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a b s t r a c t

It is widely assumed and observed in experiments that the use of diversity mechanisms in
evolutionary algorithms may have a great impact on its running time. Up to now there
is no rigorous analysis pointing out how different diversity mechanisms influence the
runtime behavior. We consider evolutionary algorithms that differ from each other in
the way they ensure diversity and point out situations where the right mechanism is
crucial for the success of the algorithm. The considered evolutionary algorithms either
diversify the populationwith respect to the search points orwith respect to function values.
Investigating simple plateau functions, we show that using the ‘‘right’’ diversity strategy
makes the difference between an exponential and a polynomial runtime. Later on, we
examine how the drawback of the ‘‘wrong’’ diversity mechanism can be compensated by
increasing the population size.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Diversity mechanisms should prevent the optimization process of an evolutionary algorithm (EA) from getting stuck by
ensuring that the population consists at each time step of a set of individuals with different properties. It has been observed
in numerous experiments [1,19] that the right use of a diversity strategy can play a key role for the success of an EA. As it is
important to understand in practice successful algorithms also from a theoretical point of view, it is desirable to strengthen
the theoretical understanding of diversity mechanisms. The aim of this paper is to show how the use of different diversity
mechanismmay influence the behavior of an EA. To achieve this goal we examine some simple EAs using different methods
to ensure diversity and analyze them with respect to their runtime behavior.
The rigorous analysis of evolutionary algorithms with respect to their runtime behavior has been started on artificial

pseudo-Boolean functions. Themain aim of such investigation is to increase the understanding how evolutionary algorithms
work. The first result has been obtained by Mühlenbein [12] who proved that the well-known (1+1) EA is able to optimize
the function onemax within an expected number of O(n log n) iterations. Rudolph [15] has shown that the (1+1) EA can
solve some Long Path functions in expected polynomial time. Later Droste, Jansen, and Wegener [4] pointed out Long Path
functionswhere the (1+1) EA has an exponential optimization time. The (1+1) EA has been subject of different investigations
on pseudo-Boolean functions [10,7] and on some of the best-known combinatorial optimization problems [6,14,21]. It
seems to be the ‘‘standard’’ algorithm for investigating the behavior of EAs on new (combinatorial) problems. In the case of
crossover-based EAs that work with a population size of at least 2 there are only a few results which show that the use of a
crossover operator can speed up computations drastically [11,18,3]. The influence of the population size itself has also been
investigated by rigorous runtime analyses [17,20].

I A conference version appeared in the Genetic and Evolutionary Computation Conference – GECCO 2007 [T. Friedrich, N. Hebbinghaus, F. Neumann,
Rigorous analyses of simple diversity mechanisms, in: Proc. of Genetic and Evolutionary Computation Conference, GECCO’07, ACM Press, 2007,
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Considering selection methods with respect to the runtime behavior has been started only recently. Jägerküpper and
Storch [8,9] have compared comma and plus strategies and pointed out situations where switching from one strategy to
the other may change the runtime from polynomial to exponential and vice versa. Often selection methods consist of a
particular mechanism to ensure diversity of the individuals in the population. The aim of this paper is to study the influence
of two diversity strategies with respect to the runtime of an evolutionary algorithm. A large diversity of the individuals in
the population is needed to explore different regions of the considered search space. Usually, there is a trade-off between
exploring different regions of the search space and converging quickly to optimal solutions.
We consider simple mutation-based EAs that use different diversity measures and a constant population size. The first

idea is to consider a diversity strategy that tries to avoid duplicates in each generation. Storch [17] has examined the
influence of the choice of the population size together with this strategy but did not consider the influence of the strategy
itself. We focus on the diversity mechanism rather than on the effect of increasing the population size. In our second
algorithm the individuals should differ with respect to their function values which is motivated by the assumption that
individuals with the same fitness value have similar properties. In a first step, we point out a situation where ensuring
diversity of fitness values leads to an exponential optimization time while the algorithm just avoiding duplicates has a
polynomial runtime. Afterwards, we examine situations where the diversity with respect to the fitness values ensures a
polynomial runtime. In contrast to this the algorithm just avoiding duplicates has an exponential optimization time. After
having obtained these results, we consider the effect of increasing the population size in our algorithms.We are in particular
interested in the population size needed to turn the exponential runtimes that are the effect of the ‘‘wrong’’ diversity
mechanism into polynomial ones by using larger population sizes.
The outline of the paper is as follows. In Section 2, we introduce the algorithms and diversity strategies that are subject

to our analysis. In Section 3, we compare the different diversity strategies for our algorithms using populations of constant
size. The effect of larger populations is discussed in Section 4. Finally, we finish with some conclusions. A conference version
of this paper appeared in [5].

2. Algorithms

Our aim is to study the impact of two simple diversity mechanisms with respect to the runtime behavior. The first
algorithm tries to avoid duplicates by diversifying with respect to the search points. The second one is diversifying with
respect to the function values. In our opinion, these are the two simplest strategies that can be considered. As this is the first
paper considering in particular the use of diversity by rigorous runtime analyses, we start by considering simple algorithms.
In particular analyzing the effect of a crossover operator in an evolutionary algorithm seems to be a hard task. Therefore, we
investigate simple EAs that produce in each iteration one single offspring by mutation. We hope that the insight we gain by
considering these algorithms leads to a better understanding of diversification such that more complicated strategies and
algorithms might also be easier to understand.
We examine a simple (µ+1) evolutionary algorithm called (µ+1) EAd (see Algorithm 1) which just tries to avoid

duplicates. The algorithm has already been used by Storch [17] to study to impact of the population size on the runtime
behavior.

Algorithm 1. (µ+1) EAd
(1) Choose µ individuals xi ∈ {0, 1}n (1 ≤ i ≤ µ) uniformly at random.
(2) P ← {x1, . . . , xµ}.
(3) Repeat
(a) Choose z from the population P uniformly at random.
(b) Create z ′ by flipping each bit of z independently with probability 1/n.
(c) If z ′ 6∈ P , then create the new population P by introducing z ′ into P and deleting an individual from P ∪ {z ′}with the
lowest f -value uniformly at random.

The algorithm starts by choosing µ individuals uniformly at random from the considered search space {0, 1}n. In each
iteration, one of these individuals is selected for mutation. Afterwards, a new parent population is constituted by choosing
two individuals from the parents and the offspring. If an individual z ′ created by mutation is equal to any individual in
the population P , P remains unchanged. Otherwise z ′ is included and an individual with the lowest fitness value is chosen
uniformly at random and deleted. Another variant of the (µ + 1)-EA has been examined by Witt [20]. This algorithm is
similar to the one given above but does not prevent the introduction of duplicates into the population.
We compare the (µ+1) EAd with the algorithm called (µ+1) EAf that uses a much stronger diversity strategy. The

(µ+1) EAf (see Algorithm 2) tries to diversify the individuals with respect to their function values. This diversity measure
relies on the assumption that individuals with the same function value have some properties in common such that a
population consisting of individuals with different function values gives a good sample of the search space.

Algorithm 2. (µ+1) EAf
(1) Choose µ individuals xi ∈ {0, 1}n (1 ≤ i ≤ µ) uniformly at random.
(2) P ← {x1, . . . , xµ}.
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Fig. 1. An illustration of the explored function PL.

(3) Repeat
(a) Choose z from the population P uniformly at random.
(b) Create z ′ by flipping each bit of z independently with probability 1/n.
(c) If f (z ′) ∈ {f (x), x ∈ P}, then create the new population P by deleting an individual with f -value f (z ′) from P and
insert z’; otherwise create the new population P by deleting an individual from P ∪ {z ′} with the lowest f -value
uniformly at random.

We have not defined any stopping criteria for our algorithms.We consider the algorithms as infinite stochastic processes.
Considering randomized search heuristicswith respect to their runtime, a commonmeasure is to count the number of fitness
evaluations until an optimal one has been found. This is called the optimization time of the algorithm. Often the expectation
of this value is analyzed and called the expected optimization time.

3. Constant population size

We compare the two diversity mechanisms introduced in Section 2 for a constant population size. All our investigations
in this section consider the case µ = 2. We compare the two diversity mechanisms introduced in the previous section on
two plateau functions. Plateaus are regions in the search space where all points have the same f -value. Consider a function
f : {0, 1}n → R whose image of the domain {0, 1}n is of size V = |f ({0, 1}n)|. Since often the number of different fitness
values V is polynomial, such a function has an exponential number of solutions with the same f -value. However, such
functions are optimized easily with a randomized search heuristic if there is a better Hamming neighbor for each non-
optimal solution since this implies that an improvement can be reached by flipping a single bit of a non-optimal solution.
Otherwise, if this does not hold, the searchmay getmuch harder for evolutionary algorithms. One example (from [4]) for this
is the degenerated case of the characteristic function needle, which has fitness value 0 for all solutions apart from a single
point x at which it has fitness value 1. The behavior of (1+1) EAs on plateaus of different structures has been studied in [10]
by a rigorous runtime analysis. In the case of combinatorial optimization problems, it has been shown that evolutionary
algorithms have to cope with plateaus of constant fitness for the Eulerian cycle problem [2,13] and the computation of
maximummatchings [6].

3.1. (2+1) EAd beats (2+1) EAf

We show that there are functions on which the optimization time of the (2+1) EAd is a small polynomial while the
(2+1) EAf is exponentialwith high probability. For this, we consider the following function PL, which is similar to the function
SPCn introduced by Jansen and Wegener [10]. Let |x|1 and |x|0 denote the number of ones and the number of zeros in a
bitstring x, respectively. The function PL is defined as

PL(x) :=

|x|0 : x 6∈ {1i0n−i, 0 < i ≤ n}
n+ 1 : x ∈ {1i0n−i, 0 < i < n}
n+ 2 : x = 1n.

We denote by SP := {1i0n−i, 0 < i < n} the set of search points that constitute the plateau of fitness n+ 1. Fig. 1 shows an
illustration of this function. We first prove that the (2+1) EAd is efficient on PL. Our analysis relies on analyzing the random
walks that two individuals perform on the plateau instead of one as examined in [10].

Theorem 1. The expected optimization time of the (2+1) EAd on PL is O(n3).
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Proof. The algorithm always keeps two different solutions that have been produced up to now in the population. We first
consider the number of steps until both solutions of the population are contained in SP. Note that in every mutation step
there is a positive probability to produce a solution that is contained in SP .We neglect this probability that only decreases the
expected time until an element of SP is detected. We can assume that |x|1 ≤ |y|1 and that both solutions are not contained
in SP. As x is chosen with probability 1/2 for mutation, the probability of producing a solution z with |z|0 > |x|0 in the next
step is at least |x|1/(2en). This solutionwill be introduced into the population P and a solutionwith a largest number of ones
in P will be removed. Summing up over the different number of ones, the expected time to introduce the search point 0n in
P is O(n log n) as long as no solution of SP has been produced before. A solution of SP can be produced from 0n by flipping the
first bit. This happens after an expected number of O(n) steps. Let x be this solution. The expected waiting time to produce
a solution z ∈ SP with z 6= x is O(n) as only one specific bit in x has to flip. Hence, after an expected number of O(n log n)
steps both solutions of P have fitness value at least n+1. As long as the optimal search point 1n has not been obtained x and
y are different and contained in SP.
We now use the backward analysis paradigm for randomized algorithms which has been popularized by Seidel [16] to

show that within O(n3) steps one of the two individuals of the (2+1) EAd reaches the optimal search point. For every newly
generated search point we consider the sequence of all its ancestors. At this point, we interpret step 3.(c) of Algorithm 1
slightly different. Namely, instead of completely ignoring mutations of all z ′ which are already in the current population
P , we now say that we also include such mutations in the population, but remove the old (identical) individual z ′ to avoid
duplicates. This modification behaves exactly as the original algorithm, but now each parent of a search point has chosen an
offspring of a certain Hamming distancewith exactly the same probability as the offspring in a (1+1) EA is chosen. Therefore,
the sequence of all ancestors of a point can also be seen as the sequence of solutions generated (and accepted) by an (1+1) EA.
The expected length of this sequence is half of the expected length of such a sequence generated by a (1+1) EA since for every
ancestor the probability to be chosen for mutation is 1/2 in every mutation step. By [10] this shows that after an expected
number O(n3)mutation steps of the (2+1) EAd, the optimal search point is found. �

In contrast to the (2+1) EAd, the (2+1) EAf diversifieswith respect to the function values. In this case only one single search
point may perform a randomwalk on the plateau. In the case of the function PL, the second individual in the population has
a great effect on the success of this random walk. In particular, we show that the (2+1) EAf is not efficient on PL. The main
reason for this is that the other individual in the population produces faster new solutions of SP that have a small Hamming
distance to the search point 0n than the random walk has reached the optimal solution 1n.

Theorem 2. The optimization time of the (2+1) EAf on PL is 2Ω(n
1/24) with probability 1− e−Ω(n

1/24).

Proof. The population consists at each time step t of 2 individuals with the first and the second best fitness values that have
been produced during the first t steps. Our aim is to show that a population including solutions with fitness values n + 1
and n are constructed before the optimal search point 1n is reached.
The initial solutions x and y consist with probability 1− e−Ω(n) of atmost 2n/3 ones using Chernoff bounds. If no solution

of SP has been obtained before, only solutions with at most max{|x|1, |y|1} ones are accepted. Hence, as long as no solution
of SP has been obtained the probability to produce the optimal search point is upper bounded by n−n/3. This implies that
the number of iterations needed to produce an optimal search point without creating a solution of SP before is nΩ(n) with
probability 1−n−Ω(n). In the following, we assume that a solution of SP has been obtainedwithin a phase of 2cn steps, where
c > 0 is an appropriate small constant. The first solution of SP obtained within this phase has with probability 1− e−Ω(n) at
most 3n/4 ones as the probability of flipping at least n/12 bits in a single mutation step is e−Ω(n).
We now consider a phase of n3/2 steps of the algorithm after for the first time a solution in SP has been produced. Roughly

speaking, we will show that within such a phase the randomwalk of the solution y ∈ SP reaches the optimal search point 1n
only with a small probability while at the same time the other solution x quickly becomes x = 0n. Such a solution x produces
with high probability a descendant on SP by a single bit flip within this phase which implies that the random walk has to
start again from a solution that has a large (Hamming) distance to the optimal search point.
Let y = 1i0n−i be the solution on SP. We call a step relevant if and only if it produces a solution z ∈ SP with z 6= y. To

achieve this the bit yi or yi+1 has to flip. Therefore, the probability of not having a relevant step is at least 1 − 2/n and the
expected number of non-relevant steps during this phase is at least (1− 2/n) n3/2 = n3/2 − 2n1/2. There are at least

(1− n−2/3) · (n3/2 − 2n1/2) ≥ n3/2 − 2n5/6

non-relevant steps with probability

1− e

(
−n3/2· n

−4/3
2

)
= 1− e−Ω(n

1/6)

using Chernoff bounds.
The probability that at least n1/12 bits flip in a single accepted mutation step is at most n−n

1/12
. Such an event happens

in the phase of n3/2 steps only with probability at most n3/2−n
1/12
= n−Ω(n

1/12). Therefore, within this phase the Hamming
distance to the optimal search point decreases by at most 2n5/6n1/12 = 2n11/12 and an optimal search point has not been
obtained with probability 1− e−Ω(n

1/12).
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Fig. 2. An illustration of the explored function PLS.

In the following we show that after n3/2 steps, the solution 0n is inserted into the population. We consider in each step
the solution xwith the largest number of zeros in the population P . As an optimal search point will not be produced within
n3/2 steps with probability 1 − e−Ω(n

1/12) such a solution will never be removed from P in this phase. Assume |x|1 = k.
Then the probability of producing in the next step a solution z with |z|0 > |x|0 is at least k/(2en). Summing up over the
different values of k, the search point 0n is included into P after an expected number of at most en log n steps. After an
expected number of O(n) steps a solution with fitness value n+ 1 is included afterwards. Hence, after an expected number
of 2e n log n steps P = {x, y}where f (x) = n and f (y) = n+1, i. e., after 4e n log n steps this happenswith probability at least
1/2. The probability of not having obtained these solutionswithin n3/2 steps is upper bounded by 2−(n

1/2/(4e log n))
= e−Ω(n

1/4)

considering n1/2/(4e log n) phases of length 4e n log n.
The probability to produce from x a search point zwith fitness n+1 is at least 1/(en) as this can be achieved by flipping the

first bit of x. The probability to select z in the next mutation step is 1/2. Using Markov’s inequality the probability that such
a z has not been produced during 4en steps is bounded above by 1/2 and the probability that this has not happened during
r (4en) steps is (1/2)r . Choosing r = n1/2 such a z is produced within n3/2 steps with probability 1− 2−Ω(n

1/2). We already
know that, with probability 1 − e−Ω(n

1/12) a phase of n3/2 steps does not lead to an optimal solution. Considering 2Ω(n
1/24)

steps the probability of obtaining an optimal solution is still upper bounded by e−Ω(n
1/24) which proves the theorem. �

Our analyses for the function PL have pointed out how to analyze the random walk of more than one individual on a
plateau by a backward analysis. The success of a random walk of a single search point on such a plateau may be prevented
by producing individuals at the ‘‘wrong’’ part of a plateau. This is in particular the case for the (2+1) EAf which diversifies
the population with respect to their function values.

3.2. (2+1) EAf beats (2+1) EAd

We now consider an example where diversifying with respect to the function values reduces the runtime significantly
compared with a mechanism that just avoids duplicates. The idea is to construct a function with two plateaus of different
fitnesses.
We investigate the function PLS defined as

PLS (x) :=


n+ 1 : x ∈ {0i1n−i, 1 < i < n− 1} \ {03n/41n/4}
n+ 2 : x ∈ {1i0n−i, 1 < i < n− 1}
n+ 3 : x = 03n/41n/4
|x|0 : otherwise

and define

SP1 := {1i0n−i, 1 < i < n− 1},

SP2 := {0i1n−i, 1 < i < n− 1} \ {03n/41n/4}.

SP1 where all search points have fitness n + 2 may mislead the search. All search points in SP1 have a large Hamming
distance of at least n1/4 to the optimal one 03n/41n/4. Therefore, it is unlikely that steps mutating individuals of SP1 produce
optimal solutions. In addition, SP2 serves as a royal road for the fitness diversifying algorithm (2+1) EAf as it always keeps
two individuals of different fitnesses during the optimization process. Fig. 2 shows an illustration of the function PLS.

Theorem 3. The optimization time of the (2+1) EAd on PLS is at least nn/4 with probability 1/2− o(1).
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Proof. In the initialization step of the (2+1) EAd, two solutions x, y ∈ {0, 1}n are produced that fulfill max{|x|1, |y|1} ≤ 2
3n

with probability 1 − e−Ω(n) as already observed in Theorem 2. Again only solutions with at most max{|x|1, |y|1} ones are
accepted.
To reach the optimal search point 03n/41n/4, at least n/12 bits have to swap at once. The probability for this to happen is

e−Ω(n) as steps flippingΘ(n) bits are exponentially unlikely. The expected number of steps until the first individual reaches
the search point 0n (neglecting the possibility of reaching one of the plateaus with f -value greater than n before this) is
O(n log n) as shown in the proof of Theorem 2. After the search point 0n is found by the (2+1) EAd, the expected time until
a search point from one of the plateaus with f -value greater than n is inserted into the population is O(n2) because for this
event the hamming distance of 2 to the plateaus has to be covered (with probability at least 1/(en2)). The probability that
the first search point z ∈ SP1 ∪ SP2 that has been produced is in SP1 is Prob(z ∈ SP1) = Prob(z ∈ SP2) = 1/2.
We consider a phase consisting of the next n3/2 steps. Let us assume (as a worst case) that the second best individual (the

one that not entered SP1 as first individual) reaches the plateau SP2 immediately after the first search point of SP1 has been
found by the (2+1) EAd. Following the line of argument in the proof of Theorem 2 (for an individual on the plateau SP), the
second best individual does not reach the optimal search point 03n/41n/4 with probability 1−e−Ω(n

1/12). The probability that
in n3/2 steps the individual in SP1 has produced another individual is at least (1 − 1

n )
n3/2
= 1 − e−Ω(n

1/2). This individual
solutionwill be accepted since the fitness value n+2 is greater than the so far second best fitness value. This shows thatwith
probability 1/2 − o(1) the (2+1) EAd produces a population where both individuals are contained in SP1 before obtaining
the optimum.
Afterwards, only search points of SP1 ∪ {03n/41n/4} are accepted. Each search point of SP1 has Hamming distance at least

n/4 to the optimal search point. Hence, the expected time to produce froma solution in SP1 the optimal one is lower bounded
by nn/4. This implies that the optimization time of the (2+1) EAd is at least nn/4 with probability 1/2− o(1). �

The (2+1) EAf cannot end up in the ‘‘dead-end’’ of having both individuals on the same plateau n + 2. For PLS it indeed
outperforms significantly the (2+1) EAd as shown in the following theorem.

Theorem 4. The expected optimization time of the (2+1) EAf on PLS is O(n3).

Proof. Analogue to the proof of Theorem 3, |x|1, |y|1 ≤ 2
3n holds with probability 1 − e

−Ω(n) for the initial population
{x, y} of the (2+1) EAf . Afterwards, no solution z with |z|1 ≥ max{|x|1, |y|1} is accepted until a solution of SP1 ∪ SP2 has
been produced. Assuming that the population does not consist of individuals with fitness values greater than n, the search
point 0n is included in the population after an expected number of O(n log n) steps as shown in the proof of Theorem 2. The
expected time to produce from this search point a solution of SP1 (or SP2) is O(n2) as this can be achieved in both cases by
flipping two specific bits. Therefore, the population consists after an expected number of O(n2) steps of two individuals x
and ywhere x ∈ SP1 and y ∈ SP2.
The probability to produce froma solution x ∈ SP1 a solution y ∈ SP2 in the nextmutation step isO(1/n4) as theHamming

distance between such solutions is at least 4. Using Markov’s inequality this does not happen within a phase of O(n3) steps
with probability 1− O(1/n). Hence, the random walks on the two plateaus are completely independent of each other with
probability 1 − O(1/n). Using the arguments of Jansen and Wegener [10] for the function PL after a phase of cn3 steps, c
an appropriate constant, the (2+1) EAf has produced a solution z = 0j1n−j where 3n/4 ≤ j < n with probability bounded
below by a constant α1. Consider the first time such a z has been obtained. The probability that it has been obtained by a
mutation step flipping a single bit is at least (1− 1/n)n−1 ≥ 1/e. Hence, the probability that the optimal solution has been
produced during the considered cn3 steps is at least (1−O(1/n)) ·α1/e. The arguments can be repeated by considering c ′n3
steps, c ′ an appropriate constant, to produce from a solution y = 0j1n−j, 3n/4 < j < n, a solution z = 0k1n−k, 1 < k ≤ 3n/4
with probability α2. Similarly the probability of having obtained the optimum is at least (1 − O(1/n)) · α2/e within this
phase . This implies that the expected time to produce the optimal solution is upper bounded by

1
1− O(1/n)

·
max{c, c ′}
min{α1, α2}

· en3 = O(n3). �

Our analyses for the function PLS show that diversifying the population with respect to the function values may prevent
an evolutionary algorithm from getting stuck in a local optimum.We assume that the (µ+1) EAd is also not able to optimize
PLS efficiently for larger values of µ not greater than n − 3 as the defined local optimal plateau consists of n − 3 different
search points that all have a large Hamming distance to the optimal one.
Similar results given for the (µ+1) EAd in this section also hold for the variant of the (µ+ 1)-EA examined by Witt [20].

For PL the results given in [20] can be transferred and for the lower bound on PLS it is not too hard to adapt our ideas.
This implies that using the diversity mechanism of the (µ+1) EAd does not change the runtime behavior for the examined
problems compared with an algorithm not using any diversity mechanism.

4. Larger populations

Theorems 2 and 3 showed exponential runtimes of the (2+1) EAf and the (2+1) EAd on PL and PLS, respectively. In this
section, we examine larger population sizes and prove that the algorithms achieve polynomial runtimes for sufficiently large
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populations µ. This complements similar results by Storch [17] who has investigated the choice of µ for an algorithm just
avoiding duplicates.

Theorem 5. The expected optimization time of the (µ+1) EAf with µ = n− k (0 ≤ k < n) on PL is O(µnk+2).

Proof. In the initialization step it cannot be guaranteed that all individuals have pairwise different fitness values. Therefore,
we show that after a phase of O(µn log n) mutation steps there are µ different fitness values present in the current
population. We assume the worst case that allµ individuals produced in the initialization step share the same fitness value.
After d different fitness values are included in the current population, there is at least one individual x in the population such
thatm(x) := min{|x|0, |x|1} ≥ (n− d)/2 and there is no individual in the population withm(x)− 1 0–bits or 1–bits. Thus,
the probability that an individual with this fitness value is produced in the next mutation step is at least (n− d)/(2µn). The
factor µ in the denominator is due to the selection of the individual in the population that is chosen for the mutation step.
Hence, the expected time until all µ individuals in the current population have pairwise different fitness values is at most

µ−1∑
d=1

µ 2n
n−k ≤ 2µn

n−1∑
d=1

1
k = 2µn log n.

Since there are n+2 different fitness values and the n+2 is the optimal fitness value, the least fitness value in the population
is at most n+ 2−µ = k+ 2. Thus, there is an individual x in the current population with |x|0 ≤ k+ 2. The probability that
this individual is mutated in the next step into the optimal search point 1n is at least 1

µ
1
n
k+2
(1 − 1

n )
n−k−2

≥ 1/(eµnk+2).
Therefore, the expected time (from the moment where all fitness values in the current population are pairwise different)
until the optimal search point is determined is O(µnk+2). This proves the theorem. �

Theorem 6. The expected optimization time of the (µ+1) EAd with µ = 2n− k (6 ≤ k < n) on PLS is O(µnmax(2,dk/2e−3)).

Proof. As a first step, we examine the phase until the first search point on one of the plateaus is found. The reasoning for this
phase is similar to the one in the proof of Theorem 3, but here we have to deal with a larger population size. The expected
number of steps till the first individual reaches the search point 0n (neglecting the possibility of reaching one of the plateaus
with f -value greater than n before this) is O(µn2) since the probability to choose from the population the individual with
the largest |x|0-value is 1/µ, the probability that its mutation increases the f -value is at least 1/(en), and there are O(n) such
steps needed. After the search point 0n is detected by the (µ+1) EAd the expected time until a search point from one of the
plateaus with f -value greater than n is determined is O(µn2) because for this event the search point 0n has to be chosen for
mutation (with probability 1/µ) and the hamming distance of 2 to the plateaus has to be covered (with probability at least
1/(en2)).
We now assume that f (x) > n holds for at least one individual x and that there is another individual x′ with f (x′) ≤ n.

With probability 1/µ we choose a solution x on the plateaus whose adjacent neighbor z (i. e., Hamming distance 1) on the
plateau is not yet in the population. The mutation of x yields z with probability at least 1/(en), which will be accepted
since f (z) > n. After O(µn2) steps, there are no individuals left with f -value smaller or equal n since there are only
|{x : f (x) > n}| = 2n ≤ µ elements on the two plateaus.
If the optimal search point has not been found yet, we now know that there is at least one individual on the plateau n+1

with Hamming distance dk/2e − 3 to the optima. This individual is chosen with probability 1/µ and jumps directly to the
optimumwith probability 1e n

−(dk/2e−3). Therefore, after an expected number of O(µndk/2e−3) steps, the optimal search point
is found. �

5. Conclusions

Ensuring diversity in the population of an evolutionary algorithm is important to prevent the algorithm from getting
stuck in the optimization process. For the first time the use of simple diversity mechanisms used in selection procedures
have been analyzed with respect to their influence on the runtime behavior. The strategies considered to ensure diversity
are really simple ones and differ from each other by either diversifying with respect to the decision space or objective space.
By investigating two plateau functions, we have shown that this may make the difference between a polynomial and an
exponential optimization time.
There are a lot of open problems related to the topic investigated in this paper. In particular, other more complicated

diversity mechanisms should be analyzed where the decision whether an individual is included into the population is not
strict but has a probability that depends on the individual itself and its relation to other individuals in the population. Another
interesting task is to investigate the use of diversifying methods for combinatorial optimization problems. Up to now most
of the analyses on such problems consider the (1+1) EA for pseudo-Boolean functions, but there are no analyses related to
the use of diversity for such problems.
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