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Abstract

Jim Propp’s rotor router model is a deterministic analogue of a random walk on
a graph. Instead of distributing chips randomly, each vertex serves its neighbors
in a fixed order. The difference between the Propp machine and a random walk
has been analyzed on infinite d-dimensional grids. There, apart from a technicality,
independent of the starting configuration, at each time, the number of chips on
each vertex in the Propp model deviates from the expected number of chips in the
random walk model by at most a constant. We show that this is not the case for the
k-regular tree (k > 3), i.e., there is a starting configurations on which both models
deviate by an arbitrarily large number of chips.
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1 Introduction

The rotor-router model is a simple deterministic process suggested by Jim
Propp. It can be viewed as an attempt to derandomize random walks on

1571-0653/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.endm.2007.07.082


http://www.elsevier.com/locate/endm

510 J. Cooper et al. / Electronic Notes in Discrete Mathematics 29 (2007) 509-513

graphs. So far, the “Propp machine” has been studied primarily on infinite
grids Z?. There, each vertex x € Z% is equipped with a “rotor” together with
a cyclic permutation (called a “rotor sequence”) of the 2d cardinal directions
of Z2. While a chip (particle, coin, ...) performing a random walk departs a
vertex in a random direction, in the Propp model it always goes in the direction
the rotor is pointing. After a chip is sent, the rotor is rotated according to the
fixed rotor sequence. This rule ensures that chips are distributed quite evenly
among the neighbors of a vertex.

Cooper and Spencer [1] compared the Propp machine and the random
walk in terms of single vertexr discrepancy. Apart from a technicality, they
place arbitrary numbers of chips on the vertices. Then they run the Propp
machine on this initial configuration for a certain number of rounds. A round
consists of each chip (in arbitrary order) performing one move as directed by
the Propp machine. In the consequent chip arrangement, they compare the
number of chips at each vertex that the Propp machine places there with the
expected number of chips that a random walk in same number of rounds and
the same initial configuration places there. Cooper and Spencer showed that
for all grids Z?, these differences can be bounded by a constant ¢4 independent
of the initial setup (in particular, the total number of chips) and the run-time.

In this paper, we rigorously analyze the Propp machine on the infinite
k-regular tree. We show that there are configurations such that the single
vertex discrepancy is arbitrarily large for £ > 3. This complements the results
of Cooper, Doerr, Spencer, and Tardos [2], where the case of k = 2 (the infinite
line) is analyzed.

2 Preliminaries

To bound the single vertex discrepancy between the Propp machine and a ran-
dom walk on the k-regular tree we first introduce several requisite definitions
and notational conventions. Let G = (V, E) be the infinite k-regular tree, also
known as the “Cayley tree” and the “Bethe lattice”. We fix an arbitrary node
to be its origin 0. |x| denotes the shortest (i.e., ordinary graphical) distance
between the origin and vertex x.

In order to avoid discussing all equations in the expected sense and thereby
to simplify the presentation, one can treat the expectation of the random walk
as a linear machine [1]. Here, in each time step a pile of ¢ chips is split evenly,
with ¢/k chips going to each neighbor. By the “harmonic property” of random
walks, the (possibly non-integral) number of chips at vertex x at time ¢ is
exactly the expected number of chips in the random walk model.
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A configuration describes the current “state” of the linear or Propp ma-
chine. A configuration of the linear machine is a function V' — R, , assigning
to each vertex x € V its current (possibly fractional) number of chips. A
configuration of the Propp machine assigns to each vertex x € V its current
(integral) number of chips and the current direction of the rotor.

As pointed out in the introduction, there is one limitation without which
neither the results of [1-3] nor our results hold. Note that since G is a bipartite
graph, chips that start on even vertices never mix with those starting on odd
vertices. It looks as if we are playing two noninteracting games at once.
However, this is not true, because chips at different parity vertices may affect
each other through the rotors. We therefore require the initial configuration
to have chips only on one parity. Without loss of generality, we consider only
even initial configurations, i.e., chip configurations supported on vertices an
even distance from the origin.

We now describe the Propp machine in detail. For all x € V and t € Ny
let f(x,t) denote the number of chips on vertex x and ARR(x,t) the direction
of the rotor associated with x after ¢ steps of the Propp machine. In other
words, f(-,t) is the configuration function at time ¢. We will use x + ARR(X, t)
to denote the node at which the current rotor of x is pointing at time t.
(Though written additively, this operation is in fact that of the nonabelian
group {({d;}¥_|d? = 1) generated by the set DIR = {d;}}_, of values that
ARR(+, -) takes on; G is then a Cayley graph with generator set DIR. Previous
work on Z¢ can be viewed as the same story for the free abelian group.)
NEXT(A) denotes the next position of the rotor A.

To describe the linear machine we use the same fixed initial configuration
as for the Propp machine. In one step, each vertex x sends a 1/k fraction of
its (possibly fractional) number of chips to each neighbor. Let E(x,t) denote
the number of chips at vertex x after ¢ steps of the linear machine. This is
equal to the expected number of chips at vertex x after a random walk of all
chips for ¢ steps. Note that E(x,t) = 1 > scpm £(x + A, t — 1) by definition.

A random walk on G can be described by its probability density. By
H(z,t) we denote the probability that a chip from a vertex with distance x to
the origin arrives at the origin after ¢ random steps (“at time ¢”) in a simple
random walk. Then,

H(x,t) =k 'n(x,t) (1)
with n(z,t) counting the number of paths between two vertices at distance z
on the infinite k-regular tree. It is easy to describe n(z,t) with some recursive
equations.

Finally, we write x ~ ¢ to mean that |x| =¢ (mod 2).
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3 Some Proof Ideas

Due to space limitations, it is impossible even to sketch the proofs of the
results stated above. We therefore focus on particular aspects.

For a deterministic process like the Propp machine, it is obvious that the
initial configuration (that is, the location of each chip and the direction of
each rotor), determines all subsequent configurations. The following theorem
shows a partial converse, namely that (roughly speaking) we may prescribe
the number of chips modulo k£ on all vertices at all times by finding an ap-
propriate initial configuration. An analogous result for the one-dimensional
Propp machine has been shown in [2].

Theorem 3.1 (Mod-k-forcing Theorem) For any initial direction of the
rotors and any m: V x Ng — {0,1,...,(k— 1)} with m(x,t) =0 for all x % t,
there is an initial even configuration f(x,0) that results in subsequent config-
urations satisfying f(x,t) = w(x,t) (mod k) for all x and t > 0.

The discrepancy on 0 at time T is determined by what has happened ¢
steps before time T at all vertices x with |x| < ¢. This motivates the definition
of the influence of a Propp move (compared to a random walk move) from a
vertex with distance x in the direction of y on the discrepancy of 0 (¢ time
steps later) by

INF(z,t) == H(x — 1,t — 1) — H(x,t).
Note that if the number of chips on a vertex x at some time ¢ is a multiple of
k, the Propp machine distributes the chips to the respective neighbors exactly
as the linear machine and therefore the sum of the influences of the Propp
moves of all chips at this vertex x at time ¢ is zero.

It is easy to verify the following properties of H(z,t) as defined in equa-
tion (1):

H(0,0) =1,

H(z,0)=0 forall z > 1,

H(O,t): H(1,t—1) forallt >1,
H@t)=1H@x-1t—-1)+5 H@x+1,t—1) forall z,t > 1.

Unfortunately, there is no simple closed-form expression for H(z,t). However,
a closer look on INF(z,t) reveals a similar recursive definition, which can be
solved with the help of the well-known Ballot numbers. This yields for x,¢ > 1

INF(z,t) = (k=D (tt ) (2)

+
Iz ¢\
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For a fixed time 7" at which we aim to maximize the discrepancy f(0,7) —
E(0,T) we examine a configuration which sends exactly one odd chip from
all vertices x with 0 < [x| < T/X and A := £ This chip is sent in the
direction of 0 at time 7" — t5 with ¢, := [Az]. We further assume that no
other odd chips are sent. Such a configuration exists by Theorem 3.1. Using
equation (2) we can prove the following theorem.

Theorem 3.2 There is an even initial configuration such that the single ver-
tex discrepancy between the Propp machine and linear machine after T' time

steps is Q(VET).

The configurations assured by Theorem 3.2 appear to be enormous. To
achieve a discrepency of D they have a number of chips which is possibly
hyperexponential in D?. Furthermore, “most” configuration have a bounded
discepancy. To prove this, the crucial step is to show that INF(x, -) is unimodal.
This implies that the discrepancy can already be maximized if there is only a
single time t for each vertex x at which the number of chips is not divisible
by k. Some further observations give the following theorem.

Theorem 3.3 If f(x,t) =0 (modk) for all x and t such that (1 — e)\|x| <
T—t < (14e)A|x| with A := %, then the discrepancy between Propp machine
and linear machine at time T and vertex 0 is bounded by a constant depending
only on € > 0.
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