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Abstract
We empirically analyze two versions of the well-known
“randomized rumor spreading” protocol to disseminate a
piece of information in networks. In the classical model, in
each round each informed node informs a random neighbor.
At SODA 2008, three of the authors proposed a quasirandom
variant. Here, each node has a (cyclic) list of its neighbors.
Once informed, it starts at a random position of the list, but
from then on informs its neighbors in the order of the list.

While for sparse random graphs a better performance
of the quasirandom model could be proven, all other results
show that, independent of the structure of the lists, the same
asymptotic performance guarantees hold as for the classical
model.

In this work, we compare the two models experimen-
tally. This not only shows that the quasirandom model gen-
erally is faster (which was expected, though maybe not to
this extent), but also that the runtime is more concentrated
around the mean value (which is surprising given that much
fewer random bits are used in the quasirandom process).

These advantages are also observed in a lossy commu-
nication model, where each transmission does not reach its
target with a certain probability, and in an asynchronous
model, where nodes send at random times drawn from an
exponential distribution. We also show that the particular
structure of the lists has little influence on the efficiency. In
particular, there is no problem if all nodes use an identical
order to inform their neighbors.

1 Introduction

We conduct an experimental analysis of randomized ru-
mor spreading protocols (also known as random broad-
cast [8] or the push model [3, 11]). Starting from one
node of a graph having a piece of information (“rumor”)
unknown to the other nodes, rumor spreading protocols
aim at efficiently making this information known to all
nodes. They typically proceed in rounds. In the classi-
cal model, in each round, each node that already knows
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the piece of information transmits it to a neighbor cho-
sen uniformly at random. If the rumor was yet unknown
to the neighbor, it becomes informed.

Though not a very elaborate protocol, it works very
efficiently on many graph classes. For complete graphs,
hypercubes and sufficiently dense random graphs, only
Θ(log n) rounds are required to inform all nodes (where
n is the number of nodes of the graph) [8, 10]. We refer
to Section 2 for a precise statement of the model and
the results.

Recently, three of the authors introduced a quasi-
random variant of the randomized rumor spreading
model [5]. Here, each node is equipped with a cyclic
list of its neighbors. Once informed, each node chooses
a single random neighbor. Its first transmission is di-
rected to that neighbor, the next to its successor in the
list, and so on. Hence all transmissions of this node are
determined by the first, random one. It was then shown
that, independent of the choice of the lists, this proto-
col also needs only Θ(log n) rounds for complete graphs,
hypercubes and sufficiently dense random graphs.

While it could be shown that the quasirandom
model has a superior asymptotic runtime on a few graph
classes like dense complete trees and sparse random
graphs, unfortunately all other existing results only
succeed in showing that the runtime of the quasirandom
model for complete graphs, hypercubes and not too
sparse random graphs is of the same order as the
runtime of the fully random model. The obvious reason
for this is that the current theoretical methods are
mostly too coarse to make constant factors precise, let
alone lower order terms. Since these are relevant in
a practical application, we use experimental analyzes
to obtain non-asymptotic results for concrete graphs.
They yield the following results.

We shall see, as expected, that the quasirandom
model is generally faster. For sparser graphs, which also
represent the practically more relevant setting, savings
typically are more than ten percent, which is more than
what we expected.

What is more surprising is that the quasirandom
model also is more robust in several respects. This
was not expected due to the fact that a single random
choice has a larger influence than in the fully random
model. However, we see that the deviation of the actual
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Graph class Broadcast times

Bounded-degree graphs
R(G) = Θ(diam(G)) w. h. p. [8]
Q(G) = Θ(diam(G)) w. p. 1 [5]

Hypercubes, complete graphs, and
almost all random graphs G(n, p)
with p ≥ (1 + ε) ln(n)/n, ε > 0

R(G) = Θ(log n) w. h. p. [8]
Q(G) = Θ(log n) w. h. p. [5]

Almost all random graphs G(n, p)
with p = (ln n + f(n))/n, where
f(n)→∞ and f(n) = O(log log n)

R(G) = Θ(log2 n) w. h. p. [8]
Q(G) = Θ(log n) w. h. p. [5]

Table 1: Broadcast times for different graphs G in the random (R(G)) and quasirandom (Q(G)) model.

broadcast time from the expected value is much smaller
in the quasirandom model. For the sparse random graph
G(n, p) with n = 212 and p = ln(n)/n, conditional on
that it is connected, we observe that in 10% of all runs
the fully random model needs more than 13 rounds more
than the mean value. However, in 99% of all runs the
quasirandom model terminates in less 6 rounds more
than the mean (cf. Figure 2(d)).

We also observe robustness against transmission
failures. This is again a well-known strength of the fully
random model, cf. [6, 8, 11], and one where again the
reduced amount of randomness could lead to inferior
results for the quasirandom model. However, even in
the setting where each transmission has a 50% chance
of not reaching the addressee (without notice to the
sender) the quasirandom model keeps its lead. For the
hypercube with 212 vertices, the average broadcast time
is 40.41 in the quasirandom and 45.53 in the random
model.

We also discuss the question if the order of the list
has an influence on the quality of the protocol. The
good news given by the theoretical results is that no
such choice can lead to a real failure, that is, for the
graph classes discussed so far the difference can at most
be a large constant factor. Our simulations indicate that
there are differences, but they are small. This is again
good news from the view-point of application, since one
advantage of the quasirandom model is that one can use
an implicitly given list (which should be present at any
node to have some means of addressing neighbors).

The remainder of this paper is organized as follows.
We first describe the two broadcasting models in detail
and graphs classes used in this investigation in Section 2.
In Section 3 we compare the average runtimes and their
concentrations around the means. In Section 4 we
provide an explanation for the good performance of the
quasirandom model for sparse graphs. The influence
of the lists is discussed in Section 5. In Sections 6
and 7 we show that the advantages observed so far
for the quasirandom model also hold in the presence

of transmission failures and in an asynchronous model.

2 Preliminaries

2.1 Broadcasting models. One of the simplest
broadcasting protocol is the so-called push model, which
we shall also call fully random model or simply ran-
dom model). There, initially only one node of a graph
G = (V,E) owns a piece of information (or equivalently,
knows a rumor) which is spread iteratively to all other
nodes: in each time-step t = 1, 2, . . . every informed
node chooses a neighbor uniformly at random, which
the piece of information is sent to. We are interested in
how many time-steps are required such that all nodes
become informed.

We compare this random broadcasting model with
its quasirandom analogue introduced in [5]. In the
quasirandom model, each node has a cylic list of its
neighbors and informs the neighbors in the order of the
list. The order of the lists can be arbitrary, but the
starting point of each list is assumed to be random. For
simplicity, we assume that a node does not stop sending
the rumor, even if the list has been completed.

To describe the previous results in this section,
we will use the following notation. Given a graph
G = (V,E), the number of rounds (or time-steps) of a
broadcasting procedure until the rumor reaches all the
vertices of G is a random variable that depends on the
topology of G. Let R(G) be the number of rounds of
the random broadcasting model until all vertices in G
receive the rumor for all starting vertices. Analogously,
let Q(G) be the maximal number of rounds of the
quasirandom broadcasting model until all vertices in G
receive the rumor for all starting vertices and all possible
lists.

2.2 Graphs and related work. We shall investi-
gate the broadcast times on the following topologies.

The complete graph Kn with n vertices is the graph
where every pair of distinct vertices is adjacent. It was
shown by Pittel [14] that R(Kn) tends to log2 n+ln n+
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(b) Hypercube

Figure 1: Average broadcast times for complete graphs and hypercubes with n = 21, . . . , 213 nodes.

o(log n) w. h. p.1. For the quasirandom model it has
been shown that Q(Kn) is of order Θ(log n) [5]. This
result was recently improved to log2 n + ln n + o(log n)
w. h. p. [4].

The d-dimensional hypercube Hd, is the graph de-
fined by V = {{0, 1}d} and E = {{u, u(i)} ∈ {0, 1} |
u ∈ V }, where u(i) is the bit-vector obtained by flip-
ping the ith bit of u. Feige et al. [8] proved that
R(Hd) = Θ(log n) w. h. p. Also this result was extended
to the quasirandom model Q(Hd) by [5].

The classical random graph model introduced by
Erdős and Rényi [7] is defined as follows. Given a
value p ≥ ln(n)/n, pick an edge between each pair of
vertices independently with probability p. By [7], such
a random graph is connected with constant probability.
The exact results for random graphs can be found
in Table 1. Roughly speaking, for sparse random
graphs, the quasirandom model outperforms its random
counterpart by a logarithmic factor, while for more
dense random graphs, both models have an optimal
runtime of Θ(log n).

We also examine a certain model of random regular
graphs. For sampling from the space of all k-regular
graphs randomly, we add edges between two random
nodes of degree smaller than k until this is not possible
anymore. Either we have reached a regular graph, or

1w. h. p. stands for “with high probability”, which refers to an
event which holds with probability at least 1− o(1).

we redo the process from scratch.

2.3 Experimental setup. We use simulations to ob-
tain empirical estimates on the expected broadcast time
and on the variance. Unless otherwise stated, we use
the following lists also called canonical lists. For com-
plete graphs, every vertex has the same list of neigh-
bors (1, 2, . . . , n). That means after starting at a ran-
dom integer, each vertex contacts its neighbors in in-
creasingly order (modulo n), counting only steps where
the vertex has been already informed. On hypercubes
with dimension d, we set the list of each vertex u to
(u(1), u(2), . . . , u(d)). Since random graphs lack a par-
ticular structure, we only consider independent and ran-
domly permuted lists for each vertex.

For each specific graph and list, we have performed
at least 100, 000 experiments to obtain accurate esti-
mates of the expected broadcast time and the corre-
sponding variance. Each time, the starting vertex s is
chosen uniformly at random (unless the graph is vertex-
symmetric). Additionally, for random graphs, the ran-
dom and quasirandom model are tested on the same
samples. A new sample of the random graph is gener-
ated every thousand run. For the case that the gener-
ated random graph is not connected, the graph is dis-
carded and a new one is generated.
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(b) Hypercube H12
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(d) Random graphs with p = ln(n)/n

Figure 2: Empirical distribution of broadcast times on four different graphs with n = 212 nodes.
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3 Broadcast times

A clear advantage of the quasirandom model is that
no node will inform a neighbor a second time (unless
it already has informed all its neighbors). This should
make the quasirandom model faster, to a stronger extent
for sparser graphs than for dense ones. Indeed, as
Table 2 shows, we observe considerable gains for sparse
graphs and still 2% for the complete graph with 212

vertices. Taking into account that informing a neighbor
twice does not happen very often in the relatively short
runtimes, these gains are more than what we expected.

The averages and standard deviations are given in
Table 2. For each graph, we have performed 1,000,000
runs and we used the canonical list as described in
Section 2.3 (other lists are examined in Section 5).

We have already argued why it makes sense that
the advantage of the quasirandom model is larger if the
vertex degrees are small. This not only holds for the
mean broadcast times, but also for median and other
quantiles. E.g., for the hypercube H12, also median,
75%, 90%, 95%, and 99% quantile are smaller by 2 for
the quasirandom model.

To discuss the results on random graphs, recall
that on complete k-ary trees the quasirandom protocol
is faster by a factor of Θ(log k) [5]. Since random
regular graphs and sparse random graphs are locally
tree-like (i.e., they have no small cycles [2]), this could
explain the 15% advantage of the quasirandom model
for random 12-regular graphs.

The highest difference between both models in
Table 2 is attained for random graphs G(n, p) with p =
ln(n)/n, which is precisely the connectivity threshold for
random graphs [7]. We only use the sampled graph if it
is connected. We observe empirically a large advantage
of 44% for these graphs. In Section 4 we will explain
how the large number of small vertices slows down the
fully random broadcast on these graphs.

Figure 1 shows the difference between the quasi-
random and the random model for different graph sizes,
where for each size we have conducted 100, 000 itera-
tions. For complete graphs, one can see a small but sta-
ble additive gap between the sampled expected broad-
cast times. For hypercubes, this gap seems to be in-
creasing with the dimension.

Finally, we briefly discuss the concentration of the
runtime distribution. From a theoretical point of view,
most papers usually prove tight bounds on the runtime
that hold with high probability [4–6, 8, 10, 11, 14].
Though this implies bounds on the expected runtime,
it does not give much further insight on the runtime
distribution such as the variance or higher moments.

Additional to the average runtimes, Table 2 gives
the empirical standard deviations. For all four examined
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Figure 3: Decrease of the expected number of uninformed
nodes during the two broadcasting processes on sparse
random graphs with n = 212 nodes and p = ln(n)/n.
(Note that the y-axis is scaled logarithmically.)

graph classes, the deviations are higher for the random
model. In view of the less randomness used by the
quasirandom model, this is rather surprising.

As for the averages, the strongest difference occurs
for sparse random graphs. There, the standard devia-
tion drops by more than a factor of six. Accordingly,
the histogram in Figure 2(d) shows an extremely heavy
tail of the fully random broadcast time compared to the
quasirandom broadcast time.

4 Influence of the degree distribution

In Section 3 we observed that a small minimum degree
favored the quasirandom model in comparison to the
random one. We now want to further support this
explanation.

The largest difference between both models so far is
attained for sparse random graphs according to Table 2.
From a theoretical point of view, one can show that they
have ω(1) small vertices, i.e., vertices of constant degree.
As shown by [2], such small vertices have distance at
least Θ(log n/ log log n) and each neighbor of a small
vertex has a degree of Θ(log n).

Let us now consider the quasirandom model. By its
definition, every small vertex with at least one informed
neighbor gets informed within maxdeg(G) = O(log n)
further steps w. h. p. On the other hand, consider the
random model in a situation where all small vertices
have only informed neighbors. Since all these neighbors
have degree Θ(log n), the expected time to inform a
fixed small vertex is Θ(log n) and the expected time to
inform all ω(1) small vertices is ω(log n). This hints for
an asymptotic superiority of the quasirandom model.

On a more concrete level, let us reconsider the
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Random broadcast Quasirandom broadcast

Complete graph K212 21.50± 1.32 21.04± 1.32 (=2.1% faster)

Hypercube H12 24.98± 1.32 22.37± 0.82 (=10.4% faster)

Random 12-regular graphs 22.87± 1.30 19.51± 0.68 (=14.7% faster)

Random graphs G(n, p) with p = ln(n)/n 43.20± 11.8 24.28± 1.83 (=43.8% faster)

Table 2: Averages and standard deviations of the broadcast times for different graphs with n = 212 vertices.

Random broadcast Quasirandom broadcast

Random graphs with p = ln(n)/n 43.20± 11.8 24.28± 1.83 (=43.8% faster)

Random graphs with p = 2 ln(n)/n 26.78± 3.55 22.12± 1.42 (=17.4% faster)

Table 3: Averages and standard deviations of the broadcast times for different random graphs with n = 212 vertices.

sparse random graph with n = 212 at the connectivity
threshold p = ln(n)/n. There, the expected number of
nodes with degree smaller than five is

∑4
k=0

(
n
k

)
pk (1−

p)n−k n ≈ 338 and with good probability some of them
will have only neighbors with large degree. To inform
these, the random protocol has to spend significantly
more than the quasirandom protocol. This is illustrated
in Figure 3 where one can observe that at the beginning
both models do not deviate much. In fact, on average
more than 90% of the nodes get informed after 16 or
18 steps in the quasirandom resp. random model. On
the other hand, within the 100,000 runs of Figure 3 it
took never more than 37 rounds to inform the very last
node (typically of very small degree) in the quasirandom
model while it took up to 228 rounds for the random
model.

This looks much different for denser random graphs.
For p = 2 ln(n)/n, the expected number of nodes with
degree smaller than five is smaller than one. Hence the
degree distribution differs significantly from the sparser
case and the aforementioned effect diminishes as can be
seen in Table 3.

5 Influence of the lists

So far in our experiments we only regarded the canonical
choice introduced in Section 2 for the cyclic lists describ-
ing the orders in which nodes contact their neighbors.
Recall that existing theoretical work applies to all kinds
of lists. Nevertheless, one might speculate that some
orders are more efficient than others, and one might
wonder if it is good or not if all nodes use the same lists
(excluding of course the node itself as addressee). The
results obtained in this section will show that there is
some influence, but it is not very large.

A natural candidate different from the canonical
choices and suitable for all graphs are random lists.

They are interesting in that they demonstrate what
would happen if in the fully random model we were
picking the new addressee uniformly at random only
from the nodes not contacted so far by the node under
consideration. For a practical application, this model
suffers slightly from its reduced simplicity.

An interesting idea for network topologies con-
taining some geometric flavor are low-discrepancy ap-
proaches. See e.g. [12, 13] for introductions to some
aspects of this broad concept. In our investigation,
only the hypercube admits such ideas. Here, instead
of informing the neighbors “along the dimension”, that
is, using the canonical choice (u(1), u(2), . . . , u(d)) as
list of vertex u, one would serve the dimensions ac-
cording to a low-discrepancy sequence, that is, take
the list (u(x1), u(x2), . . . , u(xd)), where x1, . . . , xd is an
injective low-discrepancy sequence in {1, . . . , d} in the
sense that each subinterval of the sequence has its en-
tries evenly distributed in the (integer) interval [1..d].
There are many constructions of such sequences, cf.
again [12, 13]. Taking a van-der-Corput sequence in
base two of length 16, rescaling and shifting it to an
integer sequence in [1..16] and deleting entries larger
than 12 we obtain the low-discrepancy sequence x =
(1, 9, 5, 3, 11, 7, 2, 10, 6, 4, 12, 8).

Note that such ideas make little sense for random
graphs and complete graphs. First, they both have no
regular structure to exploit. In addition, the latter are
that symmetric that all sequences (to be used by all
nodes) are equivalent.

The results given in Table 4 show that the use of
low-discrepancy sequences is minimally better that the
canonical order, but by far does not reach the results
obtained by random sequences. Here it seems that this
difference is the (still negligible) price one has to pay
for reducing the degree of randomness in quasirandom
broadcasting.
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Random broadcast Quasirandom broadcast
canonic random low-discr.

Complete graph K212 21.50± 1.32 21.04± 1.32 21.48± 1.32

Hypercube H12 24.98± 1.32 22.37± 0.82 22.32± 0.80 22.36± 0.82

Random graphs with p = ln(n)/n 43.20± 11.8 24.28± 1.83 24.28± 1.82

Table 4: The influence of the chosen list on the broadcast times.

Random broadcast Quasirandom broadcast

H12: 50% failure chance 45.53± 3.23 40.41± 2.68 (=11.2% faster)

no transmission failures 24.98± 1.32 22.37± 0.82 (=10.4% faster)

Increase (multiplicative) 1.822 1.806

K212 : 50% failure chance 39.38± 3.15 39.29± 3.18 (=0.23% faster)

no transmission failures 21.50± 1.32 21.04± 1.32 (=2.14% faster)

Increase (multiplicative) 1.832 1.867

Table 5: Average broadcast times for the hypercube H12 and the complete graph K212 with a 50% chance of transmissions
failing unnoticed by the sender and without transmission failures.

For complete graphs, we see that the canonical
lists are superior to random ones. We currently have
little explanation for this behavior. However, the
number of 100, 000 iterations ensures that this effect is
statistically significant (even if practically not of utmost
importance).

We conclude that we never observed a big influence
of the list structures, even though a real understanding
of their influence could not be gained.

6 Robustness against failures

A second important aspect of broadcast protocols, be-
sides their broadcast time, is robustness against trans-
mission errors. A good protocol should still work mod-
erately efficiently even if some transmissions fail or some
nodes for whatever reason do not participate as in-
tended.

Naturally, randomized protocols are very robust.
In Feige et al. [8], a model was considered where
communications links break down forever. For complete
graphs it was proven that even if up to n/3 links chosen
by an adversary break down, randomized broadcast still
requires only O(log n) steps.

We consider a model where each transmission
reaches its destination with some probability f > 0 in-
dependently. It was shown in [6] that for an arbitrary
graph, the runtime of the random model with these
transmission failure is at most 6/f times the runtime
of the random model without failures.

With the fully random model being that robust
against different kinds of failures, it is a natural question
if the quasirandom broadcast model with its greatly

reduced degree of randomness still has comparable
robustness properties. To gain some understanding of
this issue, we analyze the quite pessimistic model that
each transmission fails independently at random with
probability a half, and that this remains unnoticed
by the sender. Hence the sending node continues his
schedule with the next node on his list. Note that in
this failure model the advantage that a low-degree node
informs all its neighbors in time equal to its degree,
clearly vanishes. We would thus expect the superiority
of the quasirandom model to reduce significantly.

Surprisingly, this does not happen. We chose
the hypercube of dimension d = 12 and a complete
graph of corresponding size n = 212 as objects of
investigation. Averaging over one million runs, we see
that both the fully random and the quasirandom model
with transmission failures slow down by factors between
1.81 and 1.87 while the standard deviation increases
by factors around 3. The precise data is collected
in Table 5. We do not have an explanation for the
finding that the quasirandom model compared to the
fully random one is sightly more affected by failures
in the complete graph topology and slightly less in the
hypercube topology. This effect, however, seems real
and was observed also for smaller graph sizes with more
repetitions of the experiment.

7 Asynchronous broadcasting

The broadcasting model discussed so far made the as-
sumption that the agents (nodes) act in a synchro-
nized manner. This assumption is not completely in-
line with the idea of a self-organized broadcasting pro-
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Figure 4: Histograms of the observed runtime over 100,000 runs in the asynchronous setting. The width of each bar
is 0.2.

tocol not guided by a central authority. However, there
are works on a continuous model called “Richardson’s
growth model” in the mathematics community, e.g.,
[1, 9, 10]. In this model, nodes inform other nodes on a
continuous time scale. The order in which a fixed node
makes its transmission is the same as in the discrete-
time models discussed so far. However, the times to
elapse between two consecutive transmissions (and be-
tween a node first getting informed and its first trans-
mission) are chosen according to an exponential distri-
bution with expectation one2. For this model, a bound
of Θ(log n) was shown for complete graphs [10] and hy-
percubes [1, 9].

To see how (a) this model compares to the synchro-
nized one and (b) how the random and quasirandom
variants compare in this model, we also implemented
it. For reasons of space, we only briefly discuss the
findings for the 12-dimensional hypercube and the com-
plete graph, both with 212 nodes. Our empirical results
averaged over 100,000 iterations are given in Table 6.

On the hypercube, the empirical expected broad-
cast times are 20.57 and 17.23 for the random and
the quasirandom model, respectively. This means that
the asynchronous quasirandom broadcast model is 16%
faster than the corresponding random model. We mea-
sured a standard deviation of 1.88 and 1.50, demonstrat-
ing again a superiority of the quasirandom approach.
Compared to the runtimes of the synchronous broadcast

2Actually, in the original “Richardson’s growth model”, the ex-
pectation is 1/ deg(G) on regular graphs. However, to make the
results of this section comparable to the ones of the synchronous

broadcasting, we use an appropriate scaling by setting the expec-
tation to 1.

Random Quasirandom

H12 20.57± 1.88 17.23± 1.50 (=16% faster)

K212 17.79± 1.82 17.32± 1.82 (=2.6% faster)

Table 6: Empirical broadcast times for the hypercube
H12 and the complete graph K212 in the asynchronous
model.

models, we observe a considerable decrease (cf. Table 2),
e.g., the expected broadcast time of the quasirandom
model goes down from 22.37 to 20.56.

We also did simulations of the asynchronous broad-
cast model on a complete graph. Here, the empirical
expected broadcast times are also slightly lower for the
quasirandom model (17.32) compared to the fully ran-
dom model (17.79).

In summary, our experiments demonstrate that the
advantages of the quasirandom model extend to its
asynchronous version.

8 Discussion

In this work, we experimentally analyzed the quasi-
random version of the classical randomized rumor
spreading model. Our investigation shows a number of
interesting facts, which previous work via mathematical
means was not able to show. In such, this work nicely
complements existing theoretical work. The latter gives
a guarantee that the quasirandom model does not fail,
and in fact is not worse than the random model, no mat-
ter how the neighbor lists are chosen. Note that due to
the sheer number of possible lists, there is no way to
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gain such a worst-case analysis experimentally.
On the other hand, this work indicates that the typ-

ical behavior of the quasirandom model is better than
what the theoretical bounds show, and also better than
the random model. This statement holds in particu-
lar with respect to expected runtimes, deviations from
the mean value and robustness against transmission fail-
ures.

Given the shown differences between the two mod-
els, this work also motivates a further development of
the methods to analyze dependent randomized algo-
rithms, so that results of this kind can also be obtained
in a mathematically rigorous way.
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