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Many state-of-the-art evolutionary vector optimization algorithms compute the contribut-
ing hypervolume for ranking candidate solutions. However, with an increasing number of
objectives, calculating the volumes becomes intractable. Therefore, although hypervolume-
based algorithms are often the method of choice for bi-criteria optimization, they are
regarded as not suitable for many-objective optimization. Recently, Monte Carlo meth-
ods have been derived and analyzed for approximating the contributing hypervolume.
Turning theory into practice, we employ these results in the ranking procedure of the
multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) as an exam-
ple of a state-of-the-art method for vector optimization. It is empirically shown that the
approximation does not impair the quality of the obtained solutions given a budget of ob-
jective function evaluations, while considerably reducing the computation time in the case
of multiple objectives. These results are obtained on common benchmark functions as well
as on two design optimization tasks. Thus, employing Monte Carlo approximations makes
hypervolume-based algorithms applicable to many-objective optimization.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multi-objective optimization, also known as multi-criteria or vector optimization, is the basis of multiple criteria decision
making [19,22,32,33]. It is concerned with the optimization of vector-valued objective functions. The goal is to find or to
approximate the set of Pareto-optimal solutions. A solution is Pareto-optimal if it cannot be improved in one objective
without getting worse in another one. In recent years, it has become apparent that stochastic, population-based search
algorithms such as evolutionary computing techniques are particularly well suited for solving vector optimization problems
(e.g., see [15,16]).

Multi-objective evolutionary algorithms (MOEAs) have become broadly accepted methods in multi-criteria decision mak-
ing and multiple criteria mathematical programming. It is known that the performance of MOEAs tends to deteriorate
with an increasing number of objectives [14]. This is a general problem of vector optimization algorithms. For few ob-
jectives, MOEAs relying on the contributing hypervolume as the (second-level) sorting criterion are the methods of choice.
These include the evolution strategy with probabilistic mutation for multi-objective optimization (ESP, [26]), the multi-objective
covariance matrix adaptation evolution strategy (MO-CMA-ES, [27,28,34]), the SMS-EMOA [4], and variants of the indicator-
based evolutionary algorithm (IBEA, [41]). Despite the progress in developing algorithms for hypervolume computation
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(e.g., [3,6,7,10,21,38,40]), the computational complexity of calculating the contributing hypervolume prevents the broad
application of these powerful MOEAs to objective functions with many (say, more than four) objectives.

Recently, several approximation algorithms for determining the least hypervolume contributor of a given Pareto-front ap-
proximation have been presented, for example, in [8,11] or as part of the HypE MOEA [2]. Because of the good performance
of HypE and encouraged by a preliminary study [36], we hypothesize that using such an approximation instead of the exact
contributing hypervolume will make the aforementioned MOEAs applicable to problems with many objectives and that the
resulting algorithms will push the boundaries of MOEAs for many-objective optimization.

In theory, the approximation allows for the application of hypervolume-based MOEAs to optimization problems with an
arbitrary number of objectives. While there exist comparisons of approximation-based algorithms with other MOEAs [2],
the effects of replacing the exact hypervolume calculation with an approximation algorithm on the overall performance of
MOEAs have not been investigated in isolation. Apart from [36], there has been no empirical comparison of state-of-the-
art MOEAs in which the exact hypervolume computation has been replaced by an approximation while fixing the other
components of the algorithm.

Against this background, we employ the approximation within the steady-state MO-CMA-ES while all other components
are kept fixed to empirically investigate whether the Monte Carlo approximation is actually useful in practice. In our exper-
iments, using approximations indeed considerably reduced the computation time in the case of multiple objectives without
impairing the quality of the obtained solutions.

The remainder of the document is structured as follows. The next section introduces the problem of determining the least
hypervolume contributor. We briefly review results on Monte Carlo approximation of the least hypervolume contributor as
well as the exact hypervolume algorithm. Then, we present our empirical evaluation before concluding with the results of
our experiments and suggestions for future work.

2. Vector optimization and the least hypervolume contributor

We consider multi-objective optimization problems of the form

�f : X →Rm, �f (x) �→ (
f1(x), . . . , fm(x)

)
,

where X denotes the search space of the optimization problem and m refers to the number of objectives. Without loss of
generality, we assume that all objectives are to be minimized. The number of objectives of all considered test problems
is m � 3. Pareto-dominance is the fundamental concept for comparing candidate solutions of a multi-objective optimization
problem. The candidate solution x′ weakly dominates x and we write x′ � x if

∀i ∈ {1, . . . ,m}: f i
(
x′)� f i(x).

The solution x′ strictly dominates x and we write x′ ≺ x if additionally

∃ j ∈ {1, . . . ,m}: f j
(
x′) < f j(x)

hold.
Using the notion of dominance, the goal of multi-objective optimization can be defined as finding or approximating the

set

X ′ = {
x ∈ X

∣∣ �x′ ∈ X: x′ ≺ x
} ⊆ X,

which is called the Pareto-optimal set. The image of X ′ under �f is referred to as the corresponding Pareto-optimal front.
The concept of dominance can be extended to sets. Let A and B be sets of candidate solutions. Then A weakly dominates

B and we write A � B if every element in B is weakly dominated by at least one element in A.

2.1. Evolutionary vector optimization

Evolutionary algorithms (EAs, [20]) are iterative direct search heuristics that maintain a set of μ candidate solutions,
the so-called parent population. In each iteration, λ new offspring solutions are generated. Then a new parent population
is assembled from both the offspring and the former parent population. Candidate solutions with better objective function
values are preferentially selected. In the elitist EA considered in this study, the parent population of the next generation
is formed by the best μ of the new solutions and their parents. This requires sorting the solutions. However, the Pareto-
dominance relation does not establish a total order. Therefore, incomparable candidate solutions need to be sorted by a
so-called second-level sorting criterion. Given two incomparable individuals a and b (i.e. neither a � b nor b � a holds) and a
Pareto front F , the second-level sorting criterion determines whether a or b is more valuable in the context of F (cf. [41]).
The contributing hypervolume is one of the most popular second-level sorting criteria due to its attractive theoretical prop-
erties, and it is deployed in most recent multi-objective evolutionary algorithms.
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2.2. The contributing hypervolume

The hypervolume measure or S-metric (see [42]) of a population A is the volume of the union of regions of the objective
space which are dominated by A and bounded by some appropriately chosen reference point �r ∈Rm , that is,

HYP(A) := VOL

( ⋃
a∈A

[
f1(a), r1

] × · · · × [
fm(a), rm

])
,

with VOL(·) being the Lebesgue measure. One of the unique features of the hypervolume indicator is that it is, up to
weighting objectives, the only known indicator which is strictly Pareto compliant [43], that is, given two sets A and B
the indicator values A higher than B if A dominates B . It has further been shown by Bringmann and Friedrich [13] that
the worst-case approximation factor of all possible Pareto fronts obtained by any hypervolume-optimal set of fixed size μ
is asymptotically equal to the best worst-case approximation factor achievable by any set of size μ, namely Θ(1/μ) for
additive approximation and 1 + Θ(1/μ) for relative approximation. The authors have shown in [23] that by considering
a transformed variant of the hypervolume indicator, the logarithmic hypervolume indicator, a close-to-optimal multiplicative
approximation ratio can be achieved. For these reasons, the hypervolume indicator is a popular second-level sorting criterion
in many recent multi-objective evolutionary algorithms (MOEAs).

When using the hypervolume as a second-level sorting criterion for comparing incomparable individuals, we measure
the respective contribution of each individual to the total hypervolume. The contributing hypervolume of an individual a ∈ A
is given by

CON(a, A) := HYP(A) − HYP
(

A \ {a}).
Note that the contributing hypervolume of a dominated individual is zero. Thus, in the following we assume that all domi-
nated individuals have been removed from A before contributing hypervolumes are computed or estimated. The contribution
CON(a, A) is an important measure since instead of using the hypervolume directly, most hypervolume-based algorithms
such as the steady-state MO-CMA-ES or the SMS-EMOA remove, in the selection step, the individual

a1 := argmina∈A

(
CON(a, A)

)
contributing the least hypervolume to the population A.1

3. Computing the contributing hypervolume

In this section, we summarize an exact algorithm and two approximation schemes for calculating the contributing hy-
pervolume.

3.1. Exact computation

In order to determine a1, the usual way is calculating HYP(A) and HYP(A \ {a}) for all a ∈ A. This can be done by
(|A|+1) hypervolume calculations with one of the many available hypervolume algorithms. Unfortunately, as the problem is
#P-hard [9], none of them can run in time polynomial in m unless P = NP. In fact, assuming the widely believed exponential
time hypothesis [30], the runtime of all algorithms computing the hypervolume must be |A|Ω(m) [12]. Note that this only
holds in the worst-case. The average-case complexity can be polynomial in the number of objectives [12].

Many algorithms have been present recently for calculating the hypervolume (e.g. [3,6,7,10,21,38,40]). We use the algo-
rithm of Bringmann and Friedrich [10] which computes all contributions CON(a, A), a ∈ A, in only one pass. This saves a
factor of |A| compared to most other hypervolume algorithms and gives a total runtime of O(|A|m/2 log(|A|)) to compute
all |A| hypervolume contributions. For dimension m = 3 there is an even faster algorithm by Emmerich and Fonseca [21],
which computes all hypervolume contributions in time O(|A| log(|A|)). As we are more interested in higher-dimensional
problems (m � 5), we use the algorithm of Bringmann and Friedrich [10] for all dimensions.

3.2. Probably approximately correct approximation

In our experiments we want to compare this exact calculation of the hypervolume with an approximation algorithm.
It is known that the hypervolume can be approximated very efficiently by an FPRAS (fully polynomial-time randomized
approximation scheme) [9]. Unfortunately, an approximation of the hypervolume does not yield an approximation of CON.
Even worse, CON(a, A) is not only #P-hard to calculate exactly, it is also NP-hard to approximate by a factor of 2m1−ε

for all

1 To be precise, the algorithms consider not the whole population A but the subset A′ of individuals having the worst rank w.r.t. non-dominated
sorting [17]. This set is constructed iteratively starting from A′ = A as follows. If A′ contains dominated individuals, all non-dominated individuals are
removed from A′ . This removal process is iterated until the remaining set A′ does not contain dominated individuals, and the individual contributing least
hypervolume to A′ is removed from the population A.
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ε > 0 [8,11]. Though CON is therefore not approximable in time polynomial in |A| and m, there are still a few approximation
algorithms for CON (see [2,8,11]). The approximation algorithms presented in [2,8,11] are Monte Carlo algorithms based
on different sampling techniques. The algorithm HypE [2] is a MOEA using hypervolume estimations at a user-specified
confidence level to guide the search. However, here we want to compare a standard MOEA with and without hypervolume
approximation to study the effects of the approximation. For this, we use the approximation algorithm of Bringmann and
Friedrich [8,11]. We now briefly describe this approach, which we will later improve in Section 3.3. This Monte Carlo
algorithm returns, for a population A and arbitrary small ε, δ > 0, an individual ã1 with the property

Pr
[
CON(ã1, A) � (1 + ε)CON(a1, A)

]
� 1 − δ. (1)

The algorithm samples in the minimal bounding boxes of all contributions and conducts a race between the different
candidates until an individual ã1 is found which (with high probability) has a contribution very close to the hypervolume
contribution of a1.

The runtime of this algorithm is bounded by O(m |A| (|A| + H)), where H is a measure of hardness of the instance. It is
polynomial in m and |A| for most practical instances, but unbounded in the worst-case. More precisely, H is defined as

H :=
(

BB(a1, A)

CON(a2, A) − CON(a1, A)

)2

+
∑

a1 =a∈A

(
BB(a, A)

CON(a, A) − CON(a1, A)

)2

, (2)

where a1 denotes the individual with the smallest contribution, a2 denotes the individual with the second smallest contri-
bution, and BB(a, A) denotes the volume of the smallest bounding box of the contribution CON(a, A). By definition, H is
unbounded and can even be undefined if there is no unique least contributor. However, in such cases an abortion criterion
bounds the runtime. In general, H is small if BB(a, A) ≈ CON(a, A) and CON(a1, A) � CON(a, A) for all a ∈ A \ {a1}. On
the other hand, H is large if either (i) there is an individual with a large bounding box BB(a, A) but a small contribution
CON(a, A), or (ii) there are two or more boxes contributing the minimal contribution or only slightly more than it, that is,
for all CON(a, A) − CON(a1, A), a = a1, is very small.

3.3. Fast approximate computation

As has been pointed out, approximating the least hypervolume contributor is an NP-hard problem [8,11]. For fixed error
bounds and error probabilities, the above described approximation scheme can degenerate to an exponential runtime. For
guiding the search in a randomized search heuristic this seems inappropriate. Despite the fact that the approximation
algorithm is reported to have a very fast empirical average-case performance [8,11], we observed that difficult situations do
indeed occur for typical benchmark problems, and sometimes very many samples are needed to achieve the specified error
bound and error probability. These slow instances have a very large hardness value H (see Eq. (2)), for example, because
the contribution is extremely small compared to the bounding box and most samples do not lie in the contribution. This is
unavoidable for a probably approximately correct approximation, but undesirable for a practical optimization algorithm.

To address these situations, we propose a heuristic that stops the overall selection process whenever a certain threshold
of total samples has been reached. On early stopping, the current estimate of the least contributor is considered further
by the selection scheme. Note that, in contrast to the approximation scheme described in Section 3.2, this algorithm is not
anymore probably approximately correct with parameters ε and δ (cf. Eq. (1)), but it results in a very fast algorithm which
still gives competitive results with respect to the quality of the final Pareto-front approximation.

This new approximation scheme comes with an additional threshold parameter. In order to determine a good value for
this parameter, we conducted a preliminary study of the threshold parameter for the DTLZ benchmark set [18]. As a testbed,
we chose the objective function DTLZ 2 with eight objectives and considered a maximum number of 103, 104, 105 and 106

samples for the hypervolume approximation scheme. We conducted 25 independent trials for every parameter setting and
analyzed the quality of the resulting Pareto-front approximations in terms of the absolute hypervolume indicator. Moreover,
we recorded the required running time for every parameter setup.

The results of the parameter study are presented in Fig. 1. Limiting the number of samples directly affects the running
time of the selection scheme, and thus, of the overall algorithm. For a threshold of 103 and 104 samples, respectively, the
quality of the resulting Pareto-front approximations is negatively affected and the absolute hypervolume starts to fluctuate
as it nears the Pareto-optimal front (see Fig. 1, bottom). In case of higher thresholds (105 and 106 samples), the quality
remains stable and is on par with the quality obtained when considering the approximation scheme without a sample
threshold. We therefore use sample threshold 105 for our fast approximation algorithm.

4. Empirical evaluation

We compared the two approximated hypervolume indicators to the exact hypervolume indicator w.r.t. the influence on
the performance (in terms of the quality of the final Pareto-front approximation) and the running time of MOEAs. To this
end, we deploy all three indicators in the steady-state variant of the multi-objective covariance matrix evolution strategy
(MO-CMA-ES, [27,34,37]). However, we expect the results to carry over to any MOEA also relying on the hypervolume
indicator as second-level sorting criterion.
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Fig. 1. Comparison of different sample thresholds (103: , 104: , 105: , 106: ) for the benchmark function DTLZ 2 with eight objectives. Both the
quality of the Pareto-front approximations (in terms of the absolute hypervolume) and the runtime requirements for the different parameter settings are
shown as the median of 25 independent trials.

4.1. MO-CMA-ES

The MO-CMA-ES relies on the Pareto-dominance relation and a second-level sorting criterion for selection, which is
state-of-the-art in MOEAs since [17]. The algorithm builds on the principles of the single-objective covariance matrix adap-
tation strategy (CMA-ES, [24,31,34]), which is a variable metric algorithm adapting the shape and strength of its Gaussian
search distribution. The claim that the “CMA-ESs represent the state-of-the-art in evolutionary optimization in real-valued
Rn search spaces” [5] is backed up by many performance comparisons across different suites of benchmark problems (e.g.,
see the competition results in [1,25]). Here, we use the most recent variant of the (μ + 1)-MO-CMA-ES presented in [37].
For empirical evaluations of the MO-CMA-ES see, for example, [27,28,37].

4.2. Experimental setup

We compared the MO-CMA-ES using an approximation of the least hypervolume contributor to the results of the original
MO-CMA-ES with exact hypervolume computation. More precisely, we compare the following indicators:

• Exact computation as described in Section 3.1.
• Probably approximately correct as described in Section 3.2.
• Fast approximation with sample threshold 105 as described in Section 3.3.

This allows us to isolate the influence of the indicator by altering only the environmental selection procedure. We applied
the algorithms to several classes of benchmark functions that are scalable to an arbitrary number of objectives m. We
considered the seven constrained functions DTLZ 1–7 [18] with search space dimension 30. The number of objectives was
chosen to be 3, 5, and 7. In addition, we considered two real-world many-objective optimization problems. The first one
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Table 1
Experimental results for DTLZ benchmark set obtained by the MO-CMA-ES with exact and two approximate calculations of the hypervolume indicator after
50,000 objective function evaluations. The differences in achieved hypervolumes were not statistically significant according to a Wilcoxon rank-sum test
at a confidence level of α = 0.05 for all test functions except DTLZ 7 with 7 objectives. The median running time that each of the algorithms required to
complete one independent trial is listed and the average overall speed-up is summarized.

Exact
computation

Probably approximately
correct approximation

Fast approximation with
sample threshold 105

DTLZ 1 (3 objectives) 7 min 16 min (2× slower) 16 min (2× slower)
DTLZ 1 (5 objectives) 4 h 2 min 24 min (10× faster) 24 min (10× faster)
DTLZ 1 (7 objectives) 3 d 19 h 12 min 21 h 21 min (4.3× faster) 13 h 31 min (6.7× faster)

DTLZ 2 (3 objectives) 14 min 1 min (14× faster) 1 min (14× faster)
DTLZ 2 (5 objectives) 18 h 6 min 31 min (35× faster) 31 min (35× faster)
DTLZ 2 (7 objectives) 23 d 0 h 43 min 1 d 11 h 44 min (16× faster) 17 h 53 min (31× faster)

DTLZ 3 (3 objectives) 3 min 1 min (3× faster) 1 min (3× faster)
DTLZ 3 (5 objectives) 54 min 21 min (2.6× faster) 21 min (2.6× faster)
DTLZ 3 (7 objectives) 5 d 4 h 48 min 9 h 50 min (13× faster) 8 h 36 min (15× faster)

DTLZ 4 (3 objectives) 8 min 1 min (8× faster) 1 min (8× faster)
DTLZ 4 (5 objectives) 2 h 20 min 41 min (3.4× faster) 41 min (3.4× faster)
DTLZ 4 (7 objectives) 3 d 16 h 48 min 2 d 3 h 4 min (1.7× faster) 2 h 3 min (43× faster)

DTLZ 5 (3 objectives) 32 min 1 min (32× faster) 1 min (32× faster)
DTLZ 5 (5 objectives) 5 h 14 min 34 min (9.2× faster) 34 min (9.2× faster)
DTLZ 5 (7 objectives) 9 d 3 h 24 min 20 h 18 min (11× faster) 29 min (454× faster)

DTLZ 6 (3 objectives) 15 h 46 min 1 min (946× faster) 1 min (946× faster)
DTLZ 6 (5 objectives) 6 d 19 h 40 min 43 min (228× faster) 43 min (228× faster)
DTLZ 6 (7 objectives) 41 d 18 h 14 min 1 d 3 h 1 min (37× faster) 23 min (2614× faster)

DTLZ 7 (3 objectives) 4 min 1 min (4× faster) 1 min (4× faster)
DTLZ 7 (5 objectives) 2 h 44 min 36 min (4.6× faster) 35 min (4.7× faster)
DTLZ 7 (7 objectives) 8 d 21 h 7 min 1 d 5 h 23 min (7.3× faster) (10 h 7 min) (21× faster)

Airfoil (6 objectives) 6 d 12 h 57 min 1 d 5 h 45 min (5.3× faster) 23 h 34 min (6.7× faster)
Pump (8 objectives) >100 d 8 d 2 h 13 min (>12× faster) 4 d 19 h 27 min (>21× faster)

deals with the design of 2D airfoil shapes that are encoded by 10 real-valued parameters, the so-called PARSEC 10 parameter
set. An airfoil shape is then evaluated with respect to six objectives by means of a computational fluid dynamics simulation
(see [39]). The second one considers the optimization of centrifugal pump designs with respect to eight objectives (see [35]).

For all experiments, the number of parent individuals was set to μ = 50. We conducted 25 independent trials with
50,000 objective function evaluations each. For both approximation algorithms, we used the parameters ε = 10−2 and δ =
10−2 (cf. Eq. (1)). The experiments were carried out on a cluster of technically equivalent workstations with 2.93 GHz Intel
Quad-Core Xeon processors running Linux. We used the GNU compiler chain and enabled compiler optimizations according
to the following command line arguments: -O3 -ffast-math -msse4 -mtune=core2. The reported runtimes refer
to the overall CPU times.

We monitored the performance of the algorithms after every 5,000th objective function evaluation and carried
out the statistical evaluation after 25,000 and 50,000 function evaluations. We relied on the hypervolume indica-
tor to compare the Pareto-front approximations obtained by the three optimizers. In case of the benchmark func-
tions DTLZ 1–7 and the centrifugal pump design problem, the reference point was determined from the union of
all Pareto-front approximations. In case of the airfoil shape optimization problem, we chose the reference point �r =
(0.00516,0.00606,0.00982,0.30806,0.92314,0.65460) as suggested in [39]. We applied the statistical evaluation proce-
dure described in [37] to evaluate our experiments employing the Wilcoxon rank-sum test to verify statistical significance.
All experiments were implemented using the Shark machine learning library [29], which is available online.

4.3. Results

Table 1 summarizes our experimental results. In terms of the achieved hypervolume, the MO-CMA-ES relying on an
approximation of the least hypervolume contributor performed at least on par with the variant employing the exact hyper-
volume indicator across the set of benchmark functions. More precisely, the differences in achieved hypervolumes were not
statistically significant according to a Wilcoxon rank-sum test at a confidence level of α = 0.05 for all test functions except
DTLZ 7 with 7 objectives. The final objective values are therefore omitted in Table 1.

Table 1 shows clearly that the MO-CMA-ES achieves an enormous speed-up if the indicator is only approximated, espe-
cially for more than 4 dimensions. The speed-up is the largest for the heuristically improved approximation introduced in
Section 3.3 of this paper. However, we also observe that for very complicated test functions such as the disconnected fronts
of DTLZ 7 in 7 dimensions, a sample threshold of 105 might not suffice. Here, we observe a tradeoff between speed (sample
threshold 105) and quality (probably approximately correct computation).
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Fig. 2. Achieved absolute hypervolume (the higher the better) for the objective function DTLZ 3 with seven objectives for the MO-CMA-ES with exact
indicator ( ), with approximate indicator and with its heuristic variant with sample threshold 105 . Shown are the medians and the
corresponding lower and upper quartiles. The areas between both quartiles are shaded. Note that the 75% percentile and median are very close. In the
upper plot, where the x-axis is the number of fitness function evaluations, the two algorithms behave similarly. After roughly 25,000 fitness evaluations
they are very close to the Pareto front. The lower plot shows the hypervolume depending on the actual running time on a logarithmic scale, demonstrating
the performance gain by using the Monte Carlo approximations. Plots for all other objective functions with five or more objectives look similar.

Fig. 2 illustrates the typical behavior of the algorithms as a function of time and number of objective function evaluations.
Shown are the medians over the 25 trials and the corresponding lower and upper quartiles (i.e., 25th and 75th percentiles).
As expected, the hypervolume as a function of the number of objective function evaluations behaves similarly. On the
other hand, both variants with approximated hypervolume finished all 50,000 objective functions evaluations in less than
10 hours, while the exact version needed more than 10 hours for only the first 5000 objective function evaluations.

A closer look at Fig. 2 reveals that the algorithms using the Monte Carlo approximation perform even a bit better.
The final medians are slightly higher, and, more prominently, the lower quartiles are larger. That is, there are fewer trials
reaching only low hypervolume values within the given budget. A possible explanation might be that the approximation
adds a little noise to the otherwise deterministic selection operator, which turns out to be beneficial for the evolutionary
process.

5. Conclusions

We empirically investigated the effects of replacing the exact hypervolume indicator with two different Monte Carlo
approximations on the performance of multi-objective evolutionary algorithms (MOEAs). We evaluated whether a state-of-
the-art MOEA relying on hypervolume-indicator-based selection is affected by the potential errors made by approximating
the least hypervolume contributor. The results show that the performance of the algorithms in terms of the quality of
the Pareto-front approximation given a budget of objective function evaluations does not suffer from the additional noise
introduced by the Monte Carlo approximation. In some trials, the approximation, which introduces noise into the other-
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wise deterministic, greedy indicator-based selection scheme, led to better performance. We observed a vast reduction of
the running time even for few objectives, when relying on the approximation scheme. In general, the higher the number
of objectives the more pronounced the performance advantage of using Monte Carlo approximation becomes. Hence, by
employing Monte Carlo approximations, hypervolume-based MOEAs become applicable to many-objective optimization.
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