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Jim Propp’s rotor–router model is a deterministic analogue of a random walk on a graph. Instead
of distributing chips randomly, each vertex serves its neighbours in a fixed order. We analyse the
difference between the Propp machine and random walk on the infinite two-dimensional grid. It is
known that, apart from a technicality, independent of the starting configuration, at each time the
number of chips on each vertex in the Propp model deviates from the expected number of chips
in the random walk model by at most a constant. We show that this constant is approximately 7.8
if all vertices serve their neighbours in clockwise or anticlockwise order, and 7.3 otherwise. This
result in particular shows that the order in which the neighbours are served makes a difference.
Our analysis also reveals a number of further unexpected properties of the two-dimensional Propp
machine.

1. Introduction

The rotor–router model is a simple deterministic process suggested by Jim Propp. It can be
viewed as an attempt to derandomize random walks on graphs. So far, the ‘Propp machine’ has
mainly been analysed on infinite grids Z

d. There, each vertex x ∈ Z
d is equipped with a ‘rotor’

together with a cyclic permutation (called a ‘rotor sequence’) of the 2d cardinal directions of
Z
d. While a chip (particle, coin, . . . ) performing a random walk leaves a vertex in a random

direction, in the Propp model it always goes in the direction the rotor is pointing. After a chip is
sent, the rotor is rotated according to the fixed rotor sequence. This will ensure that the chips are
distributed highly evenly among the neighbours.

The Propp machine has recently attracted considerable attention. It has been shown that it
closely resembles a random walk in several respects. The first result is due to Levine and Peres
[8, 9], who compared a random walk and the Propp machine in an aggregating model called
Internal Diffusion-Limited Aggregation (IDLA) [4]. There, each chip starts at the origin of
Z
d and walks until it reaches an unoccupied site, which it then occupies. In the random walk

model it is well known that the shape of the occupied locations converges to a Euclidean ball
in R

d [7]. Recently, Levine and Peres [8, 9] proved an analogous result for the Propp machine.
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Surprisingly, the convergence seems to be much faster. Kleber [5] showed experimentally that,
for circular rotor sequences, after three million chips the radius of the inscribed and circum-
scribed circles differs by approximately 1.61. Hence, the occupied locations almost form a
perfect circle. Some more results on this aggregating model in two dimensions can be found in
Section 8.

Cooper and Spencer [1] compared the Propp machine and the random walk in terms of the
single-vertex discrepancy. Apart from a technicality, which we defer to Section 2, they place
arbitrary numbers of chips on the vertices. Then they run the Propp machine on this initial
configuration for a certain number of rounds. A round consists of each chip (in arbitrary order)
doing one move as directed by the Propp machine. For the resulting position, for each vertex
they compare the number of chips that end up there with the expected number of chips that
a random walk in the same number of rounds would have placed there starting from the initial
configuration. Cooper and Spencer showed that for all grids Z

d, these differences can be bounded
by a constant cd independent of the initial set-up (in particular, the total number of vertices) and
the run-time.

For the case d = 1, that is, the graph being the infinite path, Cooper, Doerr, Spencer and Tardos
[2] showed, among other results, that this constant c1 is approximately 2.29. They further proved
that to maximize the discrepancy on a particular vertex it suffices that each location has an odd
number of chips at at most one time.

In this paper, we rigorously analyse the Propp machine on the two-dimensional grid Z
2.

A particular difference from the one-dimensional case is that now there are two non-
isomorphic orders in which the four neighbours can be served. The first are clockwise and
anticlockwise orders of the four cardinal directions. These are called circular rotor sequences.
All other orders turn the rotor by 180◦ at one time and are called non-circular rotor sequences.
We prove c2 ≈ 7.83 for circular rotor sequences and c2 ≈ 7.29 otherwise. To the best of our
knowledge, this is the first paper showing that the rotor sequence can make a
difference.

We also characterize the respective worst-case configurations. In particular, we prove that the
maximal single-vertex discrepancy can only be reached if there are vertices which send a number
of chips not divisible by four at least three different times.

These results raise the question of whether all graphs have a constant single-vertex discrep-
ancy. This is not true. Recently, Cooper, Spencer and the authors [3] showed that, for the graph
being an infinite k-ary tree (k � 3), the discrepancy is unbounded.

The remainder of this paper is organized as follows. The basic notation is given in Section 2. In
Section 3 we show that, roughly speaking, by suitably choosing the initial configuration, we may
prescribe the number of chips on each vertex at each time modulo 4. This will yield sharp lower
bounds, since in Section 4 we see that the discrepancy on a vertex can be expressed by exactly
this information. In Sections 5 and 6, we derive sufficient information about initial configurations
leading to maximal discrepancies on a vertex, so that we can then estimate the maximum possible
discrepancy numerically. This estimate is shown to be relatively tight in Section 7. Since the
investigation up to this point in particular showed that different rotor sequences lead to different
results, we briefly examine the aggregating model in this respect in Section 8. We summarize our
results in the last section.
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Deterministic Random Walks on the Two-Dimensional Grid 125

2. Preliminaries

To bound the single-vertex discrepancy between the Propp machine and a random walk on the
two-dimensional grid we introduce several requisite definitions and notational conventions in this
section.

First, it will be useful to use a different representation of the two-dimensional grid Z
2. Let

DIR := {(+1,+1), (+1,−1), (−1,−1), (−1,+1)}. Define a graph G = (V , E) via V = {(x1, x2) |
x1 ≡ x2 (mod 2)} and E = {(x, y) ∈ V 2 | x− y ∈ DIR}. Clearly, G is isomorphic to the stand-
ard two-dimensional grid G′ = (Z2, E ′) with E ′ = {(x, y) ∈ Z

2 | ‖x− y‖1 = 1}. Therefore, our
results on G immediately translate to G′. The advantage of our representation is that now each
direction D ∈ DIR can be uniquely expressed as D = εx(1, 0) + εy(0, 1) with εx, εy ∈ {−1, 1}.
This allows a convenient computation of the probability distribution of the random walk on the
grid (see equation (2.1) below). For convenience we will also use the symbols { ↗,↘,↙,↖ }
to describe the directions in the obvious manner.

In order to avoid discussing all equations in the expected sense and thereby to simplify the
presentation, one can treat the expectation of the random walk as a linear machine [1]. Here, in
each time step a pile of k chips is split evenly, with k/4 chips going to each neighbour. By the
‘harmonic property’ of random walks, the (possibly non-integral) number of chips at vertex x at
time t is exactly the expected number of chips in the random walk model.

For x, y ∈ V and t ∈ N0, let x ∼ t denote that x1 ≡ x2 ≡ t (mod 2) and x ∼ y denote that
x1 ≡ x2 ≡ y1 ≡ y2 (mod 2). A vertex x is called even or odd if x ∼ 0 or x ∼ 1, respectively.

A configuration describes the current ‘state’ of the linear or Propp machine. A configuration
of the linear machine is a function V → R+, assigning to each vertex x ∈ V its current (possibly
fractional) number of chips. A configuration of the Propp machine assigns to each vertex x ∈ V

its current (integral) number of chips and the current direction of the rotor. A configuration is
called even (odd) if all chips lie on even (odd) vertices.

As pointed out in the Introduction, there is one limitation without which neither the results of
[1, 2] nor our results hold. Note that since G is a bipartite graph, chips that start on even vertices
never mix with those starting on odd vertices. It looks like we are playing two games at once.
However, this is not true, because chips at different parity vertices may affect each other through
the rotors. We therefore require the initial configuration to have chips only on one parity. Without
loss of generality, we consider only even initial configurations.

A random walk on G can be described nicely by its probability density. By H(x, t) we denote
the probability that a chip from vertex x arrives at the origin after t random steps (‘at time t’) in
a simple random walk. Then,

H(x, t) = 4−t
(

t

(t + x1)/2

)(
t

(t + x2)/2

)
(2.1)

for x ∼ t and ‖x‖∞ � t, and H(x, t) = 0 otherwise.
We now describe the Propp machine in detail. First, we define a rotor sequence by a cyclic

permutation NEXT : DIR→ DIR. That is, after a chip has been sent in direction A, the rotor moves
such that afterwards it points in direction NEXT(A). Instead of using NEXT directly, it will often
be more handy to describe a rotor sequence as a 4-tuple R = (↗, NEXT(↗),

NEXT2(↗),NEXT3(↗)). We distinguish between circular and non-circular rotor sequences.
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Circular rotor sequences are either clockwise (↗,↘,↙,↖) or anticlockwise (↗,↖,↙,↘). All
other rotor sequences are called non-circular. Our main focus is on the classical Propp machine in
which all vertices have the same rotor sequence. In [1], Cooper and Spencer allow different rotor
sequences for each vertex x. Our results also hold in this general setting. However, to simplify
the presentation we will typically assume that there is only one rotor sequence for all vertices x.

In the following notation, we implicitly fix the rotor sequence as well as the initial config-
uration (that is, chips on vertices and rotor directions at time t = 0). In one step of the Propp
machine, each chip makes exactly one move, that is, it moves in the direction the arrow associated
with his current position is pointing and updates the arrow direction according to the rotor
sequence. Note that the particular order in which the chips move within one step is irrelevant
(as long as we do not label the chips). By this observation, all subsequent configurations are
determined by the initial configuration. For all x ∈ V and t ∈ N0, let f(x, t) denote the number
of chips on vertex x and let ARR(x, t) denote the direction of the rotor associated with x after t
steps of the Propp machine.

To describe the linear machine we use the same fixed initial configuration as for the Propp
machine. In one step, each vertex x sends a quarter of its (possibly fractional) number of chips
to each neighbour. Let E(x, t) denote the number of chips at vertex x after t steps of the linear
machine. This is equal to the expected number of chips at vertex x after a random walk of all chips
for t steps. Note that E(x, t) = 1

4

∑
A∈DIR E(x + A, t− 1) by the harmonic property of random

walks.

3. Mod-4-forcing theorem

For a deterministic process like the Propp machine, it is obvious that the initial configuration
(that is, the location of each chip and the direction of each rotor) determines all subsequent
configurations. The following theorem shows a partial converse, namely that (roughly speaking)
we may prescribe the number of chips modulo 4 on all vertices at all times and still find an
initial configuration leading to such a game. An analogous result for the one-dimensional Propp
machine has been shown in [2].

Theorem 3.1 (mod-4-forcing theorem). For any initial directions of the rotors and any
π : V × N0 → {0, 1, 2, 3} with π(x, t) = 0 for all x �∼ t, there is an initial even configuration
f(x, 0), x ∈ V , that results in a game with f(x, t) ≡ π(x, t) (mod 4) for all x and t.

Proof. Let ARR(x, 0) describe the initial rotor directions given in the assumption. The sought-
after configuration can be found iteratively. We start with f(x, 0) := π(x, 0) chips at location x.

Now assume that our initial (even) configuration is such that for some T ∈ N we have f(x, t) ≡
π(x, t) (mod 4) for all t < T and x ∈ V . We modify this initial configuration by defining
f′(x, 0) := f(x, 0) + εx4

T for even x, while we have f′(x, 0) = 0 for odd x. Here, εx ∈ {0, 1, 2, 3}
are to be determined such that f′(x, t) ≡ π(x, t) (mod 4) for all t � T and x ∈ V .

Observe that a pile of 4T chips splits evenly T times. Hence, for all choices of the εx we still
have f′(x, t) ≡ π(x, t) (mod 4) for all t < T . At time T , the extra piles of 4T chips have spread
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Deterministic Random Walks on the Two-Dimensional Grid 127

as follows:

f′(x, T ) = f(x, T ) +
∑
y∼0

‖y−x‖∞�T

εy

(
T

T+x1−y1

2

)(
T

T+x2−y2

2

)
.

Initially, let εy := 0 for all y ∈ V . By induction on ‖y‖1, we change the εy to their final value.
We keep εy = 0 for all y with ‖y‖1 < 2T .

Assume that for some θ ∈ N0, the current εy fulfil f′(x, T ) ≡ π(x, T ) (mod 4) for all x with
‖x‖1 < θ. We now determine εy for all y with ‖y‖1 = 2T + θ in such a way that f′(x, T ) ≡
π(x, T ) (mod 4) for all x ∈ V such that ‖x‖1 � θ.

Fortunately, to achieve f′(x, T ) ≡ π(x, T ) (mod 4) for some x ∈ V such that ‖x‖1 = θ, it
suffices to change a single εy, y ∈ V , ‖y‖1 = 2T + θ. Without loss of generality, let x ∈ V ,
‖x‖1 = θ, and x ∼ T such that x1, x2 � 0. Let y = y(x) = (x1 + T , x2 + T ). Now, choosing
εy ∈ {0, 1, 2, 3} such that εy ≡ π(x, T )− f(x, T ) (mod 4) yields f′(x, T ) = f(x, T ) + εy ≡
π(x, T ) (mod 4) and f′(x, T ) = f(x, T ) for all other x ∈ V such that ‖x‖1 � θ.

Hence, for each x ∈ V such that ‖x‖1 = θ, we find a y(x) and a value for εy(x) such that the
resulting f′(x, T ) are as desired. All other εy with ‖y‖1 = 2T + θ remain fixed to zero.

This defines a sequence (fθ)θ∈N of initial configurations V × {0} → N0 such that the result-
ing games fθ : V × N0 → N0 satisfy fθ(x, t) ≡ π(x, t) (mod 4) for all (x, t) such that t < T or
‖x‖1 � θ. Note that, by construction, (fθ(x, 0))θ∈N is constant for θ � ‖x‖1. Hence the initial
configuration f : V × {0} → N0, f(x, 0) := limθ→∞ fθ(x, 0) is well defined and the resulting
game f : V × N0 → N0 satisfies f(x, t) ≡ π(x, t) (mod 4) for all x ∈ V and t � T .

Up to this point, we have proved that for all T ∈ N there is an even initial configuration
fT : V × {0} → N0 such that the resulting game fT : V × N0 → N0 satisfies fT (x, t) ≡ π(x, t)

(mod 4) for all t � T and x ∈ V . Again, (fT (x, 0))T∈N0
is constant for T sufficiently large com-

pared to ‖x‖1. Hence, as above, f : V × {0} → N0, f(x, 0) := limT→∞ fT (x, 0) is well defined
and the resulting game f : V × N0 → N0 satisfies f(x, t) ≡ π(x, t) (mod 4) for all x ∈ V and
T ∈ N0.

4. The basic method

In this section, we lay the foundations for our analysis of the maximal possible single-vertex
discrepancy. In particular, we will see that we can determine the contribution of a vertex to the
discrepancy at another one independent from all other vertices.

In the following, we re-use several arguments from [1, 2]. For the moment, in addition to the
notation given in Section 2, we also use the following mixed notation. By E(x, t1, t2) we denote
the (possibly fractional) number of chips at location x after first performing t1 steps with the
Propp machine and then t2 − t1 steps with the linear machine.

We are interested in bounding the discrepancies |f(x, t)− E(x, t)| for all vertices x and all
times t. Since we aim at bounds independent of the initial configuration, it suffices to consider
the vertex x = 0. From

E(0, 0, t) = E(0, t),

E(0, t, t) = f(0, t),
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128 B. Doerr and T. Friedrich

we obtain

f(0, t)− E(0, t) =

t−1∑
s=0

(
E(0, s + 1, t)− E(0, s, t)

)
.

Now E(0, s + 1, t)− E(0, s, t) =
∑

x∈V
∑f(x,s)

k=1 (H(x + NEXTk−1(ARR(x, s)), t− s− 1)−H

(x, t− s)) motivates the definition of the influence of a Propp move (compared to a random walk
move) from vertex x in direction A on the discrepancy of 0 (t time steps later) by

INF(x,A, t) := H(x + A, t− 1)−H(x, t).

To finally reduce all ARRs involved to the initial arrow settings ARR(·, 0), we define si(x) :=

min {u � 0 | i <
∑u

t=0 f(x, t)} for all i ∈ N0. Hence, at time si(x) the location x is occupied by
its ith chip (where, to be consistent with [2], we start counting with the 0th chip).

Let T be a time at which we analyse the discrepancy at 0. Then the above yields

f(0, T )− E(0, T ) =
∑
x∈V

∑
i�0,

si(x)<T

INF(x, NEXTi(ARR(x, 0)), T − si(x)). (4.1)

Since the inner sum of equation (4.1) will occur frequently in the remainder, let us define the
contribution of a vertex x to be

CON(x) :=
∑
i�0,

si(x)<T

INF(x, NEXTi(ARR(x, 0)), T − si(x)),

where we both suppress the initial configuration leading to the si(·) as well as the run-time T .
Occasionally, we will write CONC to specify the underlying initial configuration.

The first main result of this section, summarized in the following theorem, is that it suffices to
examine each vertex x separately.

Theorem 4.1. The discrepancy between the Propp machine and linear machine after T time
steps is the sum of the contributions CON(x) of all vertices x, i.e.,

f(0, T )− E(0, T ) =
∑
x∈V

CON(x).

Our aim in this paper is to prove a sharp upper bound for the single-vertex discrepancies
|f(y, T )− E(y, T )| for all y and T . As discussed already, by symmetry we may always assume
x = 0. To get rid of the dependency of T , let us define MAXCON(x) to be the supremum con-
tribution of x over all initial configurations and all T . We will shortly see that the supremum
actually is a maximum (Corollary 6.3), that is, there is an initial configuration and a time T such
that CON(x) = MAXCON(x). Since the contribution only depends on T − si(x) and the (mod-4)-
forcing theorem tells us how to manipulate the si(x), we may choose T as large as we like (and
still have a configuration leading to CON(x) = MAXCON(x)). Provided that

∑
x∈V MAXCON(x)

is finite (which we prove in the remainder), we obtain that
∑

x∈V MAXCON(x) is a tight upper
bound for sup(f(0, T )− E(0, T )), where the supremum is taken over all initial configurations
and all T .
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Deterministic Random Walks on the Two-Dimensional Grid 129

To bound |f(0, T )− E(0, T )|, we need an analogous discussion for negative contributions.
Let MINCON(x) be the infimum contribution of x over all initial configurations and all T . Fortu-
nately, using symmetries, we can show that

∑
x∈V MAXCON(x) = −

∑
x∈V MINCON(x), hence

it suffices to deal with positive contributions. Let us briefly sketch the symmetry argument and
then summarize the above discussion.

Observe that sending one chip in each direction at the same time does not change CON(x).
That is, for all x and t we have ∑

A∈DIR

INF(x,A, t) = 0. (4.2)

This follows from the definition of INF and the elementary fact H(x, t) = 1
4

∑
A∈DIR H(x + A, t−

1). Based on equation (4.2) we will ignore piles of four chips (and multiples) at a common time t
in the remainder of this section. The remaining one to three chips are called relevant chips.

To describe the symmetries of CON, we further distinguish the non-circular rotor sequences.
We call (↗,↖,↘,↙) and (↗,↙,↘,↖) x-alternating, and we call (↗,↘,↖,↙) and
(↗,↙,↖,↘) y-alternating. Now a short look at the definition of MAXCON reveals symmetries,
such as:

• MAXCON((x1, x2)) = MAXCON((−x1,−x2)) for circular rotor sequences,
• MAXCON((x1, x2)) = MAXCON((x1,−x2)) for x-alternating rotor sequences, and
• MAXCON((x1, x2)) = MAXCON((−x1, x2)) for y-alternating rotor sequences.

The following lemma exhibits symmetries for MAXCON and MINCON. It shows that the discrep-
ancies caused by having too few or too many chips have the same absolute value.

Lemma 4.2. For all x ∈ V , the following symmetries hold.

• Circular rotor sequences: MAXCON((x1, x2)) = −MINCON((−x1, x2)).
• x-alternating rotor sequences: MAXCON((x1, x2)) = −MINCON((−x1, x2)).
• y-alternating rotor sequences: MAXCON((x1, x2)) = −MINCON((x1,−x2)).

Proof. The proofs are not difficult, so we only give the one for the first statement. We show
that for each configuration C1 there is another configuration C3 and a simple permutation π of V
with CONC1

(x) = −CONC3
(π(x)) for all implicit run-times T , and assuming the clockwise rotor

sequence R := (↗,↘,↙,↖) for both C1 and C3. By Theorem 3.1, there is a configuration
C2 which sends, using the rotor sequence (↗,↖,↙,↘), a relevant chip from (−x1, x2) in
direction (−A1, A2) at time t if and only if C1 sends a relevant chip from (x1, x2) in direc-
tion (A1, A2) at time t. Note that CONC2

((−x1, x2)) = CONC1
(x). A configuration C3 which sends,

for each single chip C2 sends, three chips from the same vertex in the same direction at the same
time obeys rotor sequence R and gives by equation (4.2) a contribution CONC3

((−x1, x2)) =

−CONC2
((−x1, x2)) = −CONC1

(x). Hence, MINCON((−x1, x2)) = −MAXCON((x1, x2)) for the
clockwise rotor sequence R.

Now Lemma 4.2 immediately yields
∑

x∈V MINCON(x) = −
∑

x∈V MAXCON(x). Therefore,
it suffices to consider maximal contributions.
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Theorem 4.3.

sup
C,T
|f(0, T )− E(0, T )| =

∑
x∈V

MAXCON(x)

is a tight upper bound for the single-vertex discrepancies.

5. The modes of INF

In Theorem 4.3 we expressed the discrepancy as the sum of contributions CON(x), which in turn
are sums of the influences INF(x,A, t). To bound the discrepancy, we are now interested in the
extremal values of such sums. In this section we derive some monotonicity properties of these
sums. For this, we define

INF(x,A, t) :=
∑
A∈A

INF(x,A, t)

for a finite sequence A := (A(1),A(2), . . .) of rotor directions ordered according to a fixed rotor
sequence. In the remainder of the article all finite sequences of rotor directions for which we use
the calligraphic A are ordered according to their respective rotor sequence.

Let X ⊆ R. We call a mapping f : X → R unimodal if there is a t1 ∈ X such that f|x�t1 as
well as f|x�t1 are monotone. We call a mapping f : X → R bimodal if there are t1, t2 ∈ X such
that f|x�t1 , f|t1�x�t2 , and f|t2�x are monotone. We call a mapping f : X → R strictly bimodal if
it is bimodal but not unimodal. In the following, we show that all INF(x,A, t) are bimodal in t.

From equation (4.2) we see that

INF(x, (A(1),A(2),A(3)), t) = −INF(x, DIR \ {A(1),A(2),A(3)}, t) and

INF(x, (A(1), . . . ,A(k)), t) = INF(x, (A(1), . . . ,A(k−4)), t) for k � 4.
(5.1)

This shows that it suffices to examine INF(x,A, t) for A of length one and two, which is done in
Lemmas 5.2 and 5.3, respectively. For both proofs, we need Descartes’ Rule of Signs, which can
be found in [12].

Theorem 5.1 (Descartes’ Rule of Signs). The number of positive roots counting multiplicities
of a non-zero polynomial with real coefficients is either equal to its number of coefficient sign
variations (i.e., the number of sign changes between consecutive non-zero coefficients) or else is
less than this number by an even integer.

With this, we are now well equipped to analyse the monotonicity properties of INF(x,A, ·) for
|A| ∈ {1, 2}.

Lemma 5.2. For all x ∈ V and A ∈ DIR, INF(x,A, t) is bimodal in t. It is strictly bimodal if
and only if

(i) ‖x‖∞ > 6 and
(ii) −A1x1 > A2x2 > (−A1x1 + 1)/2 or −A2x2 > A1x1 > (−A2x2 + 1)/2.

Proof. A chip at vertex x requires at least ‖x‖∞ time steps to arrive at the origin. Hence,
INF(x,A, t) = 0 for t < ‖x‖∞. We show that INF(x,A, ·) has at most two extrema larger than
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‖x‖∞. The discrete derivative of INF(x,A, t) in t is

INF(x,A, t + 2)− INF(x,A, t) =
p(x,A, t) ·

(
(t− 1)!

)2

4t+2
(
t+x1+2

2

)
!
(
t−x1+2

2

)
!
(
t+x2+2

2

)
!
(
t−x2+2

2

)
!

with

p(x,A, t) := (4A1x1 + 4A2x2)t
4

+ (−A1x
3
1 − A2x

3
2 − A1x1x

2
2 − A2x2x

2
1 − 6A1x1A2x2 + 19A1x1 + 19A2x2)t

3

+ (A1x
3
1A2x2 + A1x1A2x

3
2 − 4A1x

3
1 − 4A2x

3
2 − 4A1x1x

2
2

− 4A2x2x
2
1 − 23A1x1A2x2 + 30A1x1 + 30A2x2)t

2

+ (A1x
3
1x

2
2 + A2x

3
2x

2
1 + 4A1x

3
1A2x2 + 4A1x1A2x

3
2 − 4A1x

3
1 − 4A2x

3
2

− 4A1x1x
2
2 − 4A2x2x

2
1 − 32A1x1A2x2 + 16A1x1 + 16A2x2)t

− A1x
3
1A2x

3
2 + 4A1x

3
1A2x2 + 4A1x1A2x

3
2 − 16A1x1A2x2.

We observe that the number of extrema of INF(x,A, ·) is exactly the number of roots of p(x,A, ·).
Since this is a polynomial of degree 4 in t, we can use Descartes’ Rule of Signs and some
elementary case distinctions to show that p(x,A, ·) has at most two roots larger than ‖x‖∞. A
closer calculation reveals that p(x,A, ·) has precisely two roots larger than ‖x‖∞ if ‖x‖∞ > 6 and
one of −A1x1 > A2x2 > (−A1x1 + 1)/2 and −A2x2 > A1x1 > (−A2x2 + 1)/2 hold.

Lemma 5.3. For all x ∈ V and A(1),A(2) ∈ DIR such that A(1) �= A(2), INF(x, (A(1),A(2)), t) is
unimodal in t.

Proof. The discrete derivative of INF(x, (A(1),A(2)), t) is

INF(x, (A(1),A(2)), t + 2)− INF(x, (A(1),A(2)), t)

=

(
p(x,A(1), t) + p(x,A(2), t)

)
·
(
(t− 1)!

)2

4t+2
(
t+x1+2

2

)
!
(
t−x1+2

2

)
!
(
t+x2+2

2

)
!
(
t−x2+2

2

)
!

with p(x,A, t) as defined in the proof of Lemma 5.2. Thus, the extrema of INF are the roots of the
quartic function p(x,A(1), t) + p(x,A(2), t). Descartes’ Rule of Signs now shows that p(x,A(1), t) +

p(x,A(2), t) has at most one root larger than ‖x‖∞ for all x and A(1) �= A(2).

6. Maximal contribution of a vertex

We now fix a position x and a rotor sequence R to examine MAXCON(x). Lemmas 5.2 and 5.3
show that

∑
A∈A INF(x,A, t) is bimodal in t for all finite sequences A := (A(1),A(2), . . .) of ro-

tor directions ordered according to R. Hence, for all A there are at most two times at which
the monotonicity of

∑
A∈A INF(x,A, t) changes. A time t at which the monotonicity of

∑
A∈A

INF(x,A, t) changes for some A is called extremal. In case of ambiguities, we define the first
such time to be extremal. That is, for unimodal

∑
A∈A INF(x,A, t), we choose the first time t1

such that
∑

A∈A INF(x,A, t) is monotone for t � t1 and t � t1. Analogously, for strictly bimodal∑
A∈A INF(x,A, t), we choose the first times t1 and t2 such that

∑
A∈A INF(x,A, t) is monotone

for t � t1, t1 � t � t2, and t � t2. The set of all extremal times is denoted by EX(x).
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132 B. Doerr and T. Friedrich

EX(x) can be computed easily. By equation (5.1) it suffices to consider A of length one and
two. The corresponding extremal times are the (rounded) roots of the polynomials p(x,A, t) and
p(x,A(1), t) + p(x,A(2), t) given in Lemma 5.2. The following lemma shows that the number of
extremal times is very limited.

Lemma 6.1. |EX(x)| � 7

Proof. According to Lemma 5.2, there is at most one rotor direction A for which INF(x,A, t)

is strictly bimodal in t. Hence, the number of extremal times of INF(x,A, t) with |A| = 1 is at
most five. For a rotor sequence R = (R(1),R(2),R(3),R(4)), equation (4.2) and Lemma 5.3 show
that

INF(x, (R(1),R(2)), t) = −INF(x, (R(3),R(4)), t) and

INF(x, (R(2),R(3)), t) = −INF(x, (R(4),R(1)), t)

are unimodal in t. Therefore, the total number of extremal times of INF(x, (A(1),A(2)), t) with
(A(1),A(2)) obeying R is at most two.

Between two successive times t1, t2 ∈ EX(x) ∪ {0, T },
∑

A∈A INF(x,A, t) is monotone in t

for all A. Such periods of time [t1, t2] we call a phase. Note that
∑

A∈A INF(x,A, t) could
also be constant in a certain phase. This implies that it is monotonically increasing as well as
monotonically decreasing. To avoid this ambiguity, we use the terms increasing and decreasing
(in contrast to monotonically increasing and decreasing) based on the minima and maxima at
extremal times EX(x), which are unambiguously defined and alternating. We now define precisely
when a function

∑
A∈A INF(x,A, t) is increasing or decreasing. Consider the set E of the extremal

times of
∑

A∈A INF(x,A, t) as defined above. By Lemmas 5.2 and 5.3 we know that |E| ∈ {1, 2}.
We call

∑
A∈A INF(x,A, t) increasing at t if it has a minimum at the maximal t′ ∈ E with

t′ < t or a maximum at the minimal t′ ∈ E with t′ > t. Analogously, we call
∑

A∈A INF(x,A, t)

decreasing at t if it has a maximum at the maximal t′ ∈ E with t′ < t or a minimum at the
minimal t′ ∈ E with t′ > t.

By abuse of language, let us say that x sends relevant chips at time t if f(x, T − t) �≡ 0

(mod 4).

Lemma 6.2. Let C1 be an arbitrary configuration with run-time T � max EX(x) and let
CONC1

(x) be the corresponding contribution of x. Then there is a configuration C2 with the same
run-time and CONC1

(x) � CONC2
(x) that sends relevant chips only at extremal times, i.e., for

which the associated f satisfies f(x, T − t) �≡ 0 (mod 4) only if t ∈ EX(x).

Proof. Let C2 be a configuration with CONC2
(x) � CONC1

(x) and a minimal number of non-
extremal times at which relevant chips are sent from x. We assume this number to be greater than
zero and show a contradiction.

The sum of the INFs of all chips sent at a certain non-extremal time t is either increasing or
decreasing in the phase t lies in.

Let us first assume that it is increasing. Let t′ be the minimal t′ such that t′ ∈ EX(x) or there
are relevant chips sent at time t′ (assume for the moment that such a t′ exists). Then, sending the
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considered pile of relevant chips at time t′ instead of time t decreases the number of non-extremal
times while not decreasing its contribution. Such a modified configuration exists by Theorem 3.1
and contradicts our assumption on C2. Therefore, there is no such time t′. This implies that t
lies in the last phase and that the relevant chips sent at time t are the last to be sent at all. By
limt→∞ INF(x,A, t) = 0 for all A, the contribution of the chips sent at time t is negative (since it
is an increasing function). Hence, not sending these chips at all does not decrease CONC2

(x), but
the number of non-extremal times.

The same line of argument holds if the sum of the INFs is decreasing instead of increasing. In
this case we use that INF(x,A, t) = 0 for all t < ‖x‖∞.

Lemma 6.2 immediately gives the following corollary.

Corollary 6.3. There is an initial configuration and a time T such that CON(x) = MAXCON(x).
The configuration can be chosen such that f(x, T − t) �≡ 0 (mod 4) only if t ∈ EX(x). T can be
chosen arbitrarily as long as T � max EX(x).

Lemma 6.1 and Corollary 6.3 give a simple but costly approach to calculate MAXCON(x).
There are four different initial rotor directions for x and at each (of the at most seven) extremal
times we can either send 0, 1, 2, or 3 relevant chips. As all subsequent rotor directions are chosen
according to R, there is only a constant 4 · 47 = 65536 number of configurations to consider.
The maximum of the respective CON(x) will be MAXCON(x) by Corollary 6.3.

Fortunately, we can also find the worst-case configuration directly. A block of a phase [t1, t2]

is a 4-tuple (A(1),A(2),A(3),A(4)) ∈ DIR4 of rotor directions in the order of R such that
∑k

i=1

INF(x,A(i), t) is increasing in t in this phase for all k ∈ {1, 2, 3}. By equation (4.2), this is equi-
valent to

∑4
i=k INF(x,A(i), t) being decreasing in t within the phase for all k ∈ {2, 3, 4}.

Lemma 6.4. Each phase has a unique block. This is determined by the directions of monoton-
icity of t �→ INF(x,A, t) with |A| ∈ {1, 2}.

Proof. Consider a fixed phase. We want to show that for all valid combinations of directions of
monotonicity of INF(x,A, t) with |A| ∈ {1, 2} within this phase, there is exactly one permutation
(A(1),A(2),A(3),A(4)) of DIR obeying R such that (A(1),A(2),A(3),A(4)) forms a block.

To describe the type of monotonicity of INF(x,A, t) within the phase, we use a function τ with
τ(A) :=→ if INF(x,A, t) is increasing and τ(A) :=← if it is decreasing. This notation should
indicate the direction in which the respective INF(x,A, t) is increasing. As an abbreviation we
also use τ(A(1),A(2),A(3),A(4)) := (τ(A(1)), τ(A(2)), τ(A(3)), τ(A(4))).

By equation (4.2), we know that there is at least one A of type →. If there is exactly one
direction A of type→, then the unique permutation (A(1),A(2),A(3),A(4)) of DIR obeying R such
that τ(A(1),A(2),A(3),A(4)) = (→,←,←,←) is the uniquely defined block. If there are three rotor
directions A of type→, the block is uniquely defined by τ(A(1),A(2),A(3),A(4)) = (→,→,→,←).

It remains to examine the case of exactly two rotor directions of type →. If these two direc-
tions are consecutive in R, then τ(A(1),A(2),A(3),A(4)) = (→,→,←,←) again defines the unique
block. Otherwise, rotor directions of type → and ← are alternating in the rotor sequence and
(→,←,→,←) is the only type possible for a block. This allows two blocks (A(1),A(2),A(3),A(4))
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134 B. Doerr and T. Friedrich

Figure 1. INF((5, 9),A, t) for A ∈ {↗,↘,↙,↖}. The circles indicate the extrema.

and (A(3),A(4),A(1),A(2)). The choice between these two is uniquely fixed by the direction of
monotonicity of INF(x, (A(1),A(2)), t). Therefore, in all cases there is exactly one unique
block.

We now use Lemma 6.4 to define a particular configuration, which we call a block config-
uration. By Theorem 3.1, to specify a configuration it suffices to fix the number of relevant
chips at all times and locations. In a block configuration B, a vertex x sends relevant chips
only at extremal times t ∈ EX(x). Let (Â(1), Â(2), Â(3), Â(4)) and (Ā(1), Ā(2), Ā(3), Ā(4)) denote the
blocks in the phases ending and starting at t. Then x sends k chips at time t in directions
(A(1), . . . ,A(k)), where k is such that 0 � k � 3 and (. . . , Â(4),A(1), . . . ,A(k), Ā(1), . . .) obeys R. This
uniquely defines when and in which directions relevant chips are sent. Note that we use the blocks
only as a technical tool. There are not necessarily chips sent corresponding to Â(1), Â(2), Â(3), Â(4)

and Ā(1), Ā(2), Ā(3), Ā(4). By Theorem 3.1, there are configurations B as just defined, and for all x,
all of them have the same contribution CONB(x).

Example. We now derive the block configuration of the position x = (5, 9) with the clockwise
rotor sequence R = (↗,↘,↙,↖). By calculating the roots of the polynomials p(x,A, t) and
p(x,A(1), t) + p(x,A(2), t) given in Lemma 5.2, it is easy to verify that:

• INF(x,↗, t) is unimodal with minimum at t = 27,
• INF(x,↘, t) is bimodal with minimum at t = 9 and maximum at t = 35,
• INF(x,↙, t) is unimodal with maximum at t = 25,
• INF(x,↖, t) is unimodal with minimum at t = 23,
• INF(x, (↗,↘), t) and INF(x, (↖,↗), t) are unimodal with minimum at t = 27,
• INF(x, (↘,↙), t) and INF(x, (↙,↖), t) are unimodal with maximum at t = 27.

Hence, the extremal points are EX(x) = {9, 23, 25, 27, 35}. In Figure 1 we depict the plots of
INF(x,A, t). The modes of INF(x,A, t) listed above uniquely determine the blocks of each phase.
Table 1 lists rotor directions and type of the block of each phase. This yields the following
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Deterministic Random Walks on the Two-Dimensional Grid 135

Table 1. Rotor directions and type of the block of each phase of
INF((5, 9)).

Boundaries of the phase Block of the phase

Phase Lower Upper Rotor directions Type

0 0 9 ↙↖↗↘ →←←←
1 9 23 ↘↙↖↗ →→←←
2 23 25 ↘↙↖↗ →→←←
3 25 27 ↘↙↖↗ →←→←
4 27 35 ↖↗↘↙ →→→←
5 35 T ↖↗↘↙ →→←←

Table 2. Values of CON((5, 9)) for other rotor sequences.

Times and directions of relevant
Rotor sequence chips in a block configuration CON((5, 9))

(↗,↘,↙,↖) 9 :↙↖↗, 27 :↘↙ 0.002277 . . .
(↗,↖,↙,↘) 23 :↙↘↗, 27 :↖↙, 35 :↘ 0.002309 . . .
(↗,↖,↘,↙) 9 :↙↗↖, 23 :↘↙↗, 27 :↖↘↙ 0.002302 . . .
(↗,↙,↘,↖) 25 :↙, 35 :↘ 0.002230 . . .
(↗,↘,↖,↙) 17 :↙↗, 27 :↘↖↙ 0.002083 . . .
(↗,↙,↖,↘) 25 :↙ 0.001985 . . .

(maximal as we will see shortly) contribution at x = (5, 9):

CON(x) = INF(x,↙, 9) + INF(x,↖, 9) + INF(x,↗, 9) + INF(x,↘, 27) + INF(x,↙, 27)

= 20,506,216,364,597
9,007,199,254,740,992

≈ 0.002277.

Note that just sending a single chip in the worst direction ↙ at its worst time t = 25 gives a
smaller contribution of INF(x,↙, 25) ≈ 0.001985. Also, sending two chips in directions↘ and
↙ at time 27 = argmaxt INF(x, (↘,↙), t) gives INF(x, (↘,↙), 27) ≈ 0.002261. Hence we do
profit from sending a chip in the ‘wrong’ direction↗ at time 9.

The values of CON((5, 9)) for other rotor sequences are shown in Table 2.

Lemma 6.5. A block configuration yields a contribution of MAXCON(x).

Proof. Consider a configuration C with contribution CONC(x) = MAXCON(x). By previous
considerations, we can further assume the following.

(1) C only sends relevant chips at times t ∈ EX(x) (cf. Corollary 6.3).
(2) C sends at least seven chips at each time t ∈ EX(x) (cf. equation (4.2)).
(3) Let t1, t2 ∈ EX(x) such that [t1, t2] is a phase and let k ∈ {1, 2, 3}. Let A(1), . . . ,A(k) be the

directions the last k chips are sent from vertex x at time t1. If
∑k

i=1 INF(x,A(i), t) is increasing
(cf. the definition on p. 132) in [t1, t2], then it is not constant. This is a feasible assumption
on C, since otherwise we could send these k chips at time t2 without changing CONC(x).
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(4) Analogously, let t1, t2 ∈ EX(x) such that [t1, t2] is a phase and let j ∈ {1, 2, 3}. Let A(1), . . . ,

A(j) be the directions in which the first j chips are sent from vertex x at time t2. If
∑k

i=1

INF(x,A(i), t) is decreasing in [t1, t2], then it is not constant.

Let B be a block configuration. Aiming at a contradiction, we assume CONC(x) > CONB(x).
Since by assumption (1) and the definition of B both configurations send relevant chips only at
times in EX(x), there is a time t ∈ EX(x) at which the chips of C contribute more than the chips
of B.

We now closely examine the chips sent from x at time t by both configurations. We know that B
sends a uniquely determined number � ∈ {0, . . . , 3} of relevant chips at time t in some directions
A(1), . . . ,A(�). By assumption (2), C also sends a sequence of chips in directions A(1), . . . ,A(�). Let
j and k denote the number of chips sent by C at time t before and after these � chips, respectively.
By ignoring possible piles of four chips, we may assume j, k � 3.

Assume that k � 1. Then the sum of the INFs of the last k chips C sends at time t is increasing
by the definition of a block. Assume first that t is not the last extremal time, that is, there is some
t2 ∈ EX(x) such that [t, t2] form a phase. Then, by assumption (3) above, the sum of the INFs
of the last k chips is strictly increasing in [t, t2]. Hence, a configuration which sends these chips
instead at t2 has a larger contribution, in contradiction to the maximality of C. Now let t be the
last extremal time. From limt→∞ INF(x,A, t) = 0 for all A and the fact that the sum of the INFs of
the last k chips is increasing, we see that it is not positive. Hence the last k chips do not contribute
positively to CONC(x).

Analogously, assume that j � 1. Assume first that t is not the first extremal time, that is, [t1, t]

form a phase for some t1 ∈ EX(x). By assumption (4), the first j chips C sends at time t have a
strictly monotonically decreasing sum of INFs. Hence sending them at time t1 instead of t gives
a larger contribution, again contradicting the maximality of C. If t is the first extremal time of x,
then INF(x,A, t) = 0 for all A and t < ‖x‖∞ shows, as above, that the contribution of the first j
chips is not positive.

We conclude that the first j and last k chips sent from x and time t in C, if they are present,
do not contribute positively to the contribution of x. This contradicts our assumption CONC(x) >

CONB(x).

With the help of a computer, we can now calculate MAXCON(x) for all x. Using about two
months on a Xeon 3 GHz CPU, we computed the maximal contribution of all vertices in
[−800, 800]2. If we have the same rotor sequence for all vertices then

∑
‖x‖∞�800

MAXCON(x) =

{
7.832 . . . for a circular rotor sequence,

7.286 . . . for a non-circular rotor sequence.
(6.1)

On the other hand, if we allow a different rotor sequence for each vertex, and further assume that
each vertex has a rotor sequence leading to the maximal contribution, then we obtain∑

‖x‖∞�800

MAXCON(x) = 7.873 . . .

Since MAXCON(x) is non-negative for all x ∈ V , all of these values are lower bounds for
∑

x∈V
MAXCON(x), and hence for the single-vertex discrepancy by Theorem 4.3.
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Remark 1. Lemma 6.1 shows that the number of extremal times of a vertex is at most seven.
However, a block configuration does not send relevant chips at at all extremal times. Let ÊX(x)

denote the set of extremal times at which relevant chips are sent by the block configuration. There
are vertices x such that |ÊX(x)| � 3. We now sketch a proof that |ÊX(x)| � 4 for all x.

Note that |ÊX(x)| only depends on the relative order of the extremal points and the initial
direction of monotonicity (i.e., increasing or decreasing) of INF(x,A, t) for |A| � 2. We use the
following two properties of INF (derived from equation (4.2)).

• In each phase there is at least one A ∈ DIR such that INF(x,A, t) is increasing (or decreasing).
• If INF(x,A(1), t) and INF(x,A(2), t) are both increasing or decreasing in a phase, then so is

INF(x, (A(1),A(2)), t).

For a vertex x with only unimodal INF(x,A, t), there are 6! = 720 permutations of the extrema
of INF(x,A, t) and INF(x, (A(1),A(2)), t) and 26 = 64 initial directions of monotonicity (using
equation (5.1)). A simple check by a computer shows that for only 384 of these 46080 cases
both properties from above are satisfied. For all of them, |ÊX(x)| � 3 holds. For vertices x with
INF(x,A, t) strictly bimodal for an A ∈ DIR, there are 7!/2! = 2520 permutations of the extrema
and 26 = 64 initial directions of monotonicity. Here, all 408 cases which satisfy both properties
only achieve |ÊX(x)| � 4. This proves |ÊX(x)| � 4 for all x. A computer can easily verify that
|ÊX(x)| � 3 for all ‖x‖∞ � 800. Therefore, we actually expect |ÊX(x)| � 3 to hold for all x. To
bridge this gap, stronger properties of INF seem necessary.

7. Tail estimates

In the previous section, we have calculated the values of
∑
‖x‖∞�800 MAXCON(x) depending on

the rotor sequence. To show that these are good approximations for the maximal single-vertex
discrepancy, we need to find an upper bound on

E :=
∑

‖x‖∞>800

MAXCON(x).

In this section, we will prove E < 0.16.
We now fix an arbitrary initial configuration and a time T . A simple calculation based on the

definitions of INF and CON gives for all x, A and t

INF(x,A, t) =
(
(A1x1 · A2x2)t

−2 − (A1x1 + A2x2)t
−1

)
H(x, t),

CON(x) =
∑
i�0,

si(x)<T

(
A

(i)
1 x1 · A(i)

2 x2

(T − si(x))2
− A

(i)
1 x1 + A

(i)
2 x2

T − si(x)

)
H(x, T − si(x)), (7.1)

with si(x) as defined in Section 4 and A(i) := NEXTi(ARR(x, 0)). Note that, independent of the
chosen rotor sequence, each of the sequences (A(i)

1 (x))i�0, (A(i)
2 (x))i�0 and (A(i)

1 (x)A(i)
2 (x))i�0 is

alternating, or alternating in groups of two. To bound the alternating sums in equation (7.1), we
use the following fact, which is an elementary extension of Lemma 4 in [2].

Lemma 7.1. Let f : X → R be non-negative and unimodal with X ⊆ R. Let A(0), . . . , A(n) ∈
{−1,+1} and t0, . . . , tn ∈ X such that t0 � · · · � tn. If A(i) is alternating, or alternating in groups
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of two, then ∣∣∣∣ n∑
i=0

A(i)f(ti)

∣∣∣∣ � 2max
x∈X

f(x).

It remains to show that H(x, t)/t and H(x, t)/t2 are indeed unimodal. Note that INF(x,A, t)

itself is not always unimodal as shown in Lemma 5.2.

Lemma 7.2. For all x ∈ V , H(x, t)/t and H(x, t)/t2 are unimodal in t with global maxima at
tmax(x) and t′max(x), respectively. For the maxima, we have (x2

1 + x2
2)/4− 2 � tmax(x) � (x2

1 +

x2
2)/4 + 1 and (x2

1 + x2
2)/6− 1 � t′max(x) � (x2

1 + x2
2)/6 + 2.

Proof. By symmetry, let us assume x1 � x2. By definition, H(x, t)/t = 0 for t < x2. We show
that H(x, t)/t has only one maximum in t ∈ [x2,∞). We compute

H(x, t− 2)

t− 2
− H(x, t)

t
=

4−tp(t)(t− 3)!2 (t− 2)

( t+x1

2
)! ( t−x1

2
)! ( t+x2

2
)! ( t−x2

2
)!
,

with p(t) := 4t3 − (x2
1 + x2

2 + 5)t2 + 2t + x2
1x

2
2. By Descartes’ Rule of Signs (see Theorem 5.1),

p(t) has at most one real root larger than x2. Since

p

(
x2

1 + x2
2

4

)
= 1

16

(
6x2

1x
2
2 + 8x2

1 + 8x2
2 − 5x4

1 − 5x4
2

)
< 0,

p

(
x2

1 + x2
2 + 5

4

)
= x2

1x
2
2 +

x2
1 + x2

2 + 5

2
> 0,

we see that H(x, t)/t has a unique extremum, which is a maximum, in [(x2
1 + x2

2)/4− 2, (x2
1 +

x2
2)/4 + 1]. This proves the lemma for H(x, t)/t. The analogous proof for H(x, t)/t2 is omitted.

By equation (7.1), and Lemmas 7.1 and 7.2, we obtain

E � 4E1 + 2E2,

with

E1 :=
∑

‖x‖∞>800

∣∣∣∣x1H(x, tmax(x))

tmax(x)

∣∣∣∣, E2 :=
∑

‖x‖∞>800

∣∣∣∣x1x2H(x, t′max(x))

(t′max(x))2

∣∣∣∣.
Using Lemma 7.2 and H(x, t) �

(
2−t

(
t

t/2

))2 � 1/t, we now derive upper bounds for H(x, t)/t

and H(x, t)/t2 for ‖x‖∞ � 88:∣∣∣∣H(x, tmax(x))

tmax(x)

∣∣∣∣ � 1

tmax(x)2
� 16

(x2
1 + x2

2 − 8)2
� 17

(x2
1 + x2

2)
2
,∣∣∣∣H(x, t′max(x))

t′max(x)2

∣∣∣∣ � 1

t′max(x)3
� 216

(x2
1 + x2

2 − 6)3
� 217

(x2
1 + x2

2)
3
.

For the calculations in the remainder of this section we need the following estimates. All of them
can be derived by bounding the infinite sums with integrals.
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•
∑
x>y

1

xk
� 1

(k − 1)yk−1
for all y > 0 and all constants k > 1.

•
∞∑

x2=0

1

(x2
1 + x2

2)
2

� 7

3 x3
1

for all x1 � 1.

•
∑
y�β

1

(α2 + y2)y
� ln(α2 + β2)− 2 ln(β)

2α2
.

•
∑
y>α,

y≡c(mod 2)

y

(y2 + γ2)2
� 1

4(α2 + γ2)
.

•
∑
y>α,

y≡c(mod 2)

1

(y2 + γ2)2
�

(
π − 2 arctan( α

γ
)
)
(α2 + γ2)− 2αγ

8(α2 + γ2)γ3
.

•
∑
y>β

π − 2 arctan( α
y
)

y2
� ln(α2 + β2)− 2 ln(β)

α
+

π − 2 arctan( α
β
)

β
.

With this, we can now bound E2 easily:

E2 �
∑

‖x‖∞>800

∣∣∣∣ 217x1x2

(x2
1 + x2

2)
3

∣∣∣∣ �
∑

‖x‖∞>800

∣∣∣∣ 217

2(x2
1 + x2

2)
2

∣∣∣∣
<

800∑
x1=1

∑
x2>800

434

(x2
1 + x2

2)
2

+
∑

x1>800

∑
x2�0

434

(x2
1 + x2

2)
2

<

800∑
x1=1

∑
x2>800

434

x4
2

+
∑

x1>800

3038

3 x3
1

� 434

3 · 8002
+

1519

3 · 8002
< 0.0011. (7.2)

Achieving a good bound for E1 is significantly harder. We divide E1 into three subsums:

E1 <

see equation (7.4)︷ ︸︸ ︷
4

800∑
x1=1

∞∑
x2=801,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)
+

see equation (7.5)︷ ︸︸ ︷
4

∞∑
x1=801

800∑
x2=1,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)

+ 4

∞∑
x1=801

∞∑
x2=801,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)

︸ ︷︷ ︸
see equation (7.6)

< 0.038. (7.3)
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Now we bound these sums separately as follows:

4

800∑
x1=1

∞∑
x2=801,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)
< 68

800∑
x1=1

x1

∑
x2>800,

x2≡x1(mod 2)

1

(x2
1 + x2

2)
2

� 17

2

800∑
x1=1

(8002 + x2
1)

(
π − 2 arctan(800/x1)

)
− 1600 x1

(x2
1 + 8002) x2

1

< 0.0046, (7.4)

4

∞∑
x1=801

800∑
x2=0,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)
< 68

800∑
x2=0

∑
x1>800,

x1≡x2(mod 2)

x1

(x2
1 + x2

2)
2

� 17

800∑
x2=0

1

x2
2 + 8002

< 0.0167, (7.5)

4

∞∑
x1=801

∞∑
x2=801,

x2≡x1(mod 2)

x1H(x, tmax(x))

tmax(x)
� 68

∑
x1>800

x1

∑
x2>800,

x2≡x1(mod 2)

1

(x2
1 + x2

2)
2

� 17

2

∑
x1>800

(
π − 2 arctan( 800

x1
)
)
(8002 + x2

1)− 1600x1

(8002 + x2
1)x

2
1

� 17

2

(
ln(2 · 8002)− 2 ln(800)

800
+

π/2

800
− ln(2 · 8012)− 2 ln(801)

801

)
< 0.0167. (7.6)

Putting this together, we obtain

E < 4 · 0.038 + 2 · 0.0011 < 0.16. (7.7)

This upper bound on E is not tight. However, it suffices to prove that the bounds for the single-
vertex discrepancy calculated in Section 6 do depend on the rotor sequence. Theorem 4.3 and
equations (6.1) and (7.7) yield the following theorem.

Theorem 7.3. The maximal single-vertex discrepancy between the Propp machine and linear
machine is a constant c2, which depends on the following allowed rotor sequences.

• If all vertices have the same circular rotor sequence, then 7.832 � c2 � 7.985.
• If all vertices have the same non-circular rotor sequence, then 7.286 � c2 � 7.439.
• If all vertices may have different rotor sequences, and we assume that each vertex has a rotor

sequence leading to a maximal contribution, then 7.873 � c2 � 8.026.

8. Aggregating model

Besides the small single-vertex discrepancies examined in the previous sections, the Propp ma-
chine and random walk bear striking similarities also in other respects. The historically first
research started by Jim Propp studied an aggregating model called Internal Diffusion-Limited
Aggregation (IDLA) [4]. In physics this is a well-established model to describe condensation
around a source.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548308009589
Downloaded from https:/www.cambridge.org/core. Universitaet Potsdam, on 24 Feb 2017 at 10:17:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548308009589
https:/www.cambridge.org/core


Deterministic Random Walks on the Two-Dimensional Grid 141

Table 3. ∆(n) if all rotors are initially set to the left.

Rotor sequence (←, ↑,→, ↓) (←, ↑, ↓,→) (←,→, ↑, ↓)

average ∆(n) for 2 · 106 < n � 3 · 106 1.600 0.996 1.810
maximal ∆(n) for n � 3 · 106 1.741 1.218 1.967

Table 4. ∆(n) with random initial directions of the rotors.

Rotor sequence (←, ↑,→, ↓) (←, ↑, ↓,→) (←,→, ↑, ↓)

average ∆(n) for 2 · 106 < n � 3 · 106 1.920± 0.004 1.782± 0.003 1.781± 0.003

maximal ∆(n) for n � 3 · 106 2.541± 0.051 2.351± 0.053 2.364± 0.067

The process starts with an empty grid. In each round, a particle is inserted at the origin and
does a (quasi-)random walk until it occupies the first empty site it reaches. For the random walk,
it is well known that the shape of the occupied locations converges to a Euclidean ball [7] in the
following sense. Let n be the number of particles and let ∆(n) denote the difference of the radius
of the largest inscribed and the smallest circumscribed circle of an aggregation with n chips. It
has been shown by Lawler [6] that the fluctuations around the limiting shape are bounded by
Õ(n1/6) with high probability. Moore and Machta [11] observed experimentally that these error
terms were even smaller, namely poly-logarithmic.

The analogous model in which the particles do a rotor–router walk instead of a random walk
is much less understood. Levine and Peres [8, 9] proved that the shape of occupied locations
converges to a Euclidean ball, however, in a weaker sense than before. They showed that the
Lebesgue measure of the symmetric difference between the Propp aggregation and an appro-
priately scaled Euclidean ball centred at the origin is O(n1/3). Recently, they improved this and
showed that after n particles have been added, the Propp aggregation contains a disc of radius√
n/π − O(log n) and is contained in a disc of radius

√
n/π + O(n1/4 log n) [10]. Surprisingly,

experimental results indicate much stronger bounds. Kleber [5] computed that for anticlockwise
permutations of the rotor directions, ∆(3 · 106) ≈ 1.611 if all rotors initially point to the left. An
apparent conjecture is that there is a constant δ such that ∆(n) � δ for all n.

We reran these experiments with different rotor sequences. The aggregations for one million
particles are shown in Figure 2. Both aggregations differ not only in the colour patterns but also
in the precise value of ∆(n). If all rotors are initially set to the left, we obtained for ∆(n) the values
shown in Table 3. It is noteworthy that the respective ∆(n) of both non-circular rotor sequences
(←, ↑, ↓,→) and (←,→, ↑, ↓) differ considerably.

Additionally, we also examined ∆(n) for random initial rotor directions. This leads to slightly
larger ∆-values. Table 4 shows averages and standard deviations of 100 aggregations with random
initial directions of the rotors.

As one might have expected, for random initial rotor directions the two non-circular rotor
sequences (columns 1 and 3) are statistically not distinguishable.

The results above again show that different rotor sequences do make a difference. The main
open problem, however, remains to show the conjectured constant upper bound for ∆(n).
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142 B. Doerr and T. Friedrich

Figure 2. Propp aggregations with one million particles. All rotors initially point to the left. The final rotor directions
are denoted by different gray scale shades. (A color version of this figure is available on the journal website –
journals.cambridge.org/cpc)
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9. Conclusion

One way of comparing the Propp machine with a random walk is in terms of the maximal
discrepancy that can occur on a single vertex. It has been shown by Cooper and Spencer [1] that
for the underlying graph being an infinite grid Z

d, this single-vertex discrepancy can be bounded
by a constant cd independent of the particular initial configuration. For d = 1, this constant has
been estimated as c1 ≈ 2.29 in [2]. Also, the initial configurations leading to a high discrepancy
have been described. For d � 2, no such results were known.

In this paper, we analysed the case d = 2. We chose the case d = 2 out of two considerations.
On the one hand, from dimension two on, there is more than one rotor sequence available, which
raises the question of whether different rotors sequences make a difference. On the other hand,
we restrict ourselves to d = 2, because for larger d a nice expression for the probability H(x, t)

that a chip from vertex x arrives at the origin after t random steps is missing. This probably
makes it very hard to find sufficiently sharp estimates for the single-vertex discrepancies.

We were able to give relatively tight estimates for the constants c2 taking into account different
rotor sequences, and obtain several interesting facts about the worst-case initial configurations.
The maximal single-vertex discrepancy c2 satisfies the following. If all vertices have the same
circular rotor sequence, then 7.832 � c2 � 7.985. If all vertices have the same non-circular
rotor sequence, then 7.286 � c2 � 7.439. If all vertices may have different rotor sequences,
and we assume that each vertex has a rotor sequence leading to a maximal contribution, then
7.873 � c2 � 8.026. In particular, we see that non-circular rotor sequences seem to produce
smaller discrepancies than circular ones. The gaps between upper and lower bounds stem from
the fact that we used a computer to calculate the precise maximal contribution CON(x− y) of
vertex x on the discrepancy at y. Hence the lower bounds are the maximal discrepancies obtained
from initial configurations such that all vertices x with ‖x− y‖∞ > 800 at all times contain only
numbers of chips that are divisible by 4.

We also learned that the initial configurations leading to such discrepancies are more com-
plicated than in the one-dimensional case. Recall from [2] that in the one-dimensional case in a
worst-case setting, each position needs to have an odd number of chips only once. If we aim at a
surplus of chips in the Propp model, these odd chips were always sent towards the position under
consideration, otherwise away from it.

In the two-dimensional case, things are more complicated. Here it can be necessary for a
position to hold a number of chips not divisible by 4 up to three times. Also, the number
of ‘relevant’ chips (those which cannot be put into piles of four) can be as high as nine. In
consequence, it can make sense to send relevant chips in the wrong direction (e.g., away from the
position where we aim at a surplus of chips). An example showing this was analysed in Section 6.
The reason for such behaviour seems to be that the influences INF(x, A, t) of relevant chips sent
from x in direction A at time t are no longer unimodal functions in t (as in the one-dimensional
case).

We also briefly considered the IDLA aggregation model. We saw that the surprisingly strong
convergence to a Euclidean ball observed in earlier research also holds for non-circular rotor
sequences and non-regular initial rotor settings. However, the suspected constant again seems to
depend on the rotor sequences, and again, the circular ones seem to behave slightly worse than
the non-circular ones.
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