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Abstract. There are hundreds of online social networks with billions
of users in total. Many such networks publicly release structural infor-
mation, with all personal information removed. Empirical studies have
shown, however, that this provides a false sense of privacy — it is pos-
sible to identify almost all users that appear in two such anonymized
network as long as a few initial mappings are known.

We analyze this problem theoretically by reconciling two versions of
an artificial power-law network arising from independent subsampling
of vertices and edges. We present a new algorithm that identifies most
vertices and makes no wrong identifications with high probability. The
number of vertices matched is shown to be asymptotically optimal. For
an n-vertex graph, our algorithm uses nε seed nodes (for an arbitrarily
small ε) and runs in quasilinear time. This improves previous theoretical
results which need Θ(n) seed nodes and have runtimes of order n1+Ω(1).
Additionally, the applicability of our algorithm is studied experimentally
on different networks.

1 Introduction

Imagine owning a large social network G1 (like Facebook or Google+), and a
competitor publishes an anonymized version of its own social network G2, i.e.
the graph structure without any additional labeling. This can happen on purpose
or indirectly by APIs which are permitted to access the competitor’s network or
special access granted to advertising partners. If we identify vertices that are the
same in both networks, we effectively deanonymizeG2 and gain new information,
as there are connections in G2 that do not exist in our social network G1. This is
valuable information for e.g. suggesting friends who are not yet connected in one
of the networks. In this paper, we approach this social network reconciliation
problem from an algorithm theory point of view.

Model. We model the above situation similar to [7] by assuming the existence of
an underlying “real” social network G = (V,E), which encodes whether two peo-
ple know each other in the real world. Empirical studies showed that most social
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networks have a power-law degree sequence [10], which we model by an n-vertex
Chung-Lu random graph [1, 4, 5]. Then we assume the online social networks
G1 and G2 to be subsets of G: Every node of G exists in Gi independently with
probability qi, and every edge of G exists in Gi independently with probabil-
ity pi. Additionally, we randomly permute the graphs G1 and G2. We assume
that there is a set of seed nodes VI ⊆ V which are known to match between G1

and G2 because they e.g. are persons of public interest. The algorithmic problem
now is to identify as many vertices as possible from the given graphs G1 and
G2 without making any wrong identifications (with high probability). We call a
vertex identifiable if it survives in both graphs G1 and G2.

Theoretical results. We present an algorithm with the following guarantees. Here
we let δ be the (expected) average degree of the graph G. See Section 2 for the
technical assumptions about the parameters of the Chung-Lu random graph G
and the parameters of the subsampling process.

Theorem 1. Assume we are given the nε largest identifiable vertices as seed
nodes for an arbitrary constant ε > 0. There is an algorithm that with high
probability1 makes no wrong identifications and successfully matches a fraction
of 1 − exp(−Ω(p1p2q1q2δ)) of the identifiable vertices.2 The algorithm runs in
expected quasilinear runtime O(δn log(n)/min{p1, p2}O(1/ε)).

In the full version, we also show that this fraction of identified vertices is asymp-
totically optimal, since intuitively an exp(−O(p1p2q1q2δ)) fraction of the vertices
does not have any common neighbors in the two social networks. For constant
p1, p2, q1, q2, the runtime is O(δn log(n)), which is within a factor log(n) of the
expected number of edges Θ(δn) of G. Thus, our algorithm is the first with
quasilinear runtime. This is crucial for handling large graphs. The best previous
algorithms have a runtime of order O(δnΔ2) [9] or O(δnΔ log(Δ)) [7], where Δ
is the maximum degree, which is typically of size nΩ(1). Our approach also only
needs nε seed nodes — previous algorithms with proven runtime and quality use
at least Θ(n) seeds [7], although some heuristic approaches are also known to
work with few seeds [9]. We remark that our algorithm is also successful with
only O(log(n)/p1p2) seed nodes, but runs in quadratic time in this case.

Empirical results. We implemented a variant of our algorithm and applied it to
different sets of networks. We match � 89% of the vertices in Chung-Lu graphs,
preferential attachment graphs (PA), affiliation networks, and also subsampled
real-world networks (Facebook, Orkut). All runs took less than 60 minutes on
a single core, where previous results used compute clusters for an unreported
amount of time [7]. In all cases, we need � 0.03% seed nodes to bootstrap our
algorithm. This indicates that our approach translates to a wide variety of scale-
free networks, even though we formally prove it on the Chung-Lu model.

1 Throughout the paper, we say that a bound holds with high probability (w.h.p.) if it
holds with probability at least 1− n−c for some c > 0.

2 In the whole paper O(·) and Ω(·) hide any dependency on the power law exponent β
of G. We always assume 2 < β < 3.
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Algorithm description. Starting with the seed nodes, we identify the remaining
vertices by their signatures, an idea used in many algorithms for graph iso-
morphism. However, we have to cope with the additional complexity of the
neighborhoods of identical vertices not being equal. We identify vertices when
their signatures are strongly overlapping, and show an easy criterion for decid-
ing whether two signatures stem from identical vertices. Using this criterion we
make no errors with high probability and identify a large constant fraction of
the vertices. We achieve a quasilinear runtime by locality sensitive hashing [6],
which reduces the number of comparisons.

Applications. Anonymous copies of some social networks are available online.
Several experimental papers describe how to find mappings between two on-
line social networks [2, 9, 14, 15]. While some use the network structure alone
[9], most of them exploit metadata like browser history [14], group member-
ships [16], writing style [12], semantic features of user aliases [11], or artificially
added subgraphs [2]. The only theoretical result on this subject is by Korula and
Lattanzi [7]. They identify 97% of the nodes on subsampled (p1, p2 �

√
22/δ ,

q1 = q2 = 1) preferential attachment graphs [3], but need a linear amount of
seed nodes and substantially more computing resources.

2 Preliminaries

Graph model. The model has two adjustable parameters: the exponent of the
scale-free network β and the average degree δ. Depending on these two pa-
rameters, each node i has a weight wi. For n ∈ N and weight distribution
w = (w1, . . . , wn) ∈ R

n
�0 the Chung-Lu graph Chung-Lu(n,w) is a graph on

vertex set V = [n] that contains each edge {u, v}, u �= v ∈ V , with probability
pu,v := min{wuwv/W, 1}, where W :=

∑
v∈V wv.

In order to simplify the presentation, we use a simple explicit weight distri-
bution wi = δ(n/i)1/(β−1). Then W = (1 + o(1))β−1

β−2δn = Θ(δn), the expected

average degree is (1+o(1))2(β−1)
β−2 δ = Θ(δ), and we get a power law with exponent

β [13]. We note that most of our results generalize to other weight distributions
and even to weights drawn at random from “nice” distributions. We assume
constant 2 < β < 3, as real-world social networks have been observed to fulfill
this. Moreover, we require δ � no(1), p1, p2 � n−o(1), and q1, q2 = Θ(1). We also
assume that we know a lower bound for q1, q2, so that we know a constant factor
approximation of n. For the sake of readability we even assume that we know n
exactly. Finally, we require that p1p2q1q2δ is at least a sufficiently large constant
(depending only on β).

De-anonymization. In our problem we have an underlying graph G =
Chung-Lu(n,w) as defined above. This graph gets subsampled twice to gen-
erate two subgraphs: We put each node v ∈ V := V (G) into V1 independently
with probability q1. Then we put each edge e ∈ E ∩ (

V1

2

)
into E1 independently

with probability p1 to form a graph G1 = (V1, E1). Now we randomly permute
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the nodes of G1 to obtain a graph G̃1. We repeat this process with independent
choices (and probabilities q2, p2) to form G2 and G̃2.

We call two nodes ṽi in G̃i, i ∈ {1, 2} identical, if they stem from the same
node v ∈ V . The identifiable nodes are V∩ := V1 ∩ V2.

The input for the de-anonymization problem is (G̃1, G̃2) and the task is to
report pairs of vertices (“identified vertices”) such that with high probability
every identified pair is identical. We want to maximize the number of identified
pairs. Note that the algorithm gets the randomly permuted graphs G̃i, but in
the analysis we usually talk about the graphs Gi for the sake of readability. We
write degi(v) for the degree of vertex v ∈ Vi in Gi and Ni(v) for its neighborhood
in graph Gi, i ∈ {1, 2}.

3 Estimating Weights and Edge Probabilities

In this section we show how to compute upper and lower bounds for the weightwv

of any vertex v based on the degree degi(v), i ∈ {1, 2}. This also yields bounds
for the edge probabilities pu,v for any vertices u and v. These bounds hold
with high probability. Then we argue that our subsequent de-anonymization
algorithms can use these computed bounds and still assume that all edges of Gi

and G were sampled independently as if these graphs were not looked at before
(where we used Gi as a short term for both graphs Gi, i ∈ {1, 2}).

For the sake of readability we assume that the parameters n, β, p1, and p2
are known to the algorithm. However, it would be easy to also estimate these
parameters with small error, and run our subsequent algorithms with these ap-
proximations. For a sketch of this, we note that we can estimate β from the
degree distributions in Gi, similar to what we do for individual weights in this
section. Moreover, we can estimate p2 (and p1, respectively) by dividing the num-
ber of edges that appear in G1[VI ] ∩ G2[VI ] by the number of edges in G2[VI ]
(G1[VI ]).

Afterwards we can run the method presented in this section to estimate the
individual weights wv and W . Additionally, one could estimate δ (e.g. from W
and β) and q1/q2 (e.g. from |V1|/|V2|), but our algorithms do not need them.
Note that in our model it is hard to estimate the parameters q1, q2.

The degree of each vertex v in Gi is composed of a random decision for each
other node u, namely whether it is connected to v in the original graph G and a
random decision whether this edge is present in the subsampled graph. In total,

degi(v) ∼
∑

u∈V \{v}
Ber

(
piqi ·min

{wvwu

W
, 1
})

,

if node v survives in Gi. By a Chernoff bound, we see that this degree is con-
centrated. This allows to compute intervals for the weights wv for all v in Gi.

Lemma 1. Let i ∈ {1, 2}. Given degi(v) (and pi and an approximation of n)
we can compute 0 � wv � wv such that w.h.p. for all v ∈ V we have

1. wv � qiwv � wv,
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2. wv � O(
qiwv +

1
pi

logn
)
, and

3. wv � Ω(qiwv)−O(
1
pi

log n
)
.

In a similar fashion, we can compute a bound on q2i ·W .

Lemma 2. Let i ∈ {1, 2}. Given Gi, we can compute W such that W � q2iW �
(1 + o(1))W holds with high probability.

The proof of Lemma 1 and most other proofs in the remainder can be found
in the full version. Plugging the estimated weights into the edge probability
formula allows us to compute bounds on the edge probabilities. It is worth noting
that although the estimations on wv and W give a result depending on qi, the
computed upper bound puv on the edge probabilities is oblivious to qi.

Corollary 1. For any u, v ∈ Vi we can compute bounds pu,v :=
min{wuwv/W, 1} such that w.h.p. we have

pu,v � pu,v � O
(
pu,v

(
1 +

logn

piqiwu

)(
1 +

logn

piqiwv

))
.

In particular, for wu, wv = Ω( 1
piqi

logn) we have pu,v = O(pu,v).

Corollary 1 allows to compute estimations for all edge probabilities with cer-
tain guarantees that hold with high probability. We want to use these estimations
in the subsequent algorithms without losing the independence of the edges, i.e.,
in the subsequent algorithms we want to assume that the (edges of the) graphs
Gi were not revealed yet, although we already computed bounds on the weights
based on the degrees in Gi. In order to see that this might be a problem, assume
that throughout a proof we reveal edges of a node v. However, once we have seen
degi(v) edges, we know that there can be no other edge anymore, which violates
our intuition of having independent edges.

To solve this technical problem, we model our weight estimation method as
an adaptive adversary, which knows the parameters p1, p2, q1, q2, w1, . . . , wn, G1

and G2, and reports estimations pu,v for all u, v ∈ V that fulfill the guarantees
in Corollary 1 w.h.p. (over the randomness of the instance generation). The sub-
sequent de-anonymization algorithms are then designed such that they assume
to get edge probability estimations by our above method (or an adversary) that
fulfill the said guarantees but are otherwise arbitrary. Then they may still as-
sume that the random graphs Gi are not revealed. The details of this can be
found in the full version of this paper.

4 Matching Phase

In the matching phase we assume that we know the identity of some vertices VI ⊆
V containing the h = Ω(log(n)/p1p2) highest weight nodes (that survive in both
G1, G2), and show how to identify most of the remaining vertices based on these
initial nodes. Observe that the adaptive adversary model allows us to assume
that all edges are independently present with their respective probability pu,v.
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4.1 The Y -Test

Denote by VI the thus far identified vertices. Then for every unidentified ver-
tex v in Gi we consider its signature Sv

i := Ni(v) ∩ VI . Unlike in the Graph
Isomorphism problem, in our case signatures of identical vertices are not equal.
However, for identical vertices the signatures Sv

1 , S
v
2 should be similar sets, while

for non-identical vertices u �= v the signatures Su
1 , S

v
2 should have small inter-

section. One contribution of our work is the test presented in this section, which
allows to check whether two nodes are identical based on their signatures. This
test never identifies two non-identical vertices (w.h.p.) and it identifies most
vertices once sufficiently many of their neighbors are identified.

Let v1, v2 ∈ V \VI and u ∈ VI . Consider all possibilities of the edges {v1, u} ∈
E1 and {v2, u} ∈ E2 being present or not. We denote by Au the event that both
of these edges are present, by Bi

u the events that exactly one edge is present in
Gi, and by Cu the remaining case. Based on these cases we now define

Yu = Y v1,v2
u :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2pv1,u

, if u ∈ Sv1
1 ∩ Sv2

2 (Au)

1− p2

2 , if u ∈ Sv1
1 and u �∈ Sv2

2 (B1
u)

1− p1

2 , if u �∈ Sv1
1 and u ∈ Sv2

2 (B2
u)

1, otherwise (Cu).

and Y :=
∏

u∈VI
Yu. Intuitively, Yu encodes the evidence of v1 = v2 given the

connections to the identified node u; a common neighbor (Au) has a large positive
evidence, Yu > 1, while a node u connected to only one of the two (B1

u, B
2
u) has a

small negative evidence, Yu < 1. Note that when v1 = v2 we have pv1,u ≈ pv2,u,
so in the case (Au) having one of the estimates turns out to be sufficient. The
technical factor 1/2 is needed later for some tail bounds.

We claim that Y is typically small for non-identical v1 �= v2 and can be large
(if VI contains sufficiently many neighbors of v1) if v1 = v2. In particular, we
can test whether v1 = v2 by testing Y > nc for some appropriate constant
c > 0. We call this the Y -test. This intuition is proven by the following lemmas.
First we show that Y is not too large if v1 �= v2 (w.h.p.). To this end, we
verify E[Yu] � 1, then the statement follows from independence of the edges and
Markov’s inequality.

Lemma 3. For any v1 �= v2 ∈ V \ VI and t > 0 we have Pr[Y > t] � 1/t.

The next lemma can be used to show that our test allows to identify the
two copies of v if we have already identified enough low-degree neighbors of v.
We call the high-degree neighbors u “bad nodes” as they result in an estimated
connection probability of pv,u = Ω(1).

Lemma 4. Let VI be any set of identified vertices, and consider an unidentified
v ∈ V∩ \ VI . Let B ⊆ VI (“bad nodes”) be the vertices u with pu,v � b > 0, b
being a sufficiently small constant. Assume that for c > 0 we have
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∑

u∈VI

pu,v � Ω
(

1
p1p2

c logn+ |B|)

with a sufficiently large hidden constant. Then we have Pr[Y v,v > nc] � 1−n−c.

For a vertex v with small weight wv = no(1) the above lemma does not apply
and we have to take a closer look at Y v,v.

Lemma 5. Let c > 0 and consider an unidentified vertex v ∈ V∩ \ VI with
wv � no(1). Let T ⊆ VI be a set of identified vertices with pu,v = Θ(ε) for all
u ∈ T and some ε > 0. Assume that μ := p1p2ε|T | is at least a sufficiently large
constant (depending only on c and β). Then we have

Pr[Y v,v > nc] � 1− n−c − exp(−Ω(μ)).

4.2 The Algorithm

We use the test developed in the last section as follows. As we build an algo-
rithm that w.h.p. never identifies non-identical vertices, we can again write this
algorithms in terms of the graphs G1, G2, but it can easily be translated to the
randomly permuted graphs G̃1, G̃2.

Our algorithm gets as input the graphs G1, G2 and an initial set VI of iden-
tified vertices containing the h highest weight vertices. Then in every round the
algorithm compares all pairs v1, v2 of unidentified vertices. One comparison con-
sists of a Y -test, i.e., we compute Y v1,v2 and test whether it is at least nc, where
c > 0 a constant. If this is the case, then we identify v1 and v2. The algorithm
terminates after the first round in which no new vertex is identified.

Note that this algorithm is oblivious to the qi’s, as it only considers edges to
nodes that are already identified, and thus survive in both subsampled graphs.

We will see that it suffices to run this algorithm for O(log n) rounds to identify
most of the vertices. As Y v1,v2 can be computed in time O(deg1(v1)+deg2(v2)),
the immediate runtime of this algorithm is O(nm logn), where m is the total
number of edges in G1 and G2, which is O(δn) with high probability. We will
see in Section 5 how to decrease this to quasilinear runtime.

Algorithm 1. De-anonymization using Y-tests

Input: graphs G1, G2, identified vertices VI ⊇ {1, . . . , h}
for r = 1, 2, . . . ,O(logn) do

for all v1, v2 ∈ V \ VI do
if Y v1,v2 > nc then

VI := VI ∪ {v1, v2}. � We identified v1 = v2

Using Lemma 3 it is easy to see that Algorithm 1 never identifies any non-
identical vertices. Note that choosing c > 2 yields error probability o(1).

Lemma 6. Algorithm 1 does not identify any two non-identical vertices with
probability at least 1−O(n2−c log n).
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4.3 Quality Analysis

It remains to show that the algorithm identifies most vertices. We do this by
examining the propagation of identified vertices in the graphs. For this, we define
Lj := {2j−1, . . . , 2j − 1}, j = 1, . . . , logn as the j-th layer of vertices, and let

L̃j ⊆ Lj be the set of vertices from layer j that survive in both graphs. If

|Lj| = Ω(log n), then w.h.p. by a Chernoff bound we have |L̃j | � Ω(q1q2|Lj|).
We proceed in three steps. First, we show that given the seed nodes, there will

be some layer k that gets identified with high probability. We choose k such that
the estimated edge probability pv,h of every vertex v ∈ Lk with vertex h (the h-th
highest weight vertex) is at most a sufficiently small constant, and k is minimal
with this property. We can compute that |Lk| = Ω(n3−β/ logn), meaning that
|L̃k| = Θ(q1q2|Lk|). In the first step of the analysis of our algorithm we show
that after round 1 layer L̃k is identified with high probability.

In the second step, we show that from there on we identify one more layer
each round, i.e., after round r we have identified layer L̃k+r−1. This, however,
cannot hold w.h.p. once the weights drop below O(polylog n). Instead, each
vertex v ∈ L̃j , j > k is identified after round j − k + 1 with probability at least
1−αj � 1−exp(−Ω(p1p2q1q2δ)). This holds independently of the other vertices
in Lj and of the edges from vertices above layer Lj to vertices below layer Lj or
layer Lj itself. This way we identify most of the vertices in the layers above k in
at most log(n)− k+1 rounds. We remark that these vertices could be identified
already earlier, but we claim that they are identified at the latest after round
j − k + 1 (with the mentioned probability).

In the third step, we show that after round log(n) − k + 2 all high-degree
vertices in layers below L̃k are identified with high probability. As the number
of such vertices is small, this third step is not necessary for the conclusion that
the algorithm identifies a large fraction of all identifiable vertices — it proves,
however, the intuition that this algorithm identifies all vertices with sufficiently
high weight (logΩ(1)(n)) with high probability. We omit this third step in this
extended abstract.

First step. Initially we know the identity of a set VI of vertices containing the h
highest weight nodes that survive in both graphs.We let h = γ2 1

p1p2
logn where γ

is a sufficiently large constant. Let � := γ 1
p1p2

logn. Choose a layer Lk such that

for any v ∈ Lk we have pv,� ≈ b, where b = Θ(1) is the constant from Lemma 4, so
that we have |B| = O(�) = O(γ 1

p1p2
logn) bad nodes. For our weight distributions

one can show that pv,h = pv,� · (�/h)1/(β−1) = Θ(γ−1/(β−1)). Hence, any node
1 � u � h has pv,u � pv,h = Θ(γ−1/(β−1)). Summing up over 1 � u � h, we
have

∑
u∈VI

pv,u � Ω(γ2−1/(β−1) 1
p1p2

logn). Since γ2−1/(β−1) = γ1+Ω(1) and γ
is sufficiently large, for any arbitrarily large hidden constant we have

∑

u∈VI

pv,u � Ω((γ + c) 1
p1p2

logn) = Ω( 1
p1p2

c logn+ |B|),

which proves that the assumption of Lemma 4 is fulfilled and we identify v in
the first round with high probability.
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Second step. Consider any following level k < j � logn−Ω(log logn) (with suf-
ficiently large hidden constant) and let v ∈ L̃j. We prove by induction that v is
identified in round j−k+1 with high probability. By induction hypothesis, every
vertex u ∈ L̃j−1 is identified after round j− k with high probability. The proba-
bility of v to connect to a vertex u ∈ Lj−1 is pu,v = min{wvwu/W, 1}. Plugging in
wv, wu = Θ(δ(n/2j)1/(β−1)) yields pu,v = Θ(ε) for ε := δn(3−β)/(β−1) 2−2j/(β−1)

and pu,v = O(
pu,v + 1

δn log2 n
)
. Note that since j � logn − Ω(log logn) we

have wv � logΩ(1) n so that pu,v = O(pu,v). We can apply Lemma 4 with

|B| � O( 1
p1p2

log n) (since the number of bad vertices is at most the number

of bad vertices for layer Lk). Considering only the edges to VI ∩ L̃j−1 and using

|L̃j−1| = Ω(q1q22
j) we obtain

∑

u∈VI

pu,v � Ω
(
q1q22

jδn(3−β)/(β−1) 2−2j/(β−1)
)
= Ω

(
q1q2δ log

Ω(1) n
)
,

which is larger than Ω( 1
p1p2

logn) since p1p2q1q2δ is at least a sufficiently large

constant. Hence, Lemma 4 implies that we identify all vertices in L̃j with high
probability.

For logn− o(log n) � j � logn, so that wv = no(1), we instead use Lemma 5
to show that any vertex v ∈ L̃j is identified after round j−k+1 with probability
at least 1−αj � 1− exp(−Ω(p1p2q1q2δ)). We again consider the edges of v into

T := VI ∩ L̃j−1 and obtain

μ := p1p2ε|T | = Ω
(
p1p2q1q22

jδn(3−β)/(β−1) 2−2j/(β−1)
)
= Ω(p1p2q1q2δ).

Hence, the assumption of Lemma 5 amounts to p1p2q1q2δ being at least a suf-
ficiently large constant, and we identify each vertex in L̃j with probability at
least 1− αj := 1− exp(−Ω(μ))− n−c � 1− exp(−Ω(p1p2q1q2δ)).

5 Quasilinear Runtime

Algorithm 1 in its pure form takes quadratic time, as we have seen in the last
section. In this section we show how to decrease its runtime to quasilinear using
locality sensitive hashing [6]. We assume to have identified the h = n2ε highest
weight vertices for any constant ε > 0.

The basic idea for speeding up the algorithm is to reduce the number of tested
pairs v1, v2. To this end, in every round we choose a random permutation π of
VI . For a vertex v ∈ V \ VI in Gi consider the vertices in VI that have a small
estimated probability to connect to v, Tv := {u ∈ VI | pv,u � n−ε}. We compute

the first C/ε vertices (u1, . . . , uC/ε) =: M i
v in Ni(v) ∩ Tv with respect to the

order π (for some constant C � 2 to be fixed later). Note that M i
v can be

computed in constant time, if we permute the graphs G1[VI ] and G2[VI ] with
respect to π (and store a version containing only the edges in

⋃
v Tv), so that the

first neighbor of v is simply the first entry of its adjacency list. In the analysis
we show that for a so-called good vertex v ∈ V∩ the sets M1

v , M
2
v are equal
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Algorithm 2. Fast de-anonymization using Y-tests

Input: graphs G1, G2, identified vertices VI ⊇ {1, . . . , n2ε}
for r = 1, 2, . . . , Θ(p)−Θ(1/ε) logn do

choose a random permutation π of VI

for all v ∈ V \ VI and i ∈ {1, 2} do
if |Ni(v) ∩ Tv| � C/ε then

compute the set M i
v of the first C/ε vertices in Ni(v) ∩ Tv w.r.t. π

hash (v, i) at M i
v

for all hash collisions of the form (v1, 1) and (v2, 2) do
if Y v1,v2 > nc then

VI := VI ∪ {v1, v2}. � We identified v1 = v2

with probability Θ(p1 + p2)
Θ(1/ε), while for non-identical vertices v1 �= v2 these

sets are equal with probability at most 1/n. Thus, we may hash v at M i
v (with

a perfect hash function that produces collisions only if the corresponding hash
values are equal) and test vertices v1, v2 only if they form a hash collision. Then
in expectation we test O(n) pairs of vertices per round. More precisely, one can
show that these tests take expected time O(m) per round, where m is the total
number of edges in G1 and G2. Everything else we do in one round also runs in
time O(m). Note that in expectation we have m = O((p1 + p2)δn) � O(δn).

As we will see in the full version, roughly the same quality analysis
as in the last section goes through, with the necessary number of rounds
growing to Θ(min{p1, p2})−Θ(1/ε) logn. As ε > 0 is a constant, this is
O(min{p1, p2}−O(1) logn). Furthermore, by the same arguments as in the last
section, Algorithm 2 makes no wrong identifications w.h.p. (intuitively, it only
does a subset of the Y -tests of Algorithm 1, but since we let it run for a few
more rounds the error probability grows to O(n2−c min{p1, p2}−O(1) logn)). In
total we get an expected runtime of O(min{p1, p2}−O(1)δn logn).

6 Experiments

The focus of this paper lies on the theoretical algorithm analysis. To check our
theory for robustness, however, we conducted a preliminary empirical study. We
implemented a variant of the fast algorithm single threaded in C++. The source
code is available upon request. The experiments were run on a single computer
with Dual Xeon CPU E5-2670 and 128GB RAM.

We evaluated the algorithm on Chung-Lu graphs as shown in Table 1. The
results indicate that our quality bounds hold up well in practice, as we identify
95% of the nodes with as little as 0.008% seeds (80 nodes). Similarly, the runtime
follows our asymptotic bounds which allows for deanonymizing large graphs
(2 million nodes) on a single core, whereas previous approaches would typically
require a computing cluster due to their polynomial runtime.

Finally, we investigated the robustness of our algorithm with respect to
changes to the underlying graph model. We ran it on different random graph
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Table 1. Performance of our de-anonymization algorithm on various graphs

Graph Model

Name n m p1 ·p2 q1 ·q2 Seeds Recall Prec. Runtime

Chung-Lu 2M 80M 0.25 0.72 80 0.95 1 29 min.
Pref. Attachment 1M 20M 0.25 1 200 0.95 1 9 min.
Affiliation Network 60K 8M – 1 50 0.83 0.99 56 sec.
Facebook 63K 1.5M 0.58 1 50 0.50 0.95 6 sec.
Orkut 3M 117M 0.56 0.81 1000 0.89 0.88 54 min.

models (Preferential Attachment [3], Affiliation Networks3 [8]) and even sub-
sampled real graphs (Facebook, Orkut)4. We point out that [7] also performed
experiments on Facebook and Affiliation Networks, achieving slightly better re-
call (0.6 and 0.9, respectively). However, they typically use 10% of the networks
as seeds; and they do not report on their runtimes and machines.

In all cases, our algorithm was able to extend the small set of identified seed
nodes to a linear fraction of the entire graph; while making comparatively few
errors. This indicates that even though our proofs rely on the topology of the
Chung-Lu model (e.g. independent edge probabilities), the algorithm performs
reasonably well in practice.

7 Conclusion

We presented a new method for de-anonymizing scale-free networks with two
crucial improvements compared to previous work: (i) faster runtime and (ii) less
required a-priori knowledge.

While all previous algorithms have a runtime of Ω(nΔ), our new algorithm
runs in quasilinear time. This improvement is not only asymptotical: Recent
experiments of Korula and Lattanzi [7] required large compute clusters, whereas
our algorithm can handle graphs with millions of vertices in less than an hour
on off-the-shelf hardware. The quasilinear runtime is achieved by a variant of
locality sensitive hashing. We believe that this technique can be used in future
work to speed up other matching and graph isomorphism algorithms.

Our second contribution is a rigorous proof that much fewer seed nodes suffice
for de-anonymizing subsamples of a common model of scale-free networks. Our
approach needs only nε seed nodes, while all previous algorithms with proven
runtime and quality use Θ(n) seed nodes. The analysis is based on a new weight
estimation scheme relative to an adaptive adversary, which appears to be use-
ful also for analyzing other algorithms on Chung-Lu graphs. Our result shows
that de-anonymization is possible with few seed nodes, which is important for
practical attacks on anonymized networks.

3 In this model, a bipartite graph of users and interests is constructed; and two users
are connected if they share an interest. To create two subsampled graphs, each
interest is deleted independently with probability 0.25 in both graphs.

4 http://snap.stanford.edu/data/

http://snap.stanford.edu/data/
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