, incrementing the counter D can be done in
amortized constant time, and we only need an expected constant number of bits
of M during the second loop, after which we fill up M with random bits in
time O(1 + log(1/p)/w). Hence, if we show that the two loops run in expected
constant time, then Algorithm 1 runs in expected time O(1 + log(1/p)/w).

We consider the probabilities of dropping out of the two loops. Since 2−k �
p > c2−k, for the first loop this is

1− (1− p)2
k � 1− (1 − p)c/p � 1− e−c, (1)

so we have constant probability to drop out of this loop in every iteration.
Moreover, the second loop terminates immediately if k = 0; otherwise we have

(1 − p)M � (1− p)2
k � (1− 2−k)2

k � (1− 1/2)2 = 1/4, (2)

so for the second loop we also have constant probability of dropping out.
To show that each loop runs in expected constant time, let T be a random

variable denoting the number of iterations of the loop; note that E[T ] = O(1),
since the probability of dropping out of each loop is Ω(1). Furthermore, let Xi

be the runtime of the i-th iteration of the loop; note that by assumption we can
sample Ber((1 − p)n) in expected constant time, so that E[Xi | T � i] = O(1).
The total runtime of the loop is X1 + . . . + XT . Thus, the following lemma
shows that the expected runtime of the loop is O(1). This finishes the proof of
Theorem 3, aside from sampling Ber((1 − p)n).

Lemma 2. Let T be a random variable with values in N0 and Xi, i ∈ N, be
random variables with values in R; we assume no independence. Let α ∈ R with
E[Xi | T � i] � α for all i ∈ N. Then we have E[X1 + . . .+XT ] � α · E[T ].
We remark that the above lemma is an easy special case of Wald’s equation.

Note that the only points where this algorithm is using the Word RAM par-
allelism are when we fill up M and when we compute with exponents. The
generation of Ber((1 − p)n), discussed in the remainder of this section, will use
Word RAM parallelism only for working with exponents. The filling of M can
be done in time O(1 + log(1/p)/w) as we assumed that we can generate ran-
dom words in unit time. Also note that given P processors, each one capable
of performing Word RAM operations, we can trivially further parallelize this

algorithm to run in expected time O(1 + log(1/p)
wP

)
.
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Sampling Ber((1−p)n). It is left to show how to sample a Bernoulli random
variable with parameter (1 − p)n. We can use the fact that we know k with
2−k � p > c2−k and can approximate 2kp by pi, and that n ∈ N, n � 2k. Note
that we can easily get an approximation ni of n of the form |2−kn − ni| � 2−i

in the situation of Algorithm 1: In the first loop we have n = 2k, then simply
pick ni = 1; in the second loop n = M is uniform in {0, . . . , 2k − 1}, so that we
get ni by determining (i.e. flipping) the highest i bits of n. In this situation we
can show the following lemma.

Lemma 3. Given bitstream p with 2−k � p = Ω(2−k), for n = 2k or for
uniformly random n in {0, . . . , 2k − 1} we can sample Ber((1− p)n) in expected
constant time.

In the full version of this paper we discuss a method to sample Ber(q) in expected
constant time which is closely related to Flajolet and Saheb [10].

Lemma 4. A Bernoulli random variate Ber(q) with parameter q ∈ (0, 1) (given
as a bitstream) can be sampled in constant expected runtime on a Word RAM.

The only thing we need to efficiently sample Ber(q) is to be able to com-
pute an approximation qi of q with |q − qi| � 2−i in time O((2 − ε)i). To
get such an approximation for (1 − p)n, we make use of the binomial theorem

(1 − p)n =
∑n

j=0

(
n
j

)
(−p)j . Noting that

(
n
j

)
� nj

j! and n � 1/p, we see that the

j-th summand is absolutely bounded by 1/j!. Moreover, the absolute value of
the summands is monotonically decreasing in j, and their sign is (−1)j , implying∣
∣∑n

j=i+2

(
n
j

)
(−p)j∣∣ � 1/(i + 2)! � 2−i−1. Thus, by summing up only the first

i+ 2 summands we get a good approximation of (1− p)n.
Moreover, we have

i+1∑

j=0

(
n

j

)

(−p)j = 1

(i+ 1)!

i+1∑

j=0

(−p)j
( i+1∏

h=j+1

h

) j−1∏

h=0

(n− h). (3)

We will compute the right-hand side of this with working precision r. This means
that we work with floating point numbers, with an exact exponent encoded by
a string of words, and a mantissa which is a string of �r/w	 words. We get p
and n up to working precision r by plugging in 2−kpr and 2knr. Then we calcu-
late the numerator and denominator of the right-hand side independently with
working precision r. Note that adding or multiplying the floating point num-
bers takes time O(poly(r)) for adding/multiplying the mantissas (even using
the school method for multiplication is fine for this), and O(1 + log(i)) for sub-
tracting/adding the exponents, as all exponents in equation (3) are absolutely
bounded by O(poly(i) · k) and k fits in O(1) words.

Regarding runtime, noting that there are O(poly(i)) operations to carry out
in computing the right-hand side of equation (3), we see that we can compute
the latter with working precision r in time O(poly(r, i)). If we choose r large
enough so that this yields an approximation of equation (3) with absolute error
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at most 2−i−1, then combined with the error analysis from using only the first
i + 2 terms, we get a runtime of O(poly(r, i)) to compute an approximation of
(1−p)n with absolute error 2−i. Now, as long as we can choose r = poly(i), this
runtime is small enough to use Lemma 4, since we only needed an approximation
of (1−p)n with absolute error 2−i in time O((2−ε)i) for some ε > 0. Under this
assumption on r, we are done proving Lemma 3. The following lemma shows
that r = poly(i) is indeed sufficient.

Lemma 5. The absolute error of computing equation (3) with working precision
r = i+ α(1 + log(i)) is at most 2−i−1, for a large enough constant α.

4 Generating Random Graphs

In this section we show that Erdős-Rényi and Chung-Lu random graphs can be
efficiently generated. For this we simply take the efficient generation on Real
RAMs from [1, 20] and replace the generation of bounded geometric variables
by our algorithm from the last section. In the following we discuss why this is
sufficient and leads to the runtimes claimed in Theorems 6 and 7.

Consider the original efficient generation algorithm of Erdős-Rényi random
graphs described in [1], which is essentially the following. For each vertex u ∈ [n]
we want to sample its neighbors v ∈ [u−1] in decreasing order. Defining v0 := u,
the first neighbor v1 of u is distributed as v1 ∼ v0 − 1 − Geo(p, v0 − 1), where
the event v1 = 0 represents that u has no neighbor. Then the next neighbor is
distributed as v2 ∼ v1 − 1 − Geo(p, v1 − 1) and so on. Sampling the graph in
this way, we use m+ n bounded geometric variables, where m is the number of
edges in the final graph (which is a random variable).

In this algorithm we have to cope with indices of vertices, thus, it is natural to
assume w = Ω(log n). Under this assumption, all single operations of the original
algorithm can be performed in worst-case constant time on a Word RAM, except
for the generation of bounded geometric variables Geo(p, k), with k � n. The
latter, however, can be done in expected time O(1+log(min{n, 1/p})/w) = O(1)
using our algorithm from Theorem 5. Hence, the expected runtime of the mod-
ified algorithm (with replaced sampling of bounded geometric variables) should
be the same as that of the original algorithm. To prove this, consider the run-
time the modified algorithm spends on sampling bounded geometric variables.
This random variable can be written as X1 + . . . + XT , where T is a random
variable denoting the number of bounded geometric variables sampled by the
algorithm, and Xi is the time spent on sampling the i-th such variable. Note
that E[Xi | T � i] = O(1). Thus, by Lemma 2 we can bound E[X1 + . . .+XT ]
by O(E[T ]). Since the original algorithm spends time Ω(T ), the total expected
runtime of the modified algorithm is asymptotically the same as the expected
runtime of the original algorithm, namely O(n+ pn2). This runtime is optimal,
as writing down a graph takes time Ω(n+m) (each index needs Θ(1) words; this
depends, however, on the representation of the graph). Noting that the space
requirements of the algorithm are met by Theorem 5, this proves Theorem 6.
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A similar result applies to the more general Chung-Lu random graphs
G(n,W ). Again we assume w = Ω(log n). Let us further assume, for simplic-
ity, that all given weights Wu, u ∈ V are rational numbers with the same
denominator, with each numerator and the common denominator fitting in
O(1) words. In this case, the sum S =

∑
u∈V Wu has the same denomi-

nator as all Wu and numerator bounded by n times the numerator of the
largest Wu. Since w = Ω(logn), the numerator of S fits in O(1) more words
than used for the largest Wu. Hence, numerator and denominator of S fit in
O(1) words and can be computed in O(n) time. Moreover, the edge probabili-
ties pu,v = min{WuWv/S, 1} are also rationals with numerator and denominator
fitting in O(1) words that can be computed in constant time if S is available.

Carefully examining the efficient sampling algorithm for Chung-Lu random
graphs, Algorithm 2 of Miller and Hagberg [20], we see that now every step can
be performed in the same deterministic time bound as on a Real RAM, except
for the generation of bounded geometric variables and Bernoulli variables. Note
that for any p ∈ (0, 1) we have Ber(p) ∼ Geo(1− p, 1), so Theorem 5 shows that
the bounded geometric as well as the Bernoulli random variables can be sampled
in expected constant time and bounded space (for w = Ω(log n)). Thus, we can
bound the expected runtime of the modified generation for Chung-Lu graphs
analogously to the Erdős-Rényi case, proving Theorem 7.

5 Conclusions and Future Work

We have presented new exact algorithms which can sample Geo(p) and
min{n,Geo(p)} in optimal time and space on a Word RAM. It remains open to
find similar algorithms for other non-uniform random variates besides exponen-
tial and normal distributions. Moreover, it would be interesting to see whether
our theoretically optimal algorithms are also practical, e.g., for generating very
large geometric random variates for cryptographic applications [13].

Regarding our new exact algorithm for sampling Erdős-Rényi and Chung-Lu
random graphs in optimal time and space on a Word RAM, we believe that
similar results can be proven for the more general case where the weights Wu

are given as bitstreams.
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