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Abstract Island models in evolutionary computation solve problems by a careful
interplay of independently running evolutionary algorithms on the island and an
exchange of good solutions between the islands. In this work, we conduct rigorous
run time analyses for such island models trying to simultaneously obtain good run
times and low communication effort. We improve the existing upper bounds for both
measures (i) by improving the run time bounds via a careful analysis, (ii) by balanc-
ing individual computation and communication in a more appropriate manner, and
(iii) by replacing the usual communicate-with-all approach with randomized rumor
spreading. In the latter, each island contacts a randomly chosen neighbor. This epi-
demic communication paradigm is known to lead to very fast and robust information
dissemination in many applications. Our results concern islandmodels running simple
(1 + 1) evolutionary algorithms to optimize the classic test functions OneMax and
LeadingOnes. We investigate binary trees, d-dimensional tori, and complete graphs
as communication topologies.
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1 Introduction

To speed up evolutionary algorithms, islandmodels can be used as ameans of distribut-
ing the work load over many computing nodes. Each island runs a simple evolutionary
algorithm, occasionally sharing information with other nodes. One of the most com-
mon ways of sharing information is to send a copy of the best-so-far solution to other
islands, a process called migration. Many applications of this paradigm are known to
be successful [1,2,6].

One main choice for designing an efficient algorithm following the island model is
to choose the way migration is carried out. For example, the islands can be equipped
with a neighborhood structure, determining for each island to which other islands to
migrate its individuals. This is referred to as the migration topology. Dense migration
topologies, such as the complete graph, lead to a fast spread of good solutions at the
price of a high communication overhead. The impact of the migration topology on
algorithm performance has been analyzed both experimentally [23] and theoretically
[17]. Another choice lies in the frequency of migration. A frequent approach is to
introduce a parameter τ indicating that once every τ generations all islands engage in
communication with all neighbors. A high value of τ can thus save on the communi-
cation overhead, at the price of delays in the spread of new good individuals. Setting
the migration interval correctly is a challenge for designing efficient island algorithms
[20]. It has been noted that island models are also particularly useful for dynamic opti-
mization problems [19] and when employing crossover [22]. An overview of practical
concerns of research in the area of island models can be found in [2]; for an overview
of theoretical work, see [25].

In this work, we will consider λ islands running a (1 + 1) EA, a standard evolu-
tionary algorithm (EA) considered in theoretical analyses [13]. For various migrations
topologies (such as d-dimensional tori and the complete graph) and migration inter-
vals τ , we are interested in the expected time until some island evolves the optimal
solution for the given fitness function, of whichwe consider the two standard functions
OneMax and LeadingOnes. It is not surprising that in this simple setting of unimodal
fitness functions, fast migration topologies, such as the complete graph, perform best
in terms of the number of generations while performing badly in terms of commu-
nication [17]. We improve the analysis especially pertaining to the combined costs
(number of generations plus number of communications per island) in the following
ways.

First, we analyze the run time of the island models carefully. We see that, for the
number of generations that any of the topologies require onOneMax, the dependence
on τ is not linear, but, surprisingly, logarithmic. For the complete topology we further
improve the bounds on the number of generations by making a detailed analysis of
different optimization phases and employing a variable drift theorem; we show this
analysis to be tight by providingmatching lower bounds. Second, we use the parameter
τ to avoid communication overhead. By finding the right balance between individual
computation of the islands and spreading the information to the neighbors, we see that
the combined costs for the complete graph on OneMax are as low as O(n log log n),
using λ = �(log n) islands and a migration interval of τ = �(log n). Similarly,
we obtain combined costs for the complete graph on LeadingOnes of O(n3/2) ∩
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�(n3/2/ log n), using λ = �(
√
n) islands and a migration interval of τ = �(

√
n) for

the upper bound. Finally, we question themethod of broadcasting the information to all
available neighbors. Instead, we propose to employ the push protocol, known from the
area of epidemic algorithms or rumor spreading, where in each communication round
each island chooses one neighbor uniformly at random to send the best individual
to. It is known that for the complete topology the process requires logarithmically
many communication rounds until all islands are informed [9,11]. This is significantly
faster than the ring and torus topologies considered previously (and also faster than
d-dimensional tori in general), while the communication overhead is still constant
per island and communication round (compared with the linear overhead of complete
topologies). By proving lower bounds on the performance of the complete topology,
we show that the push protocol is superior even to broadcast communication in some
settings. Additionally, we generalize the findings for the push protocol to broadcast
communication in any migration topology where the number of informed islands
has an exponential growth in the number of communication rounds, in particular the
complete binary tree.

Table 1 gives an overview of our results. Section 2 formally introduces the island
models and test functions, and lists relevant tools from the literature. In Sect. 3 the push
protocol is examined. For comparison, Sect. 4 gives run time bounds for the broad-
cast communication model on multidimensional tori. Section 5 treats the complete
topology. The work is concluded in Sect. 6. This article improves upon its extended
abstract [8] in several ways. We employ a correspondence between the push protocol
and the information dissemination in complete binary trees to extend our method to
those topologies as well, see Corollary 12. In Corollary 16 we show a universal upper
bound on the run time and communication costs of any island model on connected
graphs optimizing arbitrary unimodal functions. Also, the lower bounds in Theorem24
regarding the LeadingOnes fitness function have been improved.

2 Island Models

In this paper we examine the maximization of unimodal, pseudo-Boolean functions
f : {0, 1}n → R

+
0 on bit strings x = x1x2 · · · xn of length n. We interpret the value

f (x) as the fitness of the individual x. A fitness function is called unimodal if every
non-optimal bit string has a Hamming-neighbor of higher fitness. We investigate

OneMax(x) =
n∑

i=1

xi , LeadingOnes(x) =
n∑

i=1

i∏

j=1

x j

as prototypes of unimodal functions with n + 1 different values. The main difference
between these two functions is the number of improving Hamming-neighbors. While
every bit string x with OneMax(x) = i < n has n − i neighbors of higher fitness, the
improving neighbor with respect to LeadingOnes is unique.

We employ the island model as a common framework for distributed evolutionary
computation, cf. [17,22,23]. Assume an undirected graph G = (V, E), the migration
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topology, on λ = |V | vertices to be given. Every vertex, called an island, represents
an independent instance of the (1 + 1) EA using standard bit mutation. Prior to the
first iteration all islands are initialized uniformly at random, after that they operate in
lockstep. Occasionally, governed by a migration protocol, the islands share copies of
their currently best solutions along the edges of G. A migrant replaces the solution
on the receiving island if the fitness of the former is not smaller than that of the latter.
Ties among incomingmigrants ofmaximal fitness are broken uniformly at random.We
use periodic migration every τ rounds, themigration interval. The simplest migration
protocol is a broadcast to all neighboring islands. This leads to Algorithm 1. Here x( j)

denotes the best individual on island j .
We are mainly interested in two measures of complexity. The first is the number of

generations until an optimal individual is sampled for the first time on any island. We
call this random variable (of the random choices of the algorithm) the optimization
time, denoted by T . Additionally, we keep track of the messages sent during the
migration phases leading up to an optimal solution, see line 9 of Algorithm 1. We
adopt an amortized view on the communication costs as we account for the average
number of messages per island. Let C denote the number of messages sent over the
whole optimization time. Observe that C is a random variable even in the case of
a deterministic migration protocol usually strongly correlated with T . We refer to
the sum T + C as the combined costs. This implicitly assumes that the expenses to
generate and evaluate a new individual aswell as sending amessage to one neighboring
island are within constant factors. However, as all theorems quantify the twomeasures
separately, they can easily be extended to larger weights.

In this work we derive asymptotic bounds on the expectations E[T ] and E[C] for
several migration topologies and protocols. To distinguish the two fitness functions
also in notation, we let E[TOM] and E[COM] stand for the respective cost measures
when optimizing OneMax, and E[TLO] and E[CLO] for LeadingOnes. All bounds
are in terms of n, λ, and τ simultaneously. More formally, we regard λ = λ(n)

and τ = τ(n) as positive, non-decreasing, integer-valued functions and calculate the
univariate asymptotics of the expected costs with respect to n for arbitrary choices of
λ and τ .

2.1 The Spreading Time

Our main tool to establish the results below is a fitness level argument, cp. [26]. We
say that Algorithm 1 is on fitness level i if the maximum fitness over all islands equals
i . OneMax and LeadingOnes both induce n + 1 fitness levels. Due to the elitist
selection the level never decreases and T measures the number of rounds until the
algorithm enters level n. We split T into partial optimization times T0, T1, . . ., Tn−1,
where Ti is the time needed to leave level i . The sum over the expected partial waiting
times is then an upper bound on E[T ].
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Algorithm 1: Island model with migration topology G =
(V, E) on λ islands and migration interval τ .

1 t ← 0;

2 for 1 ≤ j ≤ λ in parallel do

3 x( j) ← solution drawn uniformly at random from

{0, 1}n ;
4 repeat

5 t ← t + 1;

6 for 1 ≤ j ≤ λ in parallel do

7 y( j) ← flip each bit of x( j) independently with

probability 1/n;

8 if f (y( j)) ≥ f (x( j)) then x( j) ← y( j);

if t mod τ = 0 then

9 Send x( j) to all islands k with { j, k} ∈ E ;

10 N = {x(i) | {i, j} ∈ E};
11 M = {x(i) ∈ N | f (x(i)) = maxx∈N f (x)};
12 y( j) ← solution drawn uniformly at random from

M ;

13 if f (y( j)) ≥ f (x( j)) then x( j) ← y( j)

14 until termination condition met;

The value of Ti crucially depends on the number of islands whose individual has the
currently best fitness i . By preferring fitter individuals, migration helps to spread good
solutions so that more islands can effectively contribute to the overall progress. The
ability of a topology to speed up computation through migration is quantified in the
notion of the spreading time.

Definition 1 Let G = (V, E) be a migration topology, v ∈ V a vertex, and 1 ≤
k ≤ λ an integer. For a given (potentially randomized) communication protocol, let
Xv(k) denote the random number of communication steps until at least k islands are
informed for the first time, starting from v. The spreading time of G is the function
S(k) = maxv∈V E[Xv(k)], if it exists.
The spreading time S(k) is thus the worst-case expected number of steps needed to
inform k islands. In this form, the definition can be applied to arbitrary topologies and
protocols. However, if G is not connected, variable Xv(k) may be unbounded with
positive probability, leaving the spreading time undefined. In this work we almost
exclusively investigate regular graphs in which the expectations E[Xv(k)] are equal
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for all v. The two exceptions are binary trees in Sect. 3 and general connected graphs
in Sect. 4. Whenever the communication scheme is deterministic, so is Xv(k). Hence,
S(k) simplifies to maxv∈V Xv(k). In the case of broadcast communication, the spread-
ing time is the smallest integer s such that the s-neighborhood of any vertex has size
at least k.

Communication steps happen only during migration phases, once every τ rounds.
The number of generations that pass until a good solution is sufficiently widespread is
thus by a factor τ larger than the spreading time. The following lemma was also given
implicitly by Lässig and Sudholt [17, Lemma 1].

Lemma 2 Let pi be (a lower bound on) the probability that the (1 + 1) EA samples
an individual of fitness larger than i from one of fitness exactly i and 1 ≤ λi ≤ λ an
arbitrary positive integer. Then, we have

E[Ti ] ≤ 1 + τ S(λi ) + 1

pi λi
.

Proof After an expected number of τ S(λi ) iterations at least λi islands have adopted
an individual of maximum fitness i via migration. We pessimistically ignore the effect
of independent improvements during that phase. The expected waiting time until one
of the λi “informed” islands creates a solution of larger fitness gives an upper bound
on E[Ti ]. The probability of not finding a better solution in one round is at most
(1 − pi )λi , thus an upper bound on the waiting time is

1

1 − (1 − pi )λi
≤ 1 + 1

pi λi
.

	

The spreading time S is non-decreasing, so it worsens the estimate when λi gets

larger. On the other hand, if more islands share a good solution, the probability to
complete the current level increases. The extreme value of λi = 1 completely elimi-
nates the influence of the spreading time (as S(1) = 0), but it also bars migration from
contributing to the optimization process. As a corollary of Lemma 2, we can choose
λi independently for every fitness level to balance out these two opposing trends.

Corollary 3 Let (λ0, λ1, . . . , λn−1) be any sequence of positive integers not larger
than λ, then

E[T ] ≤ n +
n−1∑

i=0

(
τ S(λi ) + 1

pi λi

)
.

Corollary 3 is formulated for the case of n+1 fitness levels (with the last one containing
the optimal solutions), the extensions to arbitrary fitness landscapes and even more
general definitions of “levels” are immediate. The fact that sequence (λi )i can be
chosen freely, lends great versatility to above result. In the remaining sections we
repeatedly exploit this to bound the run times and communication costs of island
models on several topologies.
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2.2 Additional Tools

Beside the spreading time technique we employ several other tools, most notably in
the analysis of broadcast protocol on the complete topology in Sect. 5. To bound the
tail of the binomial distribution we use Chernoff bounds in multiplicative form, see
for example the textbook by Mitzenmacher and Upfal [21].

Theorem 4 (Chernoff bounds, cf. [21]) For a probability p, let X ∼ Bin(n, p) be
a binomially distributed random variable with parameters n and p. Then, for any
δ > 0,

Pr[X ≥ (1 + δ)pn] ≤
(

eδ

(1 + δ)(1+δ)

)pn

≤ exp

(
− ln

(
1 + δ

e

)
(1 + δ)pn

)
.

In particular, if δ ≥ 1, we have

Pr[X ≥ (1 + δ)pn] ≤ e− δ
3 pn,

and, for c ≥ 2e,

Pr[X ≥ cpn] ≤ 2−cpn .

In some cases we use drift analysis to augment the fitness level approach. Hereby,
the inner state of the algorithm in question is mapped to a real number via a potential
function whose development is interpreted as a random process. The time needed to
hit a certain value then translates back to the run time of the algorithm. The arguably
most general statements to bound such hitting times are the Variable Drift Theorems.

Theorem 5 (Variable Drift Theorem for upper bounds [16]) Let (X (t))t∈N be a
sequence of random variables over R

+
0 and T = min {t ≥ 0 | X (t) ≤ smin} the

random variable denoting the earliest point in time such that the sequence falls below
some prescribed value smin ≥ 0. Suppose there is a monotonically increasing function
h : R+

0 → R
+ such that 1/h is integrable and

E
[
X (t) − X (t+1)

∣∣∣ T > t, X (t) = s
]

≥ h(s).

Then, for all s0 ∈ R
+
0 we have

E
[
T
∣∣∣ X (0) = s0

]
≤ 1

h(smin)
+
∫ s0

smin

ds

h(s)
.

Theorem 6 (Variable Drift Theorem for lower bounds [14]) Let smax ≥ smin > 0 be
two positive real numbers, S = 0 ∪ [smin, smax] ⊆ R

+, and (X (t))t∈N a sequence of
random variables over S observing X (t+1) ≤ X (t) for all t . T = min {t ≥ 0 | X (t) =
0} is the hitting time. Let h, ξ : [smin, smax] → R

+ be two functions such that h is
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right-continuous, monotonically increasing, and 1/h is integrable. If there exists a
positive real number β > 0 such that for all s1 ∈ S,

E
[
X (t) − X (t+1)

∣∣∣ T > t, X (t) = s1
]

≤ h(ξ(s1))

and

Pr
[
X (t+1) < ξ(X (t))

∣∣∣ T > t, X (t) = s1
]

≤ 1

/(
β

(
smin

h(smin)
+
∫ s1

smin

ds

h(s)

))
,

then, for all s0 ∈ S\{0},

E
[
T
∣∣∣ X (0) = s0

]
≥ β

1 + β

(
smin

h(smin)
+
∫ s0

smin

ds

h(s)

)
.

More specific bounds can be asserted under additional assumptions.

Theorem 7 (Additive Drift Theorem [15]) Let S ⊆ R
+ be a finite set of positive

numbers with minimum smin and (X (t))t∈N a sequence of random variables over S,
T = min {t ≥ 0 | X (t) ≤ smin}. Suppose there is a positive real number δ > 0 such
that

E
[
X (t) − X (t+1)

∣∣∣ T > t
]

≥ δ.

Then, for all s0 ∈ S,

E
[
T
∣∣∣ X (0) = s0

]
≤ s0 − smin

δ
.

Conversely, if E
[
X (t) − X (t+1)

∣∣ T > t
] ≤ δ, then E

[
T
∣∣ X (0) = s0

] ≥ (s0 −
smin)/δ.

Theorem 8 (Multiplicative Drift Theorem for lower bounds [27]) Let S ⊆ R
+ be a

finite set of positive numbers with minimum 1 and (X (t))t∈N a sequence of random
variables over S such that X (t+1) ≤ X (t) for all t . Target value smin > 0 is arbitrary
and T = min {t ≥ 0 | X (t) ≤ smin} as above. Suppose there are real numbers
1 ≥ δ, β > 0 such that for all s ∈ S,

E
[
X (t) − X (t+1)

∣∣∣ T > t, X (t) = s
]

≤ δs and

Pr
[
X (t) − X (t+1) ≥ βs

∣∣∣ T > t, X (t) = s �= 1
]

≤ βδ

ln s
.

Then, for all s0 ∈ S,

E
[
T
∣∣∣ X (0) = s0

]
≥ 1 − β

1 + β
· ln(s0) − ln(smin)

δ
.
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3 Push Protocol

We start the analysis with a probabilistic approach to migration, namely, the push
protocol. The migration interval is fixed at value τ , but the transmission itself is ran-
domized. Every island chooses a neighbor uniformly at random and sends its currently
best solution to it. Using probabilistic communication is a robust way to save on the
communication costs, even in densely connected migration topologies. We prove this
exemplarily for the complete graph Kλ on λ vertices. The push protocol is well-
analyzed in literature. To bound the expected spreading time we use an adaption of a
more general result by Doerr and Künnemann [11]. Symbol ld x stands for the base-2
logarithm.

Lemma 9 ([11, Lemma 3.3]) Consider the push protocol on the complete graph Kλ

as migration topology. There exists a constant c ≥ 1 such that E[S(k)] ≤ ld k + 2 for
all 1 ≤ k ≤ λ/c.

Recall that E[TOM] and E[COM] denote the expected optimization time and com-
munication costs, respectively,when optimizing theOneMaxfitness function; E[TLO]
and E[CLO] correspond to LeadingOnes.

Theorem 10 Consider an islandmodel using the push protocol on the complete graph
Kλ to optimize OneMax. The expected optimization time and communication costs
are

E[TOM] = O
(n
λ
log n + n log τ

)
and E[COM] = O

( n

τλ
log n + n

τ
log τ

)

Proof The bound on E[COM] can be obtained from E[TOM] and the fact that every
island sends exactly one message every τ generations. We are thus left with bounding
the optimization time. A standard computation shows that the probability pi (formally
defined in Lemma 2) of the (1 + 1) EA finding an improving Hamming-neighbor of
an individual x with OneMax(x) = i is at least (n − i)/(en). We want to use the
randomized version of Corollary 3 in the proof and thus define a sequence (λi )0≤i<n .
Its members represent the minimum target number of islands to which we want to
distribute the best solution. Let constant c be as in Lemma 9 and set

λi =

⎧
⎪⎨

⎪⎩

1, if i < (n − n/τ);
n/(τ(n − i)), if (n − n/τ) ≤ i < (n − cn/(τλ));
λ/c, otherwise.

We tacitly assume λ/c > 1; otherwise, λ is a constant and we get the usual O(n log n)

bound [13]. Let L1 = n−n/τ denote the lower limit and L2 = n−cn/(τλ) the upper
limit of the range of i specified in the second case of above equation. By Lemma 9 and
the simple fact that it takes no time to inform yourself, we get the following bounds
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on the partial spreading times,

S(λi ) ≤

⎧
⎪⎨

⎪⎩

0, if i < L1;
ld(n/(τ(n − i))) + 2, if L1 ≤ i < L2;
ld(λ/c) + 2, otherwise.

Intuitively speaking, while the fitness i < L1 is small, a single island is capable
of making significant progress on its own and does not require any migration. The
middle range is chosen in such a way that the value of

τ S(λi ) + 1

pi λi

stemming from Lemma 2 is minimized (up to constant factors). This balances the time
needed to spread good solutions with the waiting time to complete the level. If i ≥ L2
is already quite large, we need a lot of generations to make further progress, it is thus
beneficial to inform a constant fraction of the islands in the meantime.

Applying Corollary 3 to the sequence (λi )i gives

E[TOM] ≤ n +
L1−1∑

i=0

(
en

n − i

)
+

n−1∑

i=L2

(
τ ld

(
λ

c

)
+ 2τ + cen

λ(n − i)

)

+
L2−1∑

i=L1

(
τ ld

(
n

τ(n − i)

)
+ 2τ + en

n − i

(
τ(n − i)

n

))
.

If one of the ranges i is empty, the corresponding partial sum evaluates to 0. In more
detail, the following analysis assumes 0 < L1 < L2 < n − 1, in addition to λ/c > 1
this implies 1 < τ and τλ < cn. Observe that even if these constraints are violated,
we get an upper bound on the run time. We handle the terms separately.

P1 =
L1−1∑

i=0

(
en

n − i

)
= en

⎛

⎝
n∑

j=n−L1+1

1

j

⎞

⎠ ≤ en

(
ln

(
n

n − L1

)
+ 1

)
.

The last inequality is due to the estimate
∑n

j=k 1/j ≤ ln(n/(k−1))+1 of the harmonic
series for k > 1. Substituting n − L1 = n/τ gives

P1 ≤ en (ln τ + 1).

Regarding the second term, we have

P2 =
n−1∑

i=L2

(
τ ld

(
λ

c

)
+ 2τ + cen

λ(n − i)

)
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= τ(n − L2)

(
ld

(
λ

c

)
+ 2

)
+ cen

λ

⎛

⎝
n−L2∑

j=1

1

j

⎞

⎠

≤ τ(n − L2)

(
ld

(
λ

c

)
+ 2

)
+ cen

λ
(ln(n − L2) + 1).

With n − L2 = cn/(τλ) we get

P2 ≤ cn

λ

(
ld

(
λ

c

)
+ e ln

( cn
τλ

)
+ e + 2

)
.

Finally, the third term equals

P3 =
L2−1∑

i=L1

(
τ ld

(
n

τ(n − i)

)
+ 2τ + en

n − i

(
τ(n − i)

n

))

= τ

⎛

⎝
n−L1∑

j=n−L2+1

ld

(
n

τ j

)⎞

⎠+ (e + 2)τ (L2 − L1).

For any integrable decreasing function g, the sum
∑b

j=a g( j) can be upper bounded

by the integral
∫ b
a−1 g( j) dj . This is applied to g( j) = ln(n/(τ j)). Observe that

the lower limit of the interval of integration must be by 1 smaller than that of the
sum, i.e., n − L2 = cn/(τλ). This accounts for the first summand. The integral
is computed using the antiderivative

∫
g dj = j ln(n/(τ j)) + j . Finally, we insert

L2 − L1 = (1 − c/λ) · n/τ ≤ n/τ to arrive at

P3 ≤ τ

(∫ n/τ

cn/τλ

ld

(
n

τ j

)
d j

)
+(e + 2) n = 1

ln 2
n−cn

λ
ld

(
λ

c

)
− 1

ln 2

cn

λ
+(e+2) n

≤ (e + 4) n − cn

λ

(
ld

(
λ

c

)
+ 1

)
.

As a result, the (cn/λ) · ld(λ/c) terms in P2 and P3 cancel out and we get

E[TOM] ≤ n + P1 + P2 + P3 ≤ en ln τ + cn

λ

(
e ln

( cn
τλ

)
+ e + 1

)
+ (2e + 5) n

= O
(n
λ
log n + n log τ

)
.

	

Bounds on the expected optimization time and communication costs yield some

insights in how to choose the parameters of the island model. For the push protocol
on a complete graph a linear parallel optimization time can be enforced by setting
λ = �(log n) and τ a constant. This also minimizes the expected combined costs
E[TOM + COM]. Observe that the communication costs are always dominated by
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the optimization time. When choosing a large migration interval of τ = �(n), for
example to reduce communication costs even more, the island model behaves like a
single (1 + 1) EA and the influence of migration is diminished.

Lässig and Sudholt [17] consider, in the place of migration intervals, a migration
probability pwithwhich any twoneighboring islands communicate in anygiven round.
When comparing the expected optimization times of both systems, this corresponds
to a migration interval of τ = 1/(p(λ−1)). Theorem 18 in [17] gives a bound on
E[TOM] that has a linear dependence on 1/p, Theorem 10 above improves this to
logarithmic in τ .

Theorem 11 Consider an islandmodel using the push protocol on the complete graph
Kλ to optimize LeadingOnes. The expected optimization time and communication
costs are

E[TLO] = O

(
n2

λ
+ τn log n

)
and E[CLO] = O

(
n2

τλ
+ n log n

)
.

Proof It is clearly enough to show the bound on the optimization time. The proof
follows the same ideas as that of Theorem 10 but is somewhat simpler. The reason is
that for LeadingOnes the bound on the probability pi does not depend on the current
level, and it is always at least 1/en. Let again c ≥ 1 be such that S(k) ≤ ld k + 2
whenever k ≤ λ/c. We choose λi = min{n/τ, λ/c} for all 0 ≤ i ≤ n − 1. Assume
for the moment that the λi defined that way are all at least 1. We split the analysis into
two cases. First, suppose that the minimum is obtained at n/τ . From Corollary 3 we
get

E[TLO] ≤ n + n

(
τ S

(n
τ

)
+ en

n/τ

)
≤ n + nτ

(
ld
(n
τ

)
+ 2 + e

)
= O (nτ log n) .

Conversely, if λi = λ/c, then

E[TLO] ≤ n + n

(
τ S

(
λ

c

)
+ en

λ/c

)
≤ n + nτ

(
ld

(
λ

c

)
+ 2

)
+ cen2

λ
.

Using the assumption λ/c ≤ n/τ ≤ n gives the claimed bound.
If min{n/τ, λ/c} is smaller than 1, we choose λi = 1 instead for all i . Note that this

implies S(λi ) = 0 as no communication steps are needed. Corollary 3 gives a bound
of order O(n2), which is proportional to the run time of a single (1 + 1) EA [24]. This
can happen in two cases. If λ ≤ c is a constant, the first term of the bound claimed
in the theorem is quadratic. Similarly, if the migration interval τ = �(n) is too large
to benefit the optimization, O(n2) is subsumed by O(τn log n). That completes the
proof. 	


An expected optimization time of O(n log n) can be achieved for LeadingOnes by
setting the number of islands to λ = �(n/ log n) with a constant migration interval
τ . The same parameter setting minimizes the combined costs. The bound given in
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Theorem 11 and the run time of O(n2/λ+nτ log λ) proven in [17] are asymptotically
equivalent for all reasonable settings, i.e., when λ is polynomially bounded in n.

The reasoning above holds true for all migration topologies inwhich the growth rate
[4] is exponential. That means, the number of informed nodes increases by a constant
factor in each round. This connection is independent of the means of communication,
randomized or deterministic, and the density of the underlying graph. As an extreme
example, we show the following corollary regarding island models on trees.

Corollary 12 Consider an island model using broadcast communication on the com-
plete binary tree as migration topology. For OneMax the expected optimization
times are E[TOM] = O

( n
λ
log n + n log τ

)
and communication costs E[COM] =

O
( n

τλ
log n + n

τ
log τ

)
. For LeadingOnes it is E[TLO] = O

(
n2
λ

+ τn log n
)
as well

as E[CLO] = O
(
n2
τλ

+ n log n
)
.

Proof To establish this result, it is enough to show a logarithmic spreading time until
at least a constant fraction of the nodes in the tree are informed. In the worst case a
leaf node has the initial rumor. Assume the information has traveled for t steps, where
t is smaller than the diameter of the tree. After t/2 steps an island j of height t/2 has
been reached, j in turn roots a complete subtree consisting of 2 ·2t/2 −1 nodes which
are informed in the remaining t/2 steps. Therefore, at least (

√
2)t islands obtain the

rumor in t iterations. For any 1 ≤ k ≤ λ/2 we have S(k) ≤ log√
2 k, this is within a

constant factor of the bound given in Lemma 9. 	


4 Multidimensional Tori

In this section we investigate broadcast communication in island models a bit further.
Every τ generations each island sends its best solution to all of its neighbors simulta-
neously. The spreading time is now a deterministic function. Also, the communication
costs are functionally determined by the optimization time and the structure of the
underlying graph. Let degav(G) denote the average degree of a given migration topol-
ogy G, then random variables C and T differ by a factor degav(G)/τ . Consequently,
we focus on bounding the optimization time.

As a proof of concept, we consider the d-dimensional torus as the migration
topology. It can be constructed from a d-grid by connecting the outermost ver-
tices with wrapping edges. More formally, fix two integers d, � ≥ 1 and define
the vertex set V = {0, . . . , � − 1}d . (V2

)
is the collection of all unordered pairs of

vertices. We define the edge set to be E = {{u, v} ∈ (V
2

) | ∃ i : (ui − vi = 1
mod �) ∧ (∀ j �= i : u j = v j )}. Here, ui denotes the i-th component of vector u. In
one dimension the construction gives a bidirectional ring and in two dimensions the
usual torus. A characteristic property of d-tori is the spreading time being in the order
of the d-th root.

We would like to point out that throughout this section, d is regarded as a constant
independent of n.

Lemma 13 For broadcast communication on a d-dimensional torus as the migration
topology, the spreading time is at most S(k) ≤ d2 d

√
k.
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Proof In a first step, we show that the spreading time is bounded by S(k) ≤ d d
√
k

for all 1 ≤ k ≤ λ/(2d)d , this is surely enough to establish the claimed looser bound
in this regime. To that end, let the growth rate F(t) be the total number of informed
nodes after t communication steps [4]. We bound F from below in order to get an
upper bound on the spreading time. Let d, � be as defined above and fix the value of
t . As long as no wrapping edges are involved, the collection of informed nodes make
up a d-dimensional diamond shape containing F(t) nodes. W.l.o.g. this polytope is
centered at node 0 ∈ V . It is bounded by 2d (d−1)-dimensional faces consisting of
the islands that have still uninformed neighbors. These are the only ones contributing
to the rumor spreading in the next round. To avoid double counting, we only consider
a single face, namely, the one pointing in the direction of the all-ones vector 1. After
t communication steps this face consists precisely of the points (a1, a2, . . . , ad) ∈ V
that satisfy a1 + a2 + · · ·+ ad = t . Basic combinatorics tells us that there are

(d+t−1
d−1

)

many of them. Considering all communication steps leading up to t , we get

F(t) ≥
t∑

i=0

(
d + i − 1

d − 1

)
=
(
d + t

d

)
≥
(
t

d

)d

.

This implies S(k) = min{t | F(t) ≥ k} ≤ d d
√
k ≤ d2 d

√
k. The condition of not using

the wrapping edges is satisfied for the first �/2 steps. The number of nodes that can
be informed in this phase is at least

F

(
�

2

)
≥
(

�

2d

)d

= λ

(2d)d
.

The equality �d = λ is due to the construction of graph G.
Nowobserve that the spreading time S(λ) to reach all nodes is bounded by the graph

diameter d�/2, and that function S is non-decreasing. Thus, for λ/(2d)d < k ≤ λ, we
have

S(k) ≤ d
�

2
= d

d
√

λ

2
< d

d
√

(2d)dk

2
= d2 d

√
k.

	

Theorem 14 Consider an island model using broadcast communication on a d-
dimensional torus to optimize OneMax. The expected optimization time and com-
munication costs are

E[TOM] = O
(n
λ
log n + n log τ

)
and E[COM] = O

( n

τλ
log n + n

τ
log τ

)
.

Proof The communication costs are by a factor 2d/τ larger than the optimization time
as the d-torus is a 2d-regular graph. Recall that d is a constant.

We now prove the claimed bound on E[TOM]. The proof follows the same structure
as the one of Theorem 10. Lemma 13 asserts a spreading time of at most d2 d

√
k. Using
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pi ≥ (n − i)/(en), we choose the sequence (λi )i as

λi =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i < (n − n/τ);
(n/(τ(n − i)))

d
d+1 , if (n − n/τ) ≤ i ≤

(
n − (n/τ) · (1/λ)

d+1
d

)
;

λ, otherwise.

Let L1 denote the lower limit and L2 the upper limit of the middle range above. We
get the following upper bounds on the (deterministic) spreading time.

S(λi ) ≤

⎧
⎪⎨

⎪⎩

0, if i < L1;
d2 d+1

√
n/(τ(n − i)), if L1 ≤ i ≤ L2;

d2 d
√

λ, otherwise.

Corollary 3 now yields

E[TOM] ≤ n +
L1−1∑

i=0

(
en

n − i

)
+

n−1∑

i=L2

(
d2τ d

√
λ + en

λ(n − i)

)

+
L2−1∑

i=L1

(
d2τ

(
n

τ(n − i)

) 1
d+1 + en

n − i

(
τ(n − i)

n

) d
d+1
)

.

The partial sums can again be bounded by elementary means.

P1 =
L1−1∑

i=0

(
en

n − i

)
≤ en

(
ln

(
n

n − L1

)
+ 1

)
= en (ln τ + 1) and

P2 =
n−1∑

i=L2

(
d2τ d

√
λ + en

λ(n − i)

)
≤ (n − L2) d

2τ
d
√

λ + en

λ
(ln(n − L2) + 1).

With n − L2 = (n/τ) · (1/λ)
d+1
d we get

P2 ≤ d2n

λ
+ en

λ

(
ln
(n
τ

)
+ d + 1

d
ln

(
1

λ

)
+ 1

)
≤ n

λ
(e ln n + d2 + 1).

In the simplification of the last sum, we benefit greatly from the fact that the λi can
be chosen freely. They are such that in the middle range τ S(λi ) and 1/(piλi ) differ
only a constant factor. Namely, the former has coefficient d2, while it is e for the latter.

P3 =
L2−1∑

i=L1

(
d2τ

(
n

τ(n − i)

) 1
d+1 + en

n − i

(
τ(n − i)

n

) d
d+1
)
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= (d2 + e) τ
d

d+1 n
1

d+1

⎛

⎝
L2−1∑

i=L1

(n − i)−
1

d+1

⎞

⎠

= (d2 + e) τ
d

d+1 n
1

d+1

⎛

⎝
n−L1∑

j=n−L2+1

j−
1

d+1

⎞

⎠ .

The terms of the last sum decrease in j , thus we use an integral to bound it.

P3 ≤ (d2 + e) τ
d

d+1 n
1

d+1

(∫ n
τ

n
τ

(
1
λ

) d+1
d

j−
1

d+1 dj

)

= (d2 + e) τ
d

d+1 n
1

d+1

((n
τ

) d
d+1 · d + 1

d

(
1 − 1

λ

))

≤ (d2 + d + 2e) n.

The three estimates together finally yield the claimed run time,

E[TOM] ≤ n + P1 + P2 + P3 = O
(n
λ
log n + n log τ

)
.

	

Theorem 15 Consider an island model using broadcast communication on a d-
dimensional torus to optimize LeadingOnes. The expected optimization time and
communication costs are

E[TLO] = O

(
n2

λ
+ τ

d
d+1 n

d+2
d+1

)
and E[CLO] = O

(
n2

τλ
+ τ− 1

d+1 n
d+2
d+1

)
.

Proof The proof follows the same line as that of Theorem 11. Recall that pi ≥ 1/en

holds for all fitness levels i . We choose λi = min{(n/τ)
d

d+1 , λ} for all i . If λi =
(n/τ)

d
d+1 , we get

E[TLO] ≤ n + n

(
d2τ

(n
τ

) 1
d+1 + en

(τ

n

) d
d+1
)

= n + (d2 + e) τ
d

d+1 n
d+2
d+1 .

In case of λi = λ,

E[TLO] ≤ n + n
(
d2τ d

√
λ + en

λ

)
.

Note that λi = λ implies λ ≤ (n/τ)
d

d+1 , by the definition of the λi . Using this bound
twice gives

τ
d
√

λ ≤ τ
(n
τ

) 1
d+1 = n

(n
τ

)− d
d+1 ≤ n

λ
.

123



Algorithmica (2019) 81:886–915 903

Finally, we substitute this estimate into our bound on E[TLO],

E[TLO] ≤ n + (d2 + e) n2

λ
.

If the minimum above were to be smaller than 1, we choose λi = 1 instead, which
gives a bound of O(n2). Necessarily, we have τ ≥ n or λ = 1, whence E[TLO] is of
order O

(
n2/λ + τ

d
d+1 n

d+2
d+1

)
in this case as well. 	


When thegoal is tominimize the optimization time, it is best to chooseλ = �(log n)

for OneMax, which gives E[TOM] = O(n), and λ = �(nd/(d+1)) for LeadingOnes
to reach E[TLO] = O(n(d+2)/(d+1)). In both cases one should set the length τ of the
communication interval to a constant. These assertions also extend to the respective
combined optimization costs.

Theorem 14 improves on the bounds by Lässig and Sudholt for OneMax, after
equating τ with 1/(2dp), in showing that the dependency of the optimization time on
τ is logarithmic instead of

√
τ on a ring topology or

√
τ 3 on a 2-dimensional torus

[17]. Theorem 15 reproves their results for LeadingOnes on the ring and torus, and
generalizes it to arbitrary dimensions d ≥ 1.

It seems to be counter-intuitive at first that the dimension does not influence the
(asymptotic) optimization time for OneMax compared to the push protocol on a com-
plete graph, although the growth rate is only polynomial instead of exponential. The
reason is that the time the algorithm spends in the middle range, which is influenced
by d the most, is dominated by the early levels in which the islands try to find inde-
pendent improvements and the later stages where a coordinated effort is necessary for
any progress. Also, a careful analysis shows that many complementary effects of the
dimension on the middle range cancel each other out, e.g. the number of levels and the
time spend in each of them. For LeadingOnes this separation into ranges does not
exist since each level is equally likely to leave. Here, the influence of the dimension
is much stronger throughout the whole optimization process. Since more nodes can
be reached in the same number of communication steps, the influence of the problem
size n on the runtime decreased when d grows larger. On the contrary, the waiting
time between these steps, τ , emerges as a bottle-neck in higher dimensions.

In every connected topology,while not all nodes are informed, the rumor is spread to
at least one new island in every round. This translates to a spreading time of S(k) ≤ k
which is equal to the bound given in Lemma 13 for d = 1. Moreover, for every
unimodal function the number of increasing Hamming-neighbors is at least as large
as in the case of LeadingOnes. Hence, the bound given in Theorem 15 extends to
all unimodal functions when adapted to the number of possible fitness values. Similar
observations were made by Lässig and Sudholt [17] as well as Badkobeh et al. [4].

Corollary 16 Let f : {0, 1}n → R
+
0 be a unimodal functionwith | img( f )| = v fitness

values. Consider an island modal using broadcast communication on a connected
graph on λ vertices to optimize f . The expected optimization time and communication
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costs are

E[T ] = O
(vn

λ
+ v

√
τn
)

and E[C] = O

(
vn

τλ
+ v

√
n

τ

)
.

Under the respective optimal parameter choices, E[T ] and E[T + C] are both of
order O(ν

√
n).

5 The Complete Graph

Finally, we discuss the special case of broadcast communication on a complete graph
as the migration topology. This way we reach the maximum number of nodes in one
communication step. Conversely, the spreading time degenerates into a step function.
In the majority of iterations the islands compute their local improvements in total
isolation. However, periodically all islands are updated to a maximum-fitness solution
in a network-spanning communication effort only to be left alone for another phase
of τ generations.

If the migration interval is chosen too large, namely, if τ > en, one can expect
a significant portion of the islands to find an improving Hamming-neighbor without
migration (especially on OneMax-like functions, where there are many of them).
Communication between nodes becomes obsolete, eroding the characteristics of an
island model. This can also be seen from the Theorems 10 through 14. For τ = �(n)

the parallel optimization time of any island model is in the same complexity as the run
time of a simple (1 + 1) EA on the same fitness function. Consequently, we assume
τ ≤ en throughout this section. For the other extreme of τ = 1, it has been pointed out
that the island model using broadcast on a complete graph shares many traits with the
(1+λ) Evolutionary Algorithm [17]. The only distinction is that the island model can
store different solutions of the same maximum fitness. Tight run time bounds for the
(1+λ) EA on OneMax are known [12]. Hence, by characterizing the optimization
time of the island model we can precisely quantify the influence of the migration
interval τ .

In this section we give tight bounds for the expected time to optimize OneMax
as well as upper and lower bounds for LeadingOnes. The expected communication
costs can be obtained from this value by multiplying it with a factor (λ − 1)/τ since
every islands sends a message to each neighbor every τ iterations. Although these
bounds will be proven for the Kλ as migration topology, the lower bounds extend to
any connected graph. This is due to the fact that additional informed islands can only
benefit the optimization and no topology spreads solutions faster than the complete
graph.

5.1 ONEMAX

Theorem 17 Consider an islandmodel using broadcast communicationwith amigra-
tion interval τ ≤ en on the complete graph Kλ to optimizeOneMax. The optimization
time depends on the relation between τ and λ.
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If τ = o(log λ),

E[TOM] = �

(
n

λ
log n + τn

log λ
log

(
log λ

τ

))
and

E[COM] = �

(
n

τ
log n + λn

log λ
log

(
log λ

τ

))
.

If τ = �(log λ),

E[TOM] = �
(n
λ
log n + n

)
and

E[COM] = �

(
n

τ
log n + λn

τ

)
.

If τ = ω(log λ),

E[TOM] = �

(
n

λ
log n + n log

(
τ

log λ

))
and

E[COM] = �

(
n

τ
log n + λn

τ
log

(
τ

log λ

))
.

In the remainder of this section we prove the various bounds on the expected
optimization time given in the theorem, the communication costs follow from this.
We start with the upper bounds. We need the following two lemmas. The first one is
another tail bound on the binomial distribution specifically tailored to our application.
The second lemma by Doerr [7] asserts that the (1 + 1) EA is unlikely to make any
large jumps when optimizing unimodal functions.

Lemma 18 Let d be a positive integer and ε > 0 a constant. For a probability
0 < p < 1, let X ∼ Bin(d, p) be a binomially distributed random variable with
parameters d and p. Set q = (1 − p)d . If ln(q/ε) ≥ epd, then

Pr

⎡

⎣X ≥ ln(q/ε)

ln
(
ln(q/ε)

pd

)

⎤

⎦ ≥ ε.

Proof Set r = ln(q/ε)/(pd) and t = ln(q/ε)/ ln(r). We get the following useful
identity,

pd

t
= pd · ln r

ln(q/ε)
= ln r

r
.

To prove the lemma, we have to bound the probability Pr[X ≥ t] from below.

Pr[X ≥ t] ≥
(
d

t

)
pt (1 − p)d−t ≥ q

(
pd

t

)t

= q exp

(
t ln

(
pd

t

))
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Substituting above identity and the definition of t into this bound yields

Pr[X ≥ t] ≥ q exp

(
ln(q/ε)

ln r
· ln

(
ln r

r

))
= q exp

(
ln(q/ε)

ln r
(ln ln r − ln r)

)

≥ q exp (− ln(q/ε)) = ε.

For the last estimate, observe that ln(q/ε) ≥ epd implies ln ln r ≥ 0. 	

Lemma 19 ([7, Proposition 9])For a bit string x ∈ {0, 1}n, let |x|0 = n−OneMax(x)

denote the number bits set to 0 and x′ an offspring obtained from x by standard bit
mutation. If k ≤ 3n/5 is a positive integer, then

Pr

[
|x′|0 ≤ k

2

∣∣∣∣ |x|0 = k

]
= exp(−�(k)).

Proof of the upper bounds of Theorem 17 Since we aim to optimize OneMax, we
call the number |x|0 of remaining 0-bits (formally defined in Lemma 19) the distance
to the optimum. We divide the optimization process into three phases depending on
the minimal distance over all islands. The cutoff points between the phases are at
d0 = min{n, n ln λ/(2eτ)} and d1 = n/(τ ln λ). Note that the first phase is only
relevant if 2eτ > ln λ. In a first step, we estimate the time it takes for Algorithm 1 to
achieve a distance of at most d0. It is bounded above by the time a single island needs
to reach this distance. Thus, we can resort to the well-known run time bounds for the
(1 + 1) EA, cf. e.g. [10]. They imply that, if 2eτ > ln λ, the length of the first phase
is of order

O

(
n log

(
n

d0

))
= O

(
n log

(
τ

log λ

))
.

Before considering the second phase between distances d0 and d1, we analyze the
third phase of optimization from d1 all the way to the optimum. To that end, suppose
one island has a non-optimal solution of distance d ≤ d1. Using Corollary 3 adapted
to the landscape of the d1 fitness levels in question, we see that the expected remaining
optimization time is at most

d1∑

d=1

(
1 + τ + en

dλ

)
≤ d1(1 + τ) + en

λ
(ln d1 + 1) = O

(
n

log λ
+ n

λ
log n

)
.

Now we turn to the more involved phase of optimization between distances d0
and d1. Let d0 > d > d1 be the maximum fitness. When considering a point in the
optimization where migration just occurred, all islands have an individual of fitness
d, and τ rounds of evolution without migration will follow. The probability to gain a
specific 1-bit one a single island in any given iteration is at least 1/(en). The probability
that it is not gained during τ iterations is at most (1 − 1/(en))τ ≤ 1 − τ/(2en). We
used τ ≤ en here. For technical reasons that will be explained later, we pessimistically
consider only dmin = min{d, 2en/τ } bits as candidates for improvement. The random
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number of gained bits, out of the dmin advantageous ones, during τ iterations first-order
stochastically dominates the binomial variable X ∼ Bin(dmin, τ/(2en)). We employ
Lemma 18 to derive a lower bound on X and hence on the possible improvements.
We set the threshold ε to 1/λ. This way, with constant probability at least one island
in the whole model that has made the progress described by the lemma. Namely,

ln(qλ)

/
ln

(
2en ln(qλ)

τ dmin

)
where q =

(
1 − τ

2en

)dmin
.

Note that (1 − τ/(2en))d is sub-constant if d > 2en/τ is too large; thus, our choice
of considering at most 2en/τ many missing bits ensures that q is bound below by a
positive constant. The upper bound q ≤ 1 is trivial. Lemma 18 additionally requires
ln(qλ) ≥ τ dmin/(2n), which is provided by dmin ≤ d0 ≤ n ln λ/(2eτ).

Next, we derive a lower bound on the progress in terms of d, instead of dmin.
Observe that d ≤ d0 implies both dmin ≥ d/ ln λ and n ln λ/(τd) ≥ 2e. Hence,

ln

(
2en ln(qλ)

τ dmin

)
≤ ln

(
2en ln2 λ

τd

)
≤ ln(2e) + 2 ln

(
n ln λ

τd

)
≤ 3 ln

(
n ln λ

τd

)
.

Finally, we have proven the existence of a positive constant C such that the expected
progress over all islands in τ iterations between subsequent migrations starting from
distance d is at least C · h(d), where

h(d) = ln λ

/
ln

(
n ln λ

τd

)

Since we are only interested in asymptotic bounds, we will omit the constant C in
what follows.

We now bring in the drift analysis mentioned in the preliminary Sect. 2.2. The
distance naturally lends itself as the potential function. Observe that the expected drift
h of the potential is monotonically increasing in d and 1/h is integrable over the
interval [d0, d1]. The Variable Drift Theorem for upper bounds (Theorem 5) yields an
expected optimization time of at most

τ

(
1

h(d1)
+
∫ d0

d1

dx

h(x)

)
= 2τ ln ln λ

ln λ
+ τ

ln λ

(∫ d0

d1
ln

(
n ln λ

τ x

)
dx

)

= 2τ ln ln λ

ln λ
− τ

ln λ

(∫ d0

d1
ln
( τ x

n ln λ

)
dx

)
.

For the moment, we focus on the second term and employ integration by substitution
with y(x) = τ x/(n ln λ),
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− τ

ln λ

(∫ d0

d1
ln
( τ x

n ln λ

)
dx

)
= − τ

ln λ

n ln λ

τ

(∫ τd0/(n ln λ)

τd1/(n ln λ)

ln y dy

)

= −n

(∫ τd0/(n ln λ)

1/ ln2 λ

ln y dy

)
.

An antiderivative of ln y is y(ln(y) − 1). In the case of 2τ ≤ ln λ, we get d0 = n and
thus resolve the integral to

−n
[
y(ln(y) − 1)

]τ/ ln λ

1/ ln2 λ
= n

ln λ

(
τ

(
ln

(
ln λ

τ

)
+ 1

)
− 2 ln ln λ + 1

ln λ

)
.

Also, the additive term τ/h(d1) ≤ ln ln λ is small enough. Putting together the bounds
on the second and third phase (the first one is irrelevant in this case) proves the run
time claimed in the first case of Theorem 17. If 2τ > ln λ, then d0 = n (ln λ)/2τ and
τ/h(d1) ≤ 2τ . For the integral we get

−n
[
y(ln(y) − 1)

]1/2
1/ ln2 λ

= n

(
1

2
(1 + ln 2) − 2 ln ln λ + 1

(ln λ)2

)
,

which is of order O(n). Combined with the bounds on all three phases this gives the
last case of the theorem. If τ and ln λ are within constant factors of each other, then
the asymptotic bounds proven above coalesce and the middle case follows as well. 	


We turn to the lower bounds of Theorem 17. The next lemma prepares an inequality
we use in their proof.

Lemma 20 Let r(d) = ln(n ln λ/τd) and h(d) = ln λ/r(d) be two functions. If
0 < d < n (ln λ)/τ , then

ln

(
n h(d)

τd

)
≥ r(d)

2
.

Proof The restrictions on d are such that r(d) and h(d) exist and are positive. Hence,
ln(r(d)) ≤ r(d)/2. Inserting this into the quantity at hand gives

ln

(
n h(d)

τd

)
= ln

(
n ln λ

τd r(d)

)
= ln

(
n ln λ

τd

)
+ ln

(
1

r(d)

)
=r(d)− ln(r(d)) ≥ r(d)

2
.

	

Proof of the lower bounds of Theorem 17 It is straightforward to prove a lower bound
of �(n (log n)/λ) from the observation that the unary unbiased black-box complexity
of OneMax is �(n log n) [18]. The (1 + 1) EA, as any unbiased black-box algo-
rithm, needs at least an expected number of�(n log n) fitness evaluations to optimize
OneMax. So λ copies of it need �(n (log n)/λ) generations to provide this many
evaluations.
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For the remaining terms we examine partial phases of the optimization process
which together have the claimed run time as a lower bound. In order to see that
none of these phases is skipped, we use Lemma 19. First, assume τ = ω(log λ). We
show that the expected time it takes until any island samples a solution with fewer than
n (ld λ)/τ bits set to 0 for the first time is of order�(n log(τ/ log λ)). This establishes
the bound in this case. Again, consider the progress of a single island in the τ iterations
between migrations. Suppose the current solution has distance d ≥ n (ld λ)/τ to the
optimum. Witt has shown that the expected progress in one generation is at most
d/n [27, Lemma 6.7]. Therefore, within τ iterations the expected progress is at most
τd/n ≥ ld λ. Let C ≥ 2e be a constant. By the Chernoff bound in Theorem 4, the
probability of a progress of at least Cτd/n is at most 2−Cτd/n ≤ 2−C ld λ = λ−C .
In particular, the probability that there is an island that makes this much progress is
smaller than λ−C+1. This can be seen by a simple union bound over the λ islands.
Hence, themaximum expected progress of the whole islandmodel betweenmigrations
is cτd/n, for some constant c > 0.

We now invoke the Multiplicative Drift Theorem for lower bounds (Theorem 8)
with parameters s0 = 2n/5, smin = n (ld λ)/τ , δ = cτ/n, and β = 1/2. It has several
prerequisites that need to be checked. By Theorem 4, a randomly initialized bit string
has at least s0 bits set to 0 with probability exponentially close to 1. The definition
of the distance ensures that the random process over S = {smin, smin + 1, . . . , s0}
is non-increasing. Finally, Lemma 19 implies that the condition on the probability of
large jumps is met. We get that the expected number of iterations the island model
takes to optimize a random bit string into one with at most smin 0-bits is at least

τ · 1 − β

1 + β
· ln(s0) − ln(smin)

δ
= τ · 1

3
· n

cτ
·
(
ln

(
2n

5

)
− ln

(
n ld λ

τ

))
= n

3c
ln

(
2τ

5 ld λ

)

= �

(
n log

(
τ

log λ

))
.

Nextwe consider the case of τ = �(log λ),wherewewant to showaboundof�(n).
To that end, we measure the time Algorithm 1 takes to get from distance n (ld λ)/τ to
distance n (ld λ)/2τ from the optimum. The reasoning is similar as above. Suppose
the number of bits set to 0 in the currently best individual is still d ≥ n (ld λ)/2τ .
In expectation the fitness on this island improves by at most dτ/n ≥ (ld λ)/2 within
τ rounds and for C ≥ 2e, the probability that the island makes progress of at least
Cτd/n is at most 2−Cτd/n ≤ λ−C/2. Using the assumption d ≤ n (ld λ)/τ , we get
a maximum expected progress of c ld λ, c > 0 a constant, over all λ islands and τ

iterations. The lower bound of the Additive Drift Theorem (Theorem 7) implies �(n)

generations are needed to find a solution of distance at most n (ld λ)/2τ .
Finally, assume τ = o(log λ). We show a lower bound of �( nτ

log λ
log( log λ

τ
)). This

time we consider the range between distance n (ln λ)/τ and n/τ to any optimum.
Suppose the current best individual of an island has d ≥ n/τ 0-bits. We define

h(d) = ln λ

/
ln

(
n ln λ

τd

)
.
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Let r(d) abbreviate ln(n(ln λ)/τd) such that h(d) = (ln λ)/r(d). These definitions
are chosen such that they meet the requirements of Lemma 20. In this case, we choose
constant C to be at least e. The expected progress of a single island is at most τd/n in
τ iterations. The first clause of Theorem 4 with (1 + δ) = Cn h(d)/(τd) shows that
the probability of any island making progress of more than C h(d) is at most

exp

(
− ln

(
Cn h(d)

eτd

)
C h(d)

)
≤ exp

(
− ln

(
n h(d)

τd

)
C h(d)

)
.

Lemma 20 gives a bound in terms of λ only,

exp

(
− ln

(
n h(d)

τd

)
C h(d)

)
≤ exp

(
−r(d)

2
· C ln λ

r(d)

)
= exp

(
−C

2
ln λ

)
= λ−C

2 .

Once again we conclude that the maximum progress of λ islands in τ iterations
is of order O(h(d)). With the Variable Drift Theorem for lower bounds (Theorem 6)
we employ the same integration method as for the upper bound to get a matching run
time. This completes the proof of Theorem 17. 	


The tight bounds on the expected optimization time translate to the following opti-
mal parameter setting. To minimize the parallel optimization time one should choose
λ = n�(1) and τ a constant to obtain E[TOM] = �(n (log log n)/ log n). Note that
artificially small parallel optimization times could be achieved by choosing λ super-
polynomially large in the solution size n. However, we discard this choice as this would
nullify any hope of implementing the island model on any practical computation sys-
tem. Furthermore, the communication overhead and the sequential run time would
also grow super-polynomially. To optimize for the combined costs E[TOM +COM] is
thus much more reasonable. Here, the ideal choice is λ = �(log n) and τ = �(log n)

which leads to a common bound of �(n log log n). Combined costs this low are only
possible employing the third case of the theorem, where this parameter setting yields
the best possible combined costs.

Corollary 21 Let λ be bounded above by a polynomial in n. Consider an island
model using broadcast communication with a migration interval τ ≤ en on the com-
plete graph Kλ to optimize OneMax. The best-possible expected optimization time is

E[TOM] = �
(
n log log n

log n

)
. The best expected combined costs are E[TOM + COM] =

�(n log log n).

5.2 LEADINGONES

In the remainder of this paper we derive upper and lower bounds on the optimization
time and communication costs in the case of LeadingOnes on the complete graph.
The bounds are within poly-logarithmic factors of each other and hence give a good
picture of the run time complexity in this setting. Following the discussion above,
we only consider the case in which λ is polynomially bounded. Note that Lässig and
Sudholt showed the same upper bounds in [17].
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Theorem 22 Consider an islandmodel using broadcast communicationwith amigra-
tion interval τ ≤ en on the complete graph Kλ to optimize LeadingOnes. The
expected optimization time and communication costs are

E[TLO] = O

(
n2

λ
+ τn

)
and E[CLO] = O

(
n2

τ
+ λn

)
.

Proof As pi = 1/en regardless of the fitness i , we choose (λi )0≤i<n all equal to λ and
get S(λi ) = 1 for the spreading time. The theorem now follows from Corollary 3. 	

As a sidenote, the proof above also holds for τ > en, but in this case using a single
(1 + 1) EA is better than any island model since a quadratic run time is never worse
than O(nτ).

We proceed to prove a lower bound on the expected optimization time. The main
difficulty in applying fitness-level arguments to lower bounds is the possibility that the
optimization process may skip several levels with a single improvement. In particular,
this is a problem on the complete graph since a large number of computational nodes
search for improvements in parallel and then, after migration, the globally best solu-
tion is provided to all islands. We handle this issue by combining a poly-logarithmic
number of consecutive levels to one block; skipping a block then is unlikely. The same
technique has been used by Badkobeh et al. [4].

Lemma 23 Consider an island model using broadcast communication with a migra-
tion interval τ ≤ en on the complete graph Kλ to optimize LeadingOnes. If λ is
bounded above by a polynomial in n, then there exists a constant c > 0 such that the
probability of any island finding a fitness improvement of more than c ln2n between
consecutive migrations is o(1/n).

Proof Let the natural number k be such that λ ≤ nk . As no migration takes place we
can focus on the optimization process on a single island. We call an iteration in which
the (1 + 1) EA increases the fitness of the currently best solution an essential step.
Suppose individual x is of fitness LeadingOnes(x) = i . It is well known that the
bits xi+2 through xn form a random substring distributed uniformly over {0, 1}n−i−1.
This implies that, in any essential step and for any 1 ≤ j ≤ n − i , the probability of
a fitness improvement of j is 2− j [5,13]. Hence, there is a constant c1 > 0 , namely,
c1 = (k + 2 + ε)/ ln 2 for some ε > 0, such that the probability of an improvement
of more than c1 ln n is in o(1/nk+2) = o(1/(λn2)).

Observe that the probability of failure is small enough such that the assumption
that none of the improvements is larger than c1 ln n in λn essential steps over the
whole island model fails only with probability in o(1/n). We assume that this does
not happen during the optimization.

Working on solution x, the probability of an essential step is at most 1/n, indepen-
dently of the fitness, as the prominent 0-bit at position xi+1 must be flipped. There
are τ/n ≤ e essential steps in τ iterations in expectation. By Theorem 4, there is a
constant c2 > 0 such that the probability of overshooting this expectation by more
than a factor c2 ln n is o(1/(λn)). By the above assumption we need at least c2 ln n
essential steps in τ iterations to improve the fitness by more than c1c2 ln2 n. Choosing
c = c1c2 and taking a union bound over all λ islands thus implies the lemma. 	
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Theorem 24 Let λ be bounded above by a polynomial in n. Consider an island model
using broadcast communication with a migration interval τ ≤ en on the complete
graph Kλ to optimize LeadingOnes. The expected optimization time and communi-
cation costs are

E[TLO] = �

(
n2

λ
+ n

log(λ/n)
+ τn

log2 n

)
and

E[CLO] = �

(
n2

τ
+ λn

τ log(λ/n)
+ λn

log2 n

)
.

Proof A lower bound of order �(n2/λ + n/ log(λ/n)) follows from the λ-parallel
unbiased black-box complexity of LeadingOnes [3]. The third term stems from the
time the islands spend on finding independent improvements between migrations. We
prove this bound by coupling several random variables.

Let the constant c> 0be as inLemma23and, for integers 0 ≤ j ≤ (n+1)/(c ln2 n),
define the j-th fitness block as the fitness levels from j (c ln2 n) to ( j+1)(c ln2 n)−1.
We say that the optimization process is in the j-th block, if the maximum fitness over
all islands is in that block. Note that optimization starts in block 0 with probability
superpolynomially close to 1, by Chernoff bounds. We define a simplified random
process of block discovery that models the computation on a single island but, at the
same time, also incorporates the beneficial influence of migration. There are two ways
for the island to discover a block in this process. Every essential step, flipping the
left-most 0-bit and none of the leading 1s, reveals a whole new block. Also, every τ

iterations grants another one, simulating the benefits of migration.
Let T ′ stand for the random variable denoting the number of rounds the process

needs to discover the entirety of (n + 1)/(c ln2 n) + 1 blocks. Lemma 23 implies that
the probability of the original optimization skipping a full block in τn iterations is o(1)
as none of the islands makes a progress of more than c ln2n. Hence, TLO first-order
stochastically dominates T ′ and any lower bound on E[T ′] extends to E[TLO] (as long
as it does not exceed nτ ).

To establish E[T ′] = �(nτ/ log2n), it is enough to prove the existence of a constant
c′ > 0 such that

lim
n→∞ P

[
T ′ ≤ c′ τn

ln2n

]
= 0.

We fix some positive real number c′ ≤ 1/(c (2e+ 1)). The reason for this choice will
become apparent in the following discussion. For the moment, it is sufficient to ensure
C = (1/c) − c′ > 0.

Set t = c′τn/ ln2 n. The definition of the discovery process guarantees at least
t/τ = c′n/ ln2 n blocks in t iterations unconditionally. For T ′ ≤ t to hold, the essential
steps have to make up for the remaining blocks. Let X denote the number of essential
steps during t rounds. X , in turn, is dominated by a binomially distributed variable
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Y ∼ Bin(t, 1/n).

P[T ′ ≤ t] ≤ P

[
X >

n + 1

c ln2 n
− t

τ

]
≤ P

[
Y > C

n

ln2 n

]
.

It is best to split the remaining argument into two cases depending on the limit
behavior of E[Y ] = t/n = c′τ/ ln2 n. First, assume the expectation is bounded for all
n, then Var[Y ] = E[Y ] (1 − 1/n) is bounded as well. By Chebyshev’s inequality,

lim
n→∞ P

[
Y > C

n

ln2 n

]
≤ lim

n→∞
Var[Y ]

(
C n

ln2 n
− E[Y ]

)2 = 0.

In case E[Y ] diverges, we define

1 + δ = C n

E[Y ] ln2 n =
1
c − c′

c′ · n
τ

.

The assumptions τ ≤ en and c′ ≤ 1/(c (2e + 1)) together now imply δ ≥ 1. Using
Theroem 4, we finally arrive at

P

[
Y > C

n

ln2 n

]
= P

[
Y > (1 + δ) E[Y ]] ≤ exp

(
− δ

3
E[Y ]

)
.

The right member of the inequality converges to 0. 	

The upper and lower bounds for LeadingOnes yield the following optima.

Corollary 25 Consider an island model using broadcast communication with a
migration interval τ ≤ en on the complete graph Kλ to optimize LeadingOnes.

The best-possible expected optimization time E[TLO] is in �
(

n
log n

)
∩O (n). The best

expected combined costs E[TLO + CLO] are in �
(
n3/2
log n

)
∩ O

(
n3/2

)
.

Proof To minimize the upper bound on E[TLO] set λ = �(n) and a constant τ ,
resulting in O(n). For every polynomial number of islands, the the lower bound is of
order �(n/ log n), regardless of τ . For the combined costs choose both λ and τ in
�(

√
n) to get an upper bound of O(n3/2). The lower bound is minimized by choosing

them in �(
√
n log n) instead, which gives �(n3/2/ log n). 	


6 Conclusion

In this paper we derived upper and lower bounds on the parallel run time of distributed
evolutionary algorithms, called island models, for different migration topologies and
means of communication. We introduced a general approach to bound the optimiza-
tion times based on a fitness-level argument. Our versatile method has been proven
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successful in a variety of settings and is powerful enough to improve existing run time
bounds.

At the same time, we analyzed the communication effort in these distributed
computing systems. We investigated the combined costs of computation and com-
munication as a much more realistic cost measure. In particular, we showed that the
complete graph with broadcast communication does not yield the best performance
due to its high communication overhead. It turned out that the randomized communi-
cation policy of rumor spreading achieves a much better balance between a fast run
time and low network traffic.
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