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a b s t r a c t

Multi-objective optimization deals with the task of computing a set of solutions that
represents possible trade-offs with respect to a given set of objective functions. Set-
based approaches such as evolutionary algorithms are very popular for solving multi-
objective optimization problems. Convergence of set-based approaches formulti-objective
optimization is essential for their success. We take an order-theoretic view on the
convergence of set-based multi-objective optimization and examine how the use of
indicator functions canhelp to direct the search towards Pareto optimal sets. In doing so,we
point out that set-based multi-objective optimization working on the dominance relation
of search points has to deal with a cyclic behavior that may lead to worsening with respect
to the Pareto-dominance relation defined on sets. Later on, we show in which situations
well-knownbinary andunary indicators canhelp to avoid this cyclic behavior and therefore
guarantee convergence of the algorithm. We also study the impact of deteriorative cycles
on the runtime behavior and give an example in which they provably slow down the
optimization process.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Set-based optimizationmethods such as evolutionary algorithms have beenwidely used formulti-objective optimization
problems [9]. Often multi-objective problems are hard to tackle, as there is no total ordering of the underlying search space.
Instead, a preorder on the search space is induced by the different objective functions that should be optimized. Theminimal
elements of such a preorder are called Pareto optimal solutions and the set of minimal elements with respect to the partial
order on the objective space is called the Pareto front. The goal of an algorithm for a given multi-objective optimization
problem is to compute for each objective vector of the Pareto front a corresponding Pareto optimal search point. Often the
size of the Pareto front grows exponentially with respect to the size of the input. This situation calls for a smaller set of
minimal elements that fulfills given user preferences.

Convergence is an important property of a set-based algorithm for multi-objective optimization and decisive for its
success. Initial studies on this topic have been carried out by Rudolph [25] who stated conditions for the convergence
of evolutionary algorithms to the Pareto optimal set for finite search spaces. Convergence for continuous search spaces
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has been studied by Hanne [14] and the convergence to good approximations of the Pareto front has been investigated in
[19,20,26,27]. We study convergence of set-based algorithms for multi-objective optimization in a general and abstract way
by examining the relation of sets of search points that such algorithms work with.

Recently, Zitzler et al. [31] have extended the preorder on the search space to a preorder on sets of search points. This
leads to the term set-based multi-objective optimization, which stresses the point that it is not single solutions that should be
compared with respect to a preorder, but rather sets of search points that have to be compared. Zitzler et al. [31] introduced
a preorder on the set of sets of search points that is based on the preorder on the underlying search space. They also use
this preorder as a basic relation that may be later refined by special user preferences. We examine the approach of working
with a preorder on sets in greater detail. In particular, we discuss the preorder on sets from a theoretical point of view and
point out criteria for convergence of set-based algorithms for multi-objective optimization.

Evolutionary algorithms are a prominent type of set-based algorithm, and we will consider them as an example
throughout this paper. We do not impose any restrictions on how such an algorithm produces, from a current set of search
points called the parent population, a new set of search points which is usually called the offspring population. Our only
assumption is that a parent population consisting of µ individuals produces, in each iteration, an offspring population
consisting of λ individuals. Having produced an offspring population, the task of the selection operator is then to select
a new parent population.

We examine how to design a selection operator such that the newly chosen parent population consists of a set of
µ individuals that is minimal among all sets that can be obtained by selecting µ individuals from the set of parents and
children. Later on, we relate this to well known selection methods, such as non-dominated sorting used in NSGA-II [10] and
ranking ideas used in SPEA2 [29].

Having examined how to compute a minimal set of search points in each iteration, we investigate the run of such
algorithms from a theoretical point of view with respect to the Pareto-dominance order defined on sets. We show that
just working with the dominance relation on sets may lead to a cyclic behavior that can lead to worsening with respect to
the dominance relation. This behavior has already been observed in experimental studies of NSGA-II and SPEA2 (see [21])
and may prevent those algorithms from convergence.

Examining this topic in greater detail, we relate convergence of an algorithm to deteriorative cycles in the underlying
relation of the algorithm. Interesting studies related to this topic in the context of coevolutionary algorithms have recently
been carried out in [11,24]. We show that the absence of these deteriorative cycles is a key property that guarantees
convergence.We point out conditions that avoid such an undesired cyclic behavior and therefore lead to convergence. Based
on these conditions, we examine how refinements using indicator functions for incomparable sets may help to solve this
problem. We show that well-known binary indicators such as the additive and multiplicative ε-indicator can resolve this
problem for the case that the parent population is of size 1. On the negative side, we show that even a parent population of
size 2 can again run into the non-described cyclic behavior.

Furthermore, we examine the use of unary indicators. Based on our conditions for avoiding cyclic behavior, we show
that the well-known hypervolume indicator is able to deal with this problem in a successful manner if a fixed reference
point is used during the whole run of the algorithm. Some popular variants of hypervolume-based algorithms work with
a dynamically changing reference point. A well-known example is the SMS-EMOA [4]. For its simplest version, called
(1+1) SMS-EMOA, convergence rates have been examined for convex functions with two objectives [3]. We show that even
the simple (1+1) SMS-EMOA has to face the problem of deteriorative cycles when it is applied to problems with at least
three objectives. This shows that the use of a dynamically changing reference point as used in the SMS-EMOA may prevent
the algorithm from converging. Our investigations add to the foundations for this indicator and give further insight into its
optimization behavior.

In the last part of this paper, we study the impact of deteriorative cycles by rigorous runtime analysis. This type of analysis
has significantly increased the theoretical understanding of how andwhy randomized search heuristics such as evolutionary
algorithms and ant colony optimization work for certain types of problems [1,23]. We consider simple randomized search
heuristics introduced by Giel and Lehre [13] and study them on a multi-objective example problem motivated by rigorous
studies on plateau functions carried out by Jansen and Wegener [16]. The behavior of randomized search heuristics on
multi-objective plateau functions has been studied in [12,8] and our investigations also contribute to this understanding.
First, we emphasize the importance of moving between incomparable solutions, which is one of the key issues in set-
based multi-objective optimization. Afterwards, we show that averting the problem of deteriorative cycles by using Pareto
compliant unary indicators, such as the hypervolume indicator, significantly reduces the runtime of simple randomized
search heuristics on our example problem. This article extends the results of its conference version [2] by the investigations
on the hypervolume indicator with changing reference point carried out in Section 5.2 and the runtime analysis presented
in Section 7.

The outline of the paper is as follows. In Section 2 we recall some basic properties of set-based multi-objective
optimization. Section 3 deals with the task of computing a minimal set from the parents and children. The problem of
deteriorative cycles and conditions for avoiding them are pointed out in Section 4. In Section 5, we examine whether it is
possible to avoid this cyclic behavior by using unary indicators, and we study binary indicators in Section 6. Investigations
regarding the impact of deteriorative cycles on the runtime behavior are carried out in Section 7. Finally, we present some
conclusions.
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2. Set-based multi-objective optimization

A multi-objective optimization problem is given by a vector-valued objective function f = (f1, . . . , fd) : X → Rd
≥0 on a

search space X . W. l. o. g. we assume that each function fi, 1 ≤ i ≤ d, should be minimized. We first define a partial order on
the objective space. An objective vector x = (x1, . . . , xd) ∈ Rd weakly dominates an objective vector y = (y1, . . . , yd) ∈ Rd

(x ≼Par y) if it is not worse in any objective, i. e.,

x ≼Par y :⇔ xi ≤ yi for 1 ≤ i ≤ d.

The objective function f also induces a preorder ≼Par on the search space X . More precisely, we say a search point a ∈ X
weakly dominates a search point b ∈ X (a ≼Par b) if it is not worse in any of its objectives, i. e.,

a ≼Par b :⇔ f (a) ≼Par f (b).

Note that we use≼Par as a relation on search points as well as a relation on the corresponding objective vectors. The relation
≼Par is a preorder on the set of search points and a partial order on the set of objective vectors.

In investigating sets of search points in this paper, we assume that these sets are finite. Given a set of search points A, we
denote by Min(A, ≼Par) the set of minimal elements of A with respect to the preorder ≼Par. Let f (A) be the set of objective
vectors of the search points in A, i. e.,

f (A) = {f (a) : a ∈ A}.

Then, we denote by Min(f (A), ≼Par) the set of minimal objective vectors in f (A) with respect to the partial order ≼Par on
f (A).

The goal in multi-objective optimization is to compute a set X∗ with f (X∗) = Min(f (X), ≼Par), where X is the considered
search space. Often the size of Min(f (X), ≼Par) is large, i. e., exponential with respect to the given input. In this case, it is not
possible to compute the whole set of minimal elements of f (X) efficiently, and f (X∗) should be a smaller subset of them.

In this paper, we consider set-based algorithms for multi-objective optimization. They attempt to construct a set X∗ with
f (X∗) ⊆ Min(f (X), ≼Par) in an iterative way by startingwith an initial set of search points and producing a new set of search
points in each iteration. As these work with sets of search points, we want to compare sets of search points against each
other. Let 2X be the power-set of X , i. e., 2X

:= {R | R ⊆ X}. Based on a preorder ≼Par (reflexive and transitive) on single
search points, Zitzler et al. [31] have defined the following preorder on sets of search points that conforms to the preorder
≼Par on the underlying set of search points X .

Definition 2.1. Let A, B ∈ 2X then

A ≼dom B :⇔ (∀b ∈ B ∃a ∈ A : a ≼Par b).

We consider an arbitrary relation ≼ on sets and introduce the following definitions.

Definition 2.2. Let A, B ∈ 2X and ≼ be an arbitrary relation on 2X . Then we use

A ≺ B :⇔ (A ≼ B) ∧ (B ⋠ A)

to denote that A is strictly better than B. We further write

A ≡ B :⇔ (A ≼ B) ∧ (B ≼ A)

to denote that A and B are equivalent, and

A ∥ B :⇔ (A ⋠ B) ∧ (B ⋠ A)

to denote that A and B are incomparable. Further, let

A ≽ B :⇔ B ≼ A,

A ≻ B :⇔ B ≺ A.

Set based algorithms such as evolutionary algorithms often work at each time step with a fixed population size µ.
Therefore, we consider subsets of X containing exactly µ elements. The goal is to obtain a set that is a minimal set with
respect to the order ≼dom among all subsets of X having exactly µ elements.

We denote the set of minimal elements containing exactly µ elements of X by Minµ(2X , ≼), i. e.

Minµ(2X , ≼) := Min{R | R ∈ 2X
∧ |R| = µ}.

Note that such a set is also a minimal set among all subsets having less than µ elements according to Definition 2.1.
The relation between two sets A and B is determined by the set of their minimal elements. The following lemma relates

equivalent sets and the set of their minimal objective vectors.
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Algorithm 1: Set-based evolutionary algorithm
1 Create an initial population P consisting of µ individuals;
2 Produce from P an offspring population C consisting of λ individuals;
3 Select a set P ′ with P ′

∈ Minµ(2(P∪C), ≼dom);
4 Set P = P ′;
5 If no termination condition is fulfilled go to step 2;

Lemma 2.3. If A and B are sets of search points, then

A ≡dom B ⇔ Min(f (A), ≼Par) = Min(f (B), ≼Par).

Proof. ‘‘⇒’’: Let A, B ∈ 2X with A ≡dom B. We assume that Min(f (A), ≼Par) ≠ Min(f (B), ≼Par) and show a contradiction.
Let c ∈ A be such that f (c) ∈ Min(f (A), ≼Par) but f (c) /∈ Min(f (B), ≼Par). Since B ≼dom A and f (c) ∈ f (A) but
f (c) /∈ Min(f (B), ≼Par) there exists b ∈ B such that f (b) ∈ Min(f (B), ≼Par) and b ≺Par c. From A ≼dom B we get a ≼Par b for
some a ∈ A. Hence, we have a ≼Par c and f (c) ∈ Min(f (A), ≼Par) implies f (a) = f (c). As a result, we arrive at f (b) ≺Par f (a)
and f (a) ≼Par f (b), i. e., the desired contradiction.

‘‘⇐’’: Let f (a) ∈ f (A). Then there exists f (b) ∈ Min(f (A), ≼Par) such that f (b) ≼Par f (a). Now Min(f (A), ≼Par) =

Min(f (B), ≼Par) implies f (b) ∈ f (B). Hence, we get B ≼dom A. Since in the same way A ≼dom B can be shown, we have
A ≡dom B. �

Evolutionary algorithms work in each iteration with a parent population that creates an offspring population by some
variation operators, such as crossover and mutation. We will treat set-based algorithms in a general way and do not make
any assumptions on how the offspring population is produced. Note that both the parent and offspring population aremulti-
sets, i. e., they may contain search points more than once. Comparing multi-sets with respect to the dominance relation, we
ignore duplicates, i. e. we treat multi-sets as their corresponding sets in 2X .

After the set of offspring has been obtained, the goal is to choose a new parent population such that the process can be
iterated. We assume that the parent population has a fixed number of individuals µ, which is very common in evolutionary
computation. The size of the offspring population is denoted by λ and the goal is to select out of the µ+λ individuals a new
parent population that is a minimal set among all possible subsets consisting of µ individuals.

To make the setting more precise, we examine Algorithm 1. Our algorithm starts with a population consisting of
µ individuals. In each iteration, λ offspring are produced. The new parent population is afterwards chosen as a minimal
element with respect to the set preference relation≼dom among all possible subsets of the parents and offspring that consist
of exactly µ individuals.

Consider a set P ′
∈ Minµ(2(P∪C), ≼) and compare it to P . P ′ is minimal and P ∈ {R : R ∈ 2(P∪C)

∧|R| = µ}which implies
that either

P ′
≼dom P

or

P ′
∥dom P

holds. P ≺dom P ′ would contradict the assumption that P ′ is minimal. If P ′
≺dom P we have obtained a strict improvement

with respect to the dominance relation on sets. P ′
≡dom P gives us an equivalent set and P ′

∥dom P a set that is incomparable.
Evolutionary algorithms in our setting work implicitly on a total relation defined on sets, as an algorithm has tomake the

decision as towhich set to take for the next iteration. Let≼Alg be the total relation on 2X that an algorithm Alg implicitly uses.
In the case that P ′

∥dom P it is not clear which set to favor over the other. In the following discussion, we treat incomparable
sets in the same way as indifferent sets. This is very common in evolutionary multi-objective optimization if no additional
information is available. Later on, we will examine how additional information based on an indicator function can influence
the search.

Algorithm 1 is based on the dominance relation ≼dom on sets. However, it may also move from a set P to P ′ iff P ∥dom P ′,
which is often the case for evolutionary algorithms. The algorithmworks implicitly on the total relation ≼Alg1 on 2X defined
as

A ≼Alg1 B ⇔ (A ≼dom B) ∨ (A ∥dom B)

and may move from P to P ′ iff P ′
≼Alg1 P holds. Note that ≼Alg1 is not necessarily a transitive relation.

3. Computing minimal sets

In this section, we examine how to compute a set contained in Minµ(2(P∪C), ≼dom). We will see that this can be done by
using an iterative algorithm that chooses, in each iteration, aminimal elementwith respect to the Pareto dominance relation
on single points. This is similar to how well known evolutionary algorithms for multi-objective optimization choose their
offspring population. In the following, we present the ideas and basic properties that are necessary to compute such a set in
a precise way.
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Algorithm 2:Minµ(2S, ≼dom)

Input: S with |S| ≥ µ
1 T = ∅;
2 while |T | < µ do
3 Choose an element x ∈ Min(S, ≼Par);
4 T = T ∪ {x};
5 S = S \ {x};

Algorithm 3:Minµ(2S, ≼dom) with preferences
Input: S with |S| ≥ µ

1 T = ∅;
2 while |P| < µ do
3 Choose an element x ∈ Min(S, ≼Par) for which h(P, x) is maximal;
4 T = T ∪ {x};
5 S = S \ {x};

We consider the preorder ≼dom on the subsets of S := P ∪ C with exactly µ elements. To obtain a set T for which
T ∈ Minµ(2S, ≼dom) holds we consider Algorithm 2.

In each iteration, Algorithm 2 chooses one individual x that is minimal with respect to S and ≼Par. This individual is
inserted into T and deleted from S. Iterations continue until µ individuals have been chosen in this way. The following
theorem shows that Algorithm 2 computes a minimal set among all subsets of S that have exactly µ elements.

Theorem 3.1. For the set T produced by Algorithm 2, T ∈ Minµ(2S, ≼dom) holds.

Proof. Algorithm 2 selects an element x if x ∈ Min(S, ≼Par). Hence, x can only be dominated by another y ∈ S that has been
included into T before the selection of x has taken place. This implies that there is no element z in S \ P for which z ≼Par x
holds. Therefore, T ∈ Minµ(2S, ≼dom) holds. �

Next, we want to modify Algorithm 2 such that user preferences can be incorporated. Often, one is not interested only
in an arbitrary set T ∈ Minµ(2S, ≼dom), but rather a set fromMinµ(2S, ≼dom) having additional properties. In the process of
constructing the set T , we use a heuristic function

h : 2X
× X → R

which determines the choice of the next minimal element that should be included into T depending on the already chosen
elements and the available minimal elements.

Algorithm 3 computes a minimal set of elements taking into account a heuristic function h. This function can be used
to incorporate information on how the chosen points should relate to each other. As Algorithm 3 selects in each iteration a
minimal element from the remaining set, we can state the following corollary.

Corollary 3.2. For the set T produced by Algorithm 3, T ∈ Minµ(2S, ≼dom) holds.

Wehave shown two simple algorithms for computing aminimal set. Note thatmanywell-knownevolutionary algorithms
for multi-objective optimization such as NSGA-II [10] and SPEA2 [29] use a similar approach to compute the next parent
population. In fact, it can be shown by similar arguments that they also compute a set in Minµ(2S, ≼dom).

4. Deteriorative cycles

In this section, we examine algorithms that always compute a minimal set among all possible sets consisting of µ
individuals. We point out that using just the preference order on the different subsets of P ∪ C may lead to cycles in the
optimization process, i. e., the algorithmmay return to a set of search points that has already been obtained. Even worse, we
show that the algorithm may return to a set of search points that is strictly dominated by another set of search points that
has been obtained at an earlier stage of the optimization process.

4.1. The problem of deteriorative cycles

It should be noted that using an approach that chooses an arbitrary set of Minµ(2(P∪C), ≼dom) may create cycles. In
particular, we show by example that things might get worse during the optimization process according to the preorder
≼dom. We call such cycles deteriorative; a precise definition follows.
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Fig. 1. Objective space for deteriorative cycle based on Pareto-dominance relation.

Definition 4.1 (Deteriorative Cycle). A relation ≼ on 2X contains a deteriorative cycle iff there is a sequence of sets
A1, A2, . . . Ar ∈ 2X with

A1 ≼ A2 ≼ · · · ≼ Ar−1 ≼ Ar ≼ A1

and Ai ≺dom A1 for some i ∈ {1, . . . , r}.
As a special case, we also introduce the notion of a strict deteriorative cycle, which is the one used in [2]. This definition

requires that at least one step in the cycle represents a strict improvement with respect to the dominance relation.
Definition 4.2 (Strict Deteriorative Cycle). A relation ≼ on 2X contains a strict deteriorative cycle iff there is a sequence of
sets A1, A2, . . . Ar ∈ 2X with

A1 ≼ A2 ≼ · · · ≼ Ar−1 ≼ Ar ≼ A1

and Ar ≺dom A1.
Note that if a cycle C is a strict deteriorative cycle according to Definition 4.2, then C is also a deteriorative cycle according

to Definition 4.1. The reverse is not true, andwewill discuss the definitions in greater detail to follow. Note that for transitive
relations, the two definitions are equivalent.

To illustrate the problem that deteriorative cycles may produce in the optimization process, we consider a simple
example given in Fig. 1, together with Algorithm 1. For simplicity, we assume that |P| = |C | = 1 and that the three sets
consist of exactly one element. We have

{a} ∥dom {b} ⇒ {a} ≼Alg1 {b} ∧ {b} ≼Alg1 {a}
{b} ≻dom {c} ⇒ {b} ≻Alg1 {c}
{a} ∥dom {c} ⇒ {a} ≼Alg1 {c} ∧ {c} ≼Alg1 {a}.

The relation ≼Alg1 contains a strict deteriorative cycle according to Definition 4.2, as
{b} ≽Alg1 {c} ≽Alg1 {a} ≽Alg1 {b}.

and
{b} ≻dom {c}.

Next, we describe how Algorithm 1 may produce this cycle during the optimization process. Assume that the algorithm
starts with the population P1 = {b} and produces the first offspring c. Due to Pareto-dominance {c} ≺Alg1 P1 holds, and
P2 = {c} becomes the new parent population. The offspring of P2 is a, {a} is incomparable to P2, and therefore {a} ≼Alg1 P2.
Hence, P3 = {a}maybe the newparent population. Similar, bmaybe the next offspring, and the set {b} = P1 is incomparable
to P3 ({b} ≼Alg1 P3), so the algorithm may proceed to P4 = {b} = P1, creating a deteriorative cycle.

Looking at the example, we can also observe that deteriorative cycles do not have to contain single steps that are strict
improvements with respect to the dominance relation.

According to Definition 4.1, the cycle
{b} ≽Alg1 {a} ≽Alg1 {c} ≽Alg1 {a} ≽Alg1 {b}

and
{b} ≻dom {c}

is a (non-strict) deteriorative cycle. It consists only of steps between incomparable search points and allows going from {b} to
{c}, where {b} ≻dom {c}, and afterwards back to {b}. However, it is not a strict deteriorative cycle according to Definition 4.2,
as it does not include a single step that is a strict improvement with respect to the dominance relation.
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Algorithm 4: Cycle-free Optimizer
1 Choose an initial population P consisting of µ individuals;
2 Produce an offspring population C;
3 Compute a minimal set P ′

∈ Minµ(2(P∪C), ≼dom) using Algorithm 2 or 3;
4 if (P ′

≺dom P) ∨ (P ′
≡dom P) ∨ (P ′

≼I P) then P := P ′;
5 if no stopping criteria is fulfilled then go to step 2;

4.2. Coping with deteriorative cycles

We have seen that using just the preference relation on sets and allowing moves between incomparable sets may lead
to a deteriorative cyclic behavior. This is due to the fact that evolutionary multi-objective optimization has to deal with
incomparable sets. An algorithm relying just on the generalized dominance relation on sets and selecting arbitrarily between
incomparable sets may accept a set of search points A that is strongly dominated by another set B that has been obtained
before A.

Now, we examine how to deal with the cyclic behavior. We discuss the properties of ≼ that result in it not containing a
deteriorative cycle. The first criterion is that it is compliant with the Pareto dominance relation.

Definition 4.3. A relation ≼ on 2X is Pareto-compliant if

A ≺dom B ⇒ A ≺ B.

A relation ≼ is strictly Pareto-compliant if, additionally,

A ≡dom B ⇒ A ≡ B.

This definition deviates slightly from the use of the terms Pareto-compliant and strictly Pareto-compliant in [18,32]. Note
that if ≼ is strictly Pareto-compliant, then

A ≼dom B ⇒ A ≼ B.

Definition 4.3 states that the relation ≼ is Pareto-compliant if it can also distinguish between sets that strictly dominate
each other. Note that ≼ is Pareto compliant iff it is a refinement of the Pareto dominance relation ≼dom on sets in terms of
Zitzler et al. [31].Wehave seen that just Pareto-compliance alonedoes not preclude cyclic behavior, as the Pareto-dominance
relation is itself Pareto-compliant. To avoid cyclic behavior, we need an additional property.

Definition 4.4. A relation ≼ on 2X is called transitive if
(A ≼ B) ∧ (B ≼ C)


⇒ A ≼ C .

We now show that a relation ≼ that is Pareto compliant and transitive does not contain a deteriorative cycle. We will use
this property later on to show which algorithms do not encounter a deteriorative cycle.

Theorem 4.5. If ≼ is Pareto-compliant and transitive then ≼ does not contain a deteriorative cycle.

Proof. We prove the theorem by contradiction. Assume that ≼ contains a deteriorative cycle consisting of sets
A1, A2, . . . , Ar ∈ 2X with

A1 ≼ A2 ≼ · · · ≼ Ar−1 ≼ Ar ≼ A1

and Ar ≺dom A1.
By transitivity of ≼, we get A1 ≼ Ar . As ≼ is also Pareto-compliant, we know from Ar ≺dom A1 that Ar ≺ A1 and hence by

definition of ≺, A1 ⋠ Ar which contradicts A1 ≼ Ar . Hence ≼ cannot contain a deteriorative cycle. �

We want to modify Algorithm 1 such that the underlying relation does not contain a deteriorative cycle. Algorithm 4
differs from Algorithm 1 by using an additional relation ≼I in the case that P ′

∥dom P holds.
Step 4 should be read like a short-circuit evaluation of Boolean operators in most modern programming languages. That

is, if P ′
≺dom P or P ′

≡dom P , the algorithm can decide to choose P ′ without calculating the (usually much more expensive)
relation ≼I . This way, the algorithm works on the underlying relation ≼Alg4 given by

A ≼Alg4 B :⇔ (A ≼dom B) ∨ ((A ∥dom B) ∧ (A ≼I B)).

If ≼I is strictly Pareto compliant then ≼Alg4=≼I . If ≼I is in also transitive, then ≼Alg4=≼I does not contain a deteriorative
cycle. We state this property in the following corollary.

Corollary 4.6. If ≼I is strictly Pareto compliant and transitive then ≼Alg4 does not contain a deteriorative cycle.
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5. Unary indicators

We now want to examine the common approach to define refinements via indicator functions (see e. g. [31]). In this
section, we focus on unary indicator functions, while the next section examines binary indicator functions. Unary indicator
functions assign to each set a real number that in some way reflects the set’s quality, i.e.,

I1 : 2X
→ R.

To define a relation based on a unary indicator function, we use the following definition.

Definition 5.1. For a unary indicators I1 we set

A ≼I1 B :⇔ I1(A) ≤ I1(B),
A ≺I1 B :⇔ I1(A) < I1(B).

Note that the relation ≼I1 is total and also transitive, as the order on real values forms a transitive relation.
Also observe the following simple property, which follows directly from Theorem 4.5 and Corollary 4.6.

Lemma 5.2. Let I be a unary indicator.

• If the corresponding relation ≼I is Pareto-compliant, then ≼I contains no deteriorative cycles.
• If the corresponding relation ≼I is strictly Pareto-compliant, then ≼Alg4=≼I contains no deteriorative cycles.

5.1. The hypervolume indicator with a fixed reference point

Lemma 5.2 shows that unary indicators can, in a natural way, help to avoid the problem of cyclic behavior. It also shows
why the property of Pareto-compliance is especially important for unary indicators. Unfortunately, there is currently only
one unary indicator known that is Pareto-compliant [32], that is, given two sets A and B the indicator values A higher than B
if A dominates B. This is the hypervolume indicator. For minimization problems, it measures the volume of the dominated
portion of the objective space relative to a reference point R = (R1, R2, . . . , Rd) ∈ Rd that lies above the Pareto front.

For our following investigations, we assume that the reference point does not change during the run of the algorithm. In
our setting, where an indicator should be minimized, the hypervolume indicator of a set of solutions A ∈ 2X can be defined
as

IRHYP(A) := −vol
 

x∈A

[f1(x), R1] × · · · × [fd(x), Rd]


with vol(·) being the usual Lebesguemeasure. Note thatminimizing IRHYP(A) is equivalent tomaximizing the volume covered
by A with respect to the reference point R. As the reference point R is fixed in this section, we just set IHYP := IRHYP. The
hypervolume indicator was first introduced for performance assessment in multiobjective optimization by Zitzler and
Thiele [30] and hypervolume-based optimizers have become very popular in recent years (see e.g. [4,15,28]). Besides being
the only known Pareto-compliant indicator, another distinctive theoretical property is that the worst-case approximation
factor of all possible Pareto fronts obtained by any hypervolume-optimal set of fixed sizeµ is asymptotically equal to the best
worst-case approximation factor achievable by any set of sizeµ, namelyΘ(1/µ) for additive approximation and 1+Θ(1/µ)
for multiplicative approximation [7,6].

The problemwith the hypervolume indicator is that it is computationally expensive, i. e., the runtime for the computation
of the hypervolume for a given set of search points grows exponentially with the number of objectives [5]. In contrast, the
test of whether A ≼dom B holds can always be done in time polynomial in the size of the given two sets and the number of
objectives.

The following theorem describes another nice property of the hypervolume indicator.

Theorem 5.3. Let A, B ∈ 2X . If A ≡dom B then IHYP(A) = IHYP(B) holds.

Proof. Let A ≡dom B. Then Lemma 2.3 implies Min(f (A), ≼Par) = Min(f (B), ≼Par). As the hypervolume of a given set of
points is only determined by its set of minimal elements in the objective space, this implies HYP(A) = HYP(B). �

Note that the above theorem actually holds not only for HYP, but for all unary indicators whose value depends only on
the minimal elements in the objective space.

5.2. The hypervolume indicator with a dynamically changing reference point

Some variants of hypervolume-based multi-objective evolutionary algorithms such as the SMS-EMOA [4] work with a
dynamically changing reference point. Convergence rates of a (1+1)-SMS-EMOA have been recently examined in [3]. The
authors of this paper showed that the (1+1)-SMS-EMOA has a sub-linear convergence rate for strongly convex quadratic



10 R. Berghammer et al. / Theoretical Computer Science 456 (2012) 2–17

objective functions with two objectives. In the following discussion, we show that the (1+1)-SMS-EMOA working on at
least three objectives may encounter the problem of deteriorative cycles. This matches the experimental findings of Judt
et al. [17], who observed that the dominated hypervolume of SMS-EMOA with incorporated reference point adaptation can
decrease in the course of the optimization process.

In the SMS-EMOA, the reference point is updated in each iteration of the algorithm and depends on the current set of
search points.

Let S be a given set of search points. Then the reference point R(S) = (R1, R2, . . . , Rd) ∈ Rd is given by
Ri(S) = 1 + max

x∈S
fi(x), 1 ≤ i ≤ d.

This leads to a new relation ≼IdynHYP
on 2X , defined as

A ≼IdynHYP
B :⇔


IR(A∪B)
HYP (A) ≤ IR(A∪B)

HYP (B)

.

The hypervolume indicator working with a dynamically changing reference point is still Pareto compliant. This is a direct
consequence of the Pareto compliance of the hypervolume indicator for a fixed reference point. It holds as the set under
consideration completely determines the reference point to work with.
Theorem 5.4. Let A, B ∈ 2X . If A ≼dom B then A ≼IdynHYP

B.

However, by changing the reference point, we lose transitivity, which can lead to the problem of deteriorative cycles. We
will now show that a changing reference point may produce the problem of deteriorative cycles.
Theorem 5.5. For sets of size one in more than two dimensions the hypervolume based evolutionary algorithms using a
dynamically changing reference point may encounter deteriorative cycles.
Proof. We choose four search points a, b, c, d ∈ X with objective vectors f (a) = (2, 2, 4), f (b) = (1, 2, 4), f (c) = (3, 4, 1),
and f (d) = (7, 1, 1) and show that these four points build a deteriorative cycle for≼IdynHYP

. As we are looking at minimization,
b clearly dominates a, that is, {b} ≺dom {a}. We further observe {a} ≺IdynHYP

{c} as R({a, c}) = (4, 5, 5) and

IR({a,c})HYP ({a}) = −2 · 3 · 1 = −6 <= −4 = −1 · 1 · 4 = IR({a,c})HYP ({c}).
Also {c} ≺IdynHYP

{d} as R({c, d}) = (8, 5, 2) and

IR({c,d})HYP ({c}) = −5 · 1 · 1 = −5 <= −4 = −1 · 4 · 1 = IR({c,d})HYP ({d}).
The deteriorative cycle is then closed by {d} ≺IdynHYP

{b} as R({d, b}) = (8, 3, 5) and

IR({d,b})HYP ({d}) = −1 · 2 · 4 = −8 <= −7 = −7 · 1 · 1 = IR({d,b})HYP ({b}).
Overall, this shows

{b} ≺dom {a} ≺IdynHYP
{c} ≺IdynHYP

{d} ≺IdynHYP
{b},

which finishes the proof. �

We have seen that the hypervolume-based multi-objective evolutionary algorithms working with a fixed reference
point during the whole run of the algorithm do not encounter the problem of deteriorative cycles. This is different for
hypervolume-based evolutionary algorithms such as the SMS-EMOA [4] that choose the reference point in each step
depending on the current set of search points. Even simple variants of these algorithms such as (1+1)-SMS-EMOA [3]
encounter the problem of deteriorative cycles if the number of objectives is at least three and therefore may not converge.

6. Binary indicators

Though the hypervolume indicator is currently the only known Pareto-compliant unary indicator, there are several
Pareto-compliant binary indicators. This give some hope of finding a Pareto-compliant indicator that also contains no
deteriorative cycles but is computationally less expensive than the hypervolume indicator.

Binary indicator functions assign to pairs of sets a real number that in some way reflects their relative performance, i.e.,
I2 : 2X

× 2X
→ R.

To define a relation based on a binary indicator function, we use the following definition.
Definition 6.1. For a binary indicator I2 we set

A ≼I2 B :⇔ I2(A, B) ≤ I2(B, A),

A ≺I2 B :⇔ I2(A, B) < I2(B, A).

Zitzler et al. [32]mention four Pareto-compliant binary indicators: themultiplicative ε-indicator, the additive ε-indicator,
the coverage indicator [30], and the binary hypervolume indicator. However, binary indicators are not transitive in general.
Therefore there is no equivalent of Lemma 5.2 for binary indicators.
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6.1. ε-indicator

In the following, we focus on the ε-indicators, which are very popular in evolutionary multi-objective optimization. We
follow the definitions of Zitzler et al. [32] for themultiplicative and additive ε-dominance relation. We assume ε > 0. Recall
that the objective space is non-negative, that is, Rd

≥0.

Definition 6.2. A search point a ∈ X is said to multiplicatively ε-dominate another search point b ∈ X written as a ≼ε∗ b,
if and only if

fi(a) ≤ ε fi(b) for all 1 ≤ i ≤ n.

The binary multiplicative ε-indicator Iε∗ on 2X
× 2X is

Iε∗(A, B) := max
b∈B

min
a∈A

max
1≤i≤n

fi(a)/fi(b).

Definition 6.3. A search point a ∈ X is said to additively ε-dominate another search point b ∈ X written as a ≼ε+ b, if and
only if

fi(a) ≤ ε + fi(b) for all 1 ≤ i ≤ n.

The binary additive ε-indicator Iε+ on 2X
× 2X is

Iε+(A, B) := max
b∈B

min
a∈A

max
1≤i≤n

fi(a) − fi(b).

We will analyze the corresponding relations ≼Iε∗ and ≼Iε+ as defined in Definition 6.1. To simplify the notation, we set

≼ε∗:=≼Iε∗ and ≼ε+:=≼Iε+ .

Let further ≺ε∗ and ≺ε+ have their obvious meaning. We can show that ≼ε∗ and ≼ε+ are strictly Pareto-compliant.

Lemma 6.4. ≼ε∗ and ≼ε+ are strictly Pareto-compliant.

Proof. Let A ≺dom B. Then by Definition 6.2, Iε∗(A, B) ≤ 1, and Iε∗(B, A) > 1 and therefore A ≺ε∗ B. Analogously by
Definition 6.2, Iε+(A, B) ≤ 0 and Iε+(B, A) > 0 and therefore A ≺ε+ B. This shows that ≼ε∗ and ≼ε+ are Pareto-compliant.

In order to prove that they are also strictly Pareto-compliant, let A ≡dom B. Then by Lemma 2.3, Min(f (A), ≼Par) =

Min(f (B), ≼Par) and therefore Iε∗(A, B) = Iε∗(B, A) = 1 and Iε+(A, B) = Iε+(B, A) = 0, which is equivalent to A ≡ε∗ B and
A ≡ε+ B. �

This shows that ≼ε∗ and ≼ε+ are strictly Pareto-compliant. Therefore by Corollary 4.6 it suffices to show that they are
also transitive in order to prove that they contain no deteriorative cycle. Unfortunately, in most cases this does not hold.

In the remainder of this section, we examine for what sets the relations ≼ε∗ and ≼ε+ contain deteriorative cycles. More
precisely, we will prove the following dichotomy.

Theorem 6.5. Let s ≥ 1 and d ≥ 2. Then the relations ≼ε∗ and ≼ε+ restricted to sets of size ≤ s in d dimensions do not contain
deteriorative cycles if and only if s = 1 and d = 2.

This implies that the relations ≼ε∗ and ≼ε+ contain no deteriorative cycles only in the simplest case of singleton sets in
two dimensions. We prove Theorem 6.5 in the following Lemmas 6.6–6.8.

6.2. Nonexistence of deteriorative cycles for sets of size one in two dimensions

We first give a positive result and show that the relations ≼ε∗ and ≼ε+ do not contain deteriorative cycles if we consider
only singleton sets in two dimensions.

Lemma 6.6. For sets of size one in two dimensions, the relations ≼ε∗ and ≼ε+ do not contain deteriorative cycles.

Proof. According to Theorem 4.5 and Lemma 6.4, it suffices to show that ≼ε∗ and ≼ε+ are transitive. Let us consider three
arbitrary points a, b, c ∈ X with f (a) = (ax, ay), f (b) = (bx, by) and f (c) = (cy, cy). We want to show that

({a} ≼ε∗ {b}) ∧ ({b} ≼ε∗ {c})


⇒ {a} ≼ε∗ {c}. (1)

By definition,

{a} ≼ε∗ {b}
⇔ Iε∗({a}, {b}) ≤ Iε∗({b}, {a})

⇔


max


ax
bx

,
ay
by


≤ max


bx
ax

,
by
ay


.
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Analogously,

{b} ≼ε∗ {c}
⇔ Iε∗({b}, {c}) ≤ Iε∗({c}, {b})

⇔


max


bx
cx

,
by
cy


≤ max


cx
bx

,
cy
by


.

We first observe that if (a ≼ b) ∨ (b ≼ c), then in this case, {a} ≼ε∗ {b} and {b} ≼ε∗ {c} implies {a} ≼ε∗ {c}.
We now work under the assumption that (a ∥ b) ∧ (b ∥ c). As (a ∥ b) ∧ (b ∥ c), one of the terms in each maximum

computation above is greater than 1 and one term is smaller than 1.
Without loss of generality, we can assume ax

bx
> 1 and ay

by
< 1. The opposite case ax

bx
< 1 and ay

by
> 1 can be handled in

an analogous way by symmetric arguments.
As wewant to show Eq. (1), ({a} ≼ε∗ {b}) implies that ax

bx
≤

by
ay
. We now distinguish the two cases (1)


bx
cx

> 1 ∧
by
cy

< 1


and (2)


bx
cx

< 1 ∧
by
cy

> 1

.

(1) If bx
cx

> 1 ∧
by
cy

< 1, then ({b} ≼ε∗ {c}) implies that bx
cx

≤
cy
by
, and we get

ax
bx

·
bx
cx

=
ax
cx

≤
by
ay

·
cy
by

=
cy
ay

.

Since both sides of the inequality are greater than 1, we get ({a} ≼ε∗ {c}).
(2) If bx

cx
< 1 ∧

by
cy

> 1, then ({b} ≼ε∗ {c}) implies that by
cy

≤
cx
bx
, and we get

ax
bx

·
by
cy

≤
by
ay

·
cx
bx

.

Wemultiply both sides with bx
cx

·
cy
by

< 1 and get

ax
cx

≤
cy
ay

.

We get three subcases depending on the ratios ax
cx

and cy
ay
.

(a) If ax
cx

≥ 1 then 1 ≤
ax
cx

≤
cy
ay

implies ({a} ≼ε∗ {c}) .

(b) If ax
cx

< 1 and cy
ay

< 1 then 1 <
ay
cy

≤
cx
ax

and this implies ({a} ≼ε∗ {c}).

(c) If ax
cx

< 1 and cy
ay

> 1 then a ≼ c and therefore ({a} ≼ε∗ {c}).

This shows Eq. (1) and the claim of the theorem for the multiplicative ε-relation. The proof for the additive ε-relation
can be obtained in an analogous way by considering the differences α − β instead of the fractions α

β
. �

6.3. Existence of deteriorative cycles for sets of size one in three dimensions

In Lemma6.6we showed that for sets of size one in twodimensions the relations≼ε∗ and≼ε+ donot contain deteriorative
cycles. We now prove that even for three dimensions this no longer holds.

Lemma 6.7. For sets of size one in more than two dimensions the relations ≼ε∗ and x ≼ε+ contain deteriorative cycles.

Proof. We choose four points a, b, c, d ∈ X with f (a) := (1, 2, 4), f (b) := (1, 1, 4), f (c) := (3, 3, 1), f (d) := (4, 1, 2) and
show that these four points build a deteriorative cycle for both ε-dominance relations. Let us first look at the multiplicative
ε-dominance relation. As we are looking at minimization problems, b clearly dominates a, that is, {b} ≺dom {a}. On the other
hand, {c} ≺ε∗ {b}, since

Iε∗({c}, {b}) = 3 < 4 = Iε∗({b}, {c}).

Also, {d} ≺ε∗ {c}, since

Iε∗({d}, {c}) = 2 < 3 = Iε∗({c}, {d}).

The deteriorative cycle is then closed by {a} ≺ε∗ {d}, since

Iε∗({a}, {d}) = 2 < 4 = Iε∗({d}, {a}).

Overall, {a} ≺ε∗ {d} ≺ε∗ {c} ≺ε∗ {b} ≺dom {a}.
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Fig. 2. Illustration of the sets used in the proof of Lemma 6.8.

It remains to show that the same points form a deteriorative cycle for the additive ε-dominance relation. It is easy to see
that

Iε+({c}, {b}) = 2 < 3 = Iε+({b}, {c}),
Iε+({d}, {c}) = 1 < 2 = Iε+({c}, {d}),
Iε+({a}, {d}) = 2 < 3 = Iε+({d}, {a}),

and therefore {a} ≺ε+ {d} ≺ε+ {c} ≺ε+ {b} ≺dom {a}, which finishes the proof. �

6.4. Existence of deteriorative cycles for sets of size two in two dimensions

To complete the dichotomy of the relations ≼ε∗ and ≼ε+, it remains to prove that in two dimensions as well, sets of size
more than one give deteriorative cycles.

Lemma 6.8. For sets of size more than one in two dimensions, the relations ≼ε∗ and x ≼ε+ contain deteriorative cycles.

Proof. We choose a, b, c, d ∈ X such that

P1 := {a, b}, with f (a) := (10, 16),
P2 := {c, b}, f (b) := (5, 12),
P3 := {a, d}, f (c) := (13, 11),
P4 := {d, c}, f (d) := (17, 5).

Fig. 2 gives an illustration of the four sets.
We want to show that these four sets P1, P2, P3, P4 form a deteriorative cycle. It is easy to see that P1 ≺dom P2. We first

examine the multiplicative ε-dominance relation and prove that P1 ≺dom P2 ≺ε∗ P3 ≺ε∗ P4 ≺ε∗ P1.
Observe that P2 ≺ε∗ P3 holds, as

Iε∗(P3, P2) = max

min


max


10
13

,
16
11

,


,max


17
13

,
5
11

,


,

min

max


10
5

,
16
12

,


,max


17
5

,
5
12

,


= max {17/13, 2} = 2 < 2.2 = max {3/4, 11/5}

= max

min


max


13
10

,
11
16

,


,max


5
10

,
12
16

,


,

min

max


13
17

,
11
5

,


,max


5
17

,
12
5

,


= Iε∗(P2, P3),
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and P3 ≺ε∗ P4 holds, as

Iε∗(P4, P3) = max

min


max


17
10

,
5
16

,


,max


13
10

,
11
16

,


,

min

max


17
17

,
5
5
,


,max


13
17

,
11
5

,


= max {13/10, 1} = 1.3 < 1.308... = max {1, 17/13}

= max

min


max


10
17

,
16
5

,


,max


17
17

,
5
5
,


,

min

max


10
13

,
16
11

,


,max


17
13

,
5
11

,


= Iε∗(P3, P4).

It remains to show P4 ≺ε∗ P1, which holds since

Iε∗(P1, P4) = max

min


max


10
17

,
16
5

,


,max


5
17

,
12
5

,


,

min

max


10
13

,
16
11

,


,max


5
13

,
12
11

,


= max {12/5, 12/11} = 2.4 < 2.6 = max {13/10, 13/5}

= max

min


max


17
10

,
5
16

,


,max


13
10

,
11
16

,


,

min

max


17
5

,
5
12

,


,max


13
5

,
11
12

,


= Iε∗(P4, P1).

This shows the claim for the multiplicative ε-dominance relation. We now prove that the same sets also contain a
deteriorative cycle in the case of the additive ε-dominance relation. We have P2 ≺ε∗ P3 as

Iε+(P3, P2) = max {min {max {−3, 5} ,max {4, −6}} ,

min {max {5, 4} ,max {12, −7}}}
= max {4, 5} = 5 < 6 = max {−4, 6}
= max {min {max {3, −5} ,max {−5, −4}} ,

min {max {−4, 6} ,max {−12, 7}}}
= Iε+(P2, P3),

and P3 ≺ε∗ P4 as

Iε+(P4, P3) = max {min {max {7, −11} ,max {3, −5}} ,

min {max {0, 0} ,max {−4, 6}}}
= max {3, 0} = 3 < 4 = max {0, 4}
= max {min {max {−7, 11} ,max {0, 0}} ,

min {max {−3, 5} ,max {4, −6}}}
= Iε+(P3, P4),

and P4 ≺ε∗ P1 as

Iε+(P1, P4) = max {min {max {−7, 11} ,max {−12, 7}} ,

min {max {−3, 5} ,max {−8, 1}}}
= max {7, 1} = 7 < 8 = max {3, 8}
= max {min {max {7, −11} ,max {3, −5}} ,

min {max {12, −7} ,max {8, −1}}}
= Iε+(P4, P1).

This shows P1 ≺dom P2 ≺ε+ P3 ≺ε+ P4 ≺ε+ P1 and finishes the proof. �
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Algorithm 5: Framework for RLS
1 Choose x uniformly at random from {0, 1}n.;
2 repeat
3 Flip one bit chosen uniformly at random from x to obtain an offspring x′;
4 if selection favors x′ over x then x := x′;
5 until stopped;

7. Impact on the runtime behavior

In this section, we point out the impact of deteriorative cycles by rigorous runtime analysis.We study simple randomized
search heuristics and show how they significantly differ in their runtime behavior when incurring or avoiding deteriorative
cycles.

We consider different variants of randomized local search, which work with one single solution at a time. They differ
from each other in the way they accept new search points. The framework of the algorithm is shown in Algorithm 5 and
motivated by studies carried out in [13].

Our algorithmsdiffer fromone anotherwith respect to the selectionmechanism, i. e., when to favor x′ over x.We study the
runtime behavior of different randomized local search variants in the asymptotic sense andmeasure runtime by the number
of iterations of the repeat loop until an algorithm has produced an optimal solution for the first time. As we are interested in
the asymptotic behavior, we assume that the problem size is large enough. For our analysis, it suffices to assume that n ≥ 2
holds.

The first selectionmethods are taken fromGiel and Lehre [13] and take into account only the dominance relation between
search points.

• RLSweakest : Favor x′ over x iff (x′
≽dom x) ∨ (x′

∥dom x)
• RLSweak: Favor x′ over x iff (x′

≽dom x)
• RLSstrong : Favor x′ over x iff (x′

≻dom x).

In addition, we examine the approach of using the hypervolume indicator for a fixed reference point r . We already
know that this approach avoids the problem of deteriorative cycles. We choose the reference point r = (0, 0) and consider
bi-objective problems where both objectives have to be maximized. The hypervolume HYP(x) of a solution x is given by
HYP(x) = f1(x) · f2(x) when considering a problem f = (f1, f2) consisting of two objectives that have to be maximized.
Selecting for our algorithm called RLSHYP is done in the following way.

• RLSHYP: Favor x′ over x iff HYP(x′) ≥ HYP(x).

To point out the differences of the introduced algorithms with respect to the runtime behavior, we investigate a function
motivated by the function Short-Path with constant fitness (SPC) introduced by Jansen and Wegener [16]. To be compliant
with the definitions in this paper, we consider a problem where both objectives have to be maximized.

Let
PL = {1i0n−i

| 0 ≤ i ≤ n − 1}
and

LO(x) =

n
i=1

i
j=1

xj

be the number of leading ones in a search point x. The function Multi-Objective Short-Path with incomparable fitness
(MOSPI) is defined as

MOSPI(x) =


(|x|0, |x|0) if x ∉ PL ∪ {1n

}

(n + LO(x), n + LO(x)) if x ∈ PL and LO(x) is even
(n + LO(x) + 2, n + LO(x) − 2) if x ∈ PL and LO(x) is odd
(3n, 3n) if x = 1n.

MOSPI has the following structure, which is the same as the one of the function SPC when considering only direct Hamming
neighbors. As long as the current solution of the algorithm is not in PL ∪ {1n

}, it is always beneficial tomaximize the number
of zeros. Such steps are strict improvements according to the dominance relation and therefore accepted by each of our
algorithms. After having obtained a solution of PL ∪ {1n

}which is not optimal, RLSweakest may switch between incomparable
solutions having Hamming distance 1, whereas RLSweak and RLSstrong do not accept incomparable solutions. The optimal
solution, which is the search point 1n, can only be obtained by switching between incomparable solutions of PL.

This leads to the following result for RLSweak and RLSstrong which shows that they are, with high probability, not able to
achieve an optimal solution. For the proof we can follow the ideas of Jansen andWegener [16] for the analysis of (1+1) EA*
(for the results of RLSweak and RLSstrong ) and (1+1) EA (for the results of RLSweakest ) on the function SPC. We will state the
theorems and present the main ideas of [16] leading to the runtime results of the mentioned algorithms.
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Theorem 7.1. With probability 1 − e−Ω(n) the time until RLSweak and RLSstrong have obtained an optimal solution of MOSPI is
infinite.

Proof. The initial solution has at most 2n/3 1-bits with probability 1−e−Ω(n) using Chernoff bounds [22]. After this, RLSweak
and RLSstrong can only accept a solutionwith a larger number of oneswhen producing a solution of PL ∪ {1n

} for the first time.
This solution has with probability 1 − e−Ω(n) a Hamming distance greater than 1 to the optimal solution 1n and therefore
both algorithms are not able to achieve the optimum. �

RLSweakest has the ability to switch between incomparable solutions, which enables the algorithm to perform a random
walk on PL. This leads to a runtime bound of Θ(n3) for obtaining an optimal solution.

Theorem 7.2. The expected time until RLSweakest has obtained an optimal solution of MOSPI is Θ(n3).

Proof. A solution of PL∪ {1n
} is produced after an expectednumber ofO(n log n) steps,which can be shownby themethodof

fitness-based partitions (see e. g. [23]). Afterwards the algorithm increases and decreases with equal probability the number
of ones. This leads to a randomwalk on PL whereas the number of search points of PL ∪ {1n

} is n+ 1. The expected waiting
time for one step is Θ(n) and the expected number of steps to reach the optimal solution is Θ(n2), following random walk
arguments (see proof of Theorem 1 in [8]), which leads to the claimed bound of Θ(n3). �

The randomwalk slows down the process, as it has to cope with deteriorative cycles. Being able to avoid these cycles and
staying compliant with the dominance relation enables the algorithm using the hypervolume indicator to reach the optimal
solution more quickly.

Theorem 7.3. The expected time until RLSHYP has obtained an optimal solution of MOSPI is O(n2).

Proof. Similar to RLSweak, RLSHYP reaches a solution of PL ∪ {1n
} after an expected number of O(n log n) steps. We consider

the value of the hypervolumeof a point of PL. If LO(x) is even, the hypervolume is (n+LO(x))2. If LO(x) is odd the hypervolume
is (n + LO(x) + 2) · (n + LO(x) − 2) = (n + LO(x))2 − 4.

Assume that x ∈ PL and let x′ be the solution of PL ∪ {1n
} with LO(x′) = LO(x) + 1. We claim that HYP(x′) > HYP(x).

If LO(x) is even, then

HYP(x) = (n + LO(x))2 < (n + LO(x) + 1)2 − 4

= (n + LO(x))2 + 2(n + LO(x)) + 1 − 4

≤ HYP(x′)

as long as n ≥ 2.
If LO(x) is odd, then

HYP(x) = (n + LO(x))2 − 4 < (n + LO(x) + 1)2

= (n + LO(x))2 + 2(n + LO(x)) + 1

≤ HYP(x′).

Furthermore, observe that if x ∈ PL ∪ {1n
} then HYP(x) ≥ n2 which is strictly greater then HYP(x′) ≤ (n − 1)2 for

x′
∉ PL ∪ {1n

}. This implies that if it has reached a solution x ∈ PL, then it only accepts a solution x′ of PL ∪ {1n
} with

LO(x′) ≥ LO(x). The probability of producing a solution x′
∈ PL ∪ {1n

} with LO(x′) > LO(x) is Ω(1/n), as the leftmost 0-bit
can be flipped as long as an optimal solution has not been obtained. The expected waiting time for such a step is therefore
O(n) and the number of improvements necessary to achieve the optimal solution is O(n) as well. This shows an upper bound
of O(n2) on the expected time until RLSHYP has obtained an optimal solution of MOSPI. �

8. Conclusions

Evolutionary algorithms for multi-objective optimization search for a set of search points that is minimal with respect to
the Pareto dominance relation on sets. This optimization goal has been made explicit recently in Zitzler et al. [31]. With this
paper, we have contributed to the theoretical understanding of this optimization process by investigating the underlying
relation that an evolutionary algorithm uses for optimization. First, we have shown how to choose a minimal set among
the parents and children to build the next parent population. Our algorithms are similar to the method used in NSGA-II and
SPEA2 and allow the incorporation of preferences into the computation of a minimal set.

Later on, we pointed out that algorithms that are solely based on the Pareto dominance relation may encounter
deteriorative cycles if they can move between incomparable sets. This is due to the fact that the Pareto dominance relation
is not a total relation.We have examined how such cycles can be avoided by using indicator functions on incomparable sets.
Our studies show that if the total relation on which an algorithmworks is Pareto compliant and transitive, then the relation
does not contain a deteriorative cycle. Investigating the binary ε-indicator, which is Pareto compliant, we have shown that
it is transitive only for very restricted cases andmay lead to deteriorative cycles in general. Unary indicators are in a natural
way transitive and therefore each unary indicator that is Pareto compliant fulfills our conditions. An indicator matching
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the desired properties is the hypervolume indicator when a fixed reference point is used during the run of the algorithm.
Therefore, our studies give a further justification for using this indicator that has become very popular in evolutionarymulti-
objective optimization. It remains an open problem to construct unary indicators that are Pareto compliant and cheaper to
compute than the hypervolume indicators. Thiswould help to guide the searchwith respect to the Pareto dominance relation
on sets in a more efficient way.
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