
Don’t be Greedy when Calculating
Hypervolume Contributions

Karl Bringmann
Universität des Saarlandes

Postfach 151150
66041 Saarbrücken, Germany

Tobias Friedrich
International Computer Science Institute

1947 Center St., Suite 600
94704 Berkeley, CA, USA

ABSTRACT

Most hypervolume indicator based optimization algorithms
like SIBEA [Zitzler et al. 2007], SMS-EMOA [Beume et al.
2007], or MO-CMA-ES [Igel et al. 2007] remove the solu-
tion with the smallest loss with respect to the dominated
hypervolume from the population. This is usually iterated
λ times until the size of the population no longer exceeds
a fixed size µ. We show that there are populations such
that the contributing hypervolume of the λ solutions cho-
sen by this greedy selection scheme can be much smaller
than the contributing hypervolume of an optimal set of λ
solutions. Selecting the optimal λ-set implies calculating(
µ+λ
µ

)
conventional hypervolume contributions, which is con-

sidered computationally too expensive. We present the first
hypervolume algorithm which calculates directly the contri-
bution of every set of λ solutions. This gives an additive
term of

(
µ+λ
µ

)
in the runtime of the calculation instead of

a multiplicative factor of
(
µ+λ
µ

)
. Given a population of size

n = µ + λ, our algorithm can calculate a set of λ > 1 solu-
tions with minimal d-dimensional hypervolume contribution
in time O(nd/2 logn+ nλ) for d > 2. This improves all pre-

viously published algorithms by a factor of order nmin{λ,d/2}

for d > 3. Therefore even if we remove the solutions one by
one greedily as usual, we gain a speed up factor of n for all
d > 3.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

1. INTRODUCTION

How to compare Pareto sets lies at the heart of research
in multi-objective optimization. One measure that has
been the subject of much recent study in evolutionary
multi-objective optimization is the “hypervolume indicator”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOGA’09, January 9–11, 2009, Orlando, Florida, USA.
Copyright 2009 ACM 978-1-60558-414-0/09/01 ...$5.00.

(HYP). It measures the volume of the dominated portion
of the objective space. The hypervolume metric is of ex-
ceptional interest as it possesses the highly desirable feature
of strict Pareto compliance [24]. That is, considering two
Pareto sets A and B, the hypervolume indicator values A
higher than B if the Pareto set A dominates the Pareto set
B. This property makes it well suited to many-objective
problems.

The hypervolume was first introduced for performance
assessment in multi-objective optimization by Zitzler and
Thiele [23]. Later on it was used to guide the search in var-
ious hypervolume-based evolutionary optimizers [4, 11, 12,
13, 21, 22]. Since then, several algorithms for calculating the
hypervolume have been developed. The first one was the Hy-
pervolume by Slicing Objectives (HSO) algorithm which was
suggested independently by Zitzler [20] and Knowles [14].
To improve its runtime on practical instances, various speed
up heuristics of HSO have been suggested [17, 19]. The

currently best asymptotic runtime of O(n logn + nd/2) by
Beume and Rudolph [5] is based on Overmars and Yap’s
algorithm for Klee’s Measure Problem [16]. There are also
various algorithms for small dimensions [11, 15].

So far, the only known lower bound for any d is
Ω(n logn) [3]. Note that the worst-case combinatorial com-
plexity (i.e., the number of faces of all dimensions on the
boundary of the union of the boxes) of Θ(nd) does not imply
any lower bounds on the computational complexity. It has
recently been shown by the authors [7] that the calculation of
HYP is #P-hard, which implies that all hypervolume algo-
rithms must have a superpolynomial runtime in the number
of objectives or boxes unless P = NP. [7] also presents an
FPRAS (fully polynomial-time randomized approximation
scheme) which gives an ε-approximation of the hypervolume
indicator with probability 1 − δ in time O(log(1/δ)nd/ε2).
Though this algorithm gives a very fast approximation in
time (linear in n and d) for the hypervolume, it is important
to note that this is not an approximation of the contribut-
ing hypervolume. Even the approximation of the latter is
NP-hard as has recently been shown in [8].

Let us now look at a hypervolume-based algorithm that
maintains a population (set of solutions) M ⊆ Rd>0 of size µ.

Then the hypervolume1 is defined as

HYP(M) := vol

(⋃
(x1,...,xd)∈M

[0, x1]× . . .× [0, xd]

)
1Without loss of generality we assume the reference point to
be 0d. Also, we are dealing with maximization problems through-
out the paper.

103

with vol(·) being the usual Lebesgue measure. To avoid
an unbounded population, the number of solutions in the
population is usually fixed to a certain threshold and with
every new Pareto optimal solution another one has to be
removed. Most hypervolume based algorithms remove the
solution x ∈M with the smallest contribution2 [4, 9, 21]

CONM (x) := HYP(M)−HYP(M \ {x}).

The contribution can be seen as the measure of the space
that is dominated by x, but no other point in M . A point
(x1, . . . , xd) ∈ Rd dominates a point (y1, . . . , yd) ∈ Rd, iff
we have xi ≤ yi for i = 1, . . . , d. The solution with minimal
contribution can be calculated easily by µ+ 1 hypervolume
calculations.

The problem is that often λ solutions should be removed
at once. In this case one aims for a set S ⊆M of size λ, i.e.,
S is a λ-set or λ-subset of M , such that

CONM (S) := HYP(M)−HYP(M \ S)

is minimized. To calculate the optimal λ-set Sλopt which has

the smallest joint contribution requires
(
µ+λ
µ

)
calculations

of HYP(·) which is considered computationally too expen-
sive [1, 4]. This is why all current hypervolume based opti-
mization algorithms just calculate a greedy λ-set Sλgreedy by

starting with S0
greedy := ∅ and then iteratively setting

Sλ+1
greedy := Sλgreedy ∪

{
argmin

x∈M\Sλgreedy

CONM\Sλgreedy
(x)

}
.

In Section 2 we will show that CON(Sλgreedy)/CON(Sλopt)
can be arbitrarily large. That is, the error introduced by
choosing the λ-set greedily instead of optimally can mis-
guide the search process. We also report on Pareto fronts
with significant differences between both λ-sets in the DTLZ
library [10].

This observation motivates the algorithm introduced in
Section 3. It is an adaption of Overmars and Yap’s algo-
rithm which allows the direct computation of the contribu-
tion of every set of λ solutions. This avoids calculating

(
µ+λ
µ

)
conventional hypervolume calculations by maintaining the
volume of the contribution of every set of λ solutions during
the calculation. This yields an additive term of

(
µ+λ
µ

)
in the

runtime of the calculation instead of a multiplicative factor
of
(
µ+λ
µ

)
. For a population of size n = µ+ λ and d > 2, the

algorithm calculates Sλopt in time O(nd/2 logn+ nλ), which
improves all previously published algorithms by a factor of
order nmin{λ,d/2}.

This has two consequences. First, even if we remove only
λ = 1 solutions in every step, this is a speed up by a factor
of order n. This means we can determine the box with least
contribution, i.e., the greedy solution, in time of order nd/2

instead of the usual O(nd/2+1). Second, for λ 6 d/2 the
asymptotic runtime is independent of λ. Therefore, using
λ = d/2 instead of the commonly used λ = 1 (greedy) gives
the same asymptotic runtime and yields the same or poten-
tially even smaller contributions of the calculated λ-sets.

Note that we will assume throughout the paper, that d
and λ are constant, i.e., n is the only growing parameter for

2Throughout the paper, we will use CON(x) := CONM (x),
Sλopt := Sλopt(M) and Sλgreedy := Sλgreedy(M) if there is no ambi-

guity in the choice of M .

the asymptotic analysis. This is no real restriction as both
of them appear in the exponent of the resulting runtime
and hence superconstant values for them would immediately
make the algorithm inefficient.

2. GREEDY IS BAD

For λ = 1, the greedy λ-set is optimal, i.e., Sλgreedy = Sλopt.
However, it is known that for λ > 2 the greedy algorithm
is not able to construct the optimal solution set in general.
For example Bradstreet et al. [6] present a three-dimensional
example of n = 6 points where for λ = 2 the contribution
of the greedy λ-set Sλgreedy is 12.5% larger than the optimal

λ-set Sλopt. In this section we show that the λ-set Sλgreedy

found by the greedy algorithm can have an arbitrarily larger
contribution than the optimal λ-set Sλopt for all λ > 2. Let

κ denote the ratio between the contribution of Sλgreedy and

Sλopt. For many sets M , κ is either one or very close to
one. Next, we prove that for given κ, dimension d > 3
and number of boxes n > d there is a set of solutions M
of size n such that the ratio between CONM (Sλgreedy) and

CONM (Sλopt) is larger than κ for all 2 ≤ λ ≤ d. Additionally,
we show that κ > 1 also holds for some fronts from the DTLZ
library [10].

Lemma 1. For all κ > 1, d > 3 and n > d
there is a set M ⊆ Rd>0 with |M | = n such that

CONM (Sλgreedy)/CONM (Sλopt) > κ for all 2 6 λ 6 d.

Proof. We first assume n = d + 1. Let ε := 1/(2κd2) and
σ := d2ε2. We choose M = {q, p1, p2, . . . , pd} with

q = (1 + ε, 1 + ε, . . . , 1 + ε),

p1 = (1 + ε+ σ, 1, 1, . . . , 1),

p2 = (1, 1 + ε+ σ, 1, . . . , 1),

· · ·
pd = (1, 1, . . . , 1, 1 + ε+ σ).

A three-dimensional example is shown in Figure 1. As the
space dominated by pi but no other point in M is exactly

[0, 1]i−1 × [1 + ε, 1 + ε+ σ]× [0, 1]d−i,

we have CONM (pi) = σ. The point q dominates [0, 1 + ε]d,
but [0, 1]d and the d rectangular regions of the form [0, 1]×
· · · × [0, 1]× [1, 1 + ε]× [0, 1]× · · · × [0, 1] are dominated by
the other points in M , too, so that we have

CONM (q) = (1 + ε)d − 1d − d · ε

=

d∑
i=2

(
d

i

)
εi.

Similarly, we get

CONM ({pi1 , pi2 , . . . , piλ︸ ︷︷ ︸
λ different pi’s

}) = λσ,

CONM ({q, pi1 , . . . , pi(λ−1)︸ ︷︷ ︸
λ− 1 different pi’s

}) = CONM (q) + (λ− 1)(ε+ σ),

104

Test case d n λ
CON(Sλ

greedy)−CON(Sλ
opt)

CON(Sλ
opt)

DTLZLinearShape.3d.front.50pts 3 50 5 4.23%
DTLZLinearShape.3d.front.10pts 3 10 9 5.76%
DTLZSphereShape.3d.front.50pts 3 50 6 4.19%
DTLZSphereShape.3d.front.50pts 3 50 7 8.57%
DTLZDiscontinuousShape.5d.front.20pts 5 20 8 2.60%
DTLZDegenerateShape.8d.front.10pts 8 10 3 11.31%
DTLZDegenerateShape.6d.front.10pts 6 10 3 32.64%

Table 1: Some examples of populations on fronts from the DTLZ library [10] where the contributions of the greedy λ-set Sλgreedy and

the optimal λ-set Sλopt deviate significantly.

where we used that after picking q every pi dominates a
portion of space with volume ε+ σ. Since

CONM (q) <

∞∑
i=0

(
d

i+ 2

)
εi+2 <

∞∑
i=0

di+2εi+2

(i+ 2)!

= ε2d2
∞∑
i=0

diεi

(i+ 2)!
< ε2d2

∞∑
i=0

1

(i+ 2)!

= ε2d2(e− 2) < ε2d2 = CONM (pi),

the greedy algorithm chooses the λ-set

Sλgreedy = {q, pi1 , pi2 , . . . , pi(λ−1)︸ ︷︷ ︸
(λ− 1) different pi’s

}

though the optimal λ-set is

Sλopt = {pi1 , pi2 , . . . , piλ︸ ︷︷ ︸
λ different pi’s

}.

Therefore for all λ 6 d,

CONM (Sλgreedy)

CONM (Sλopt)
=

CONM (q) + (λ− 1) (ε+ σ)

λσ

>
(λ− 1)ε

λσ
>

1

2 d2ε
= κ.

This shows the claim for n = d+1. To prove the remaining
case n > d + 1, we take the set M from above, shift all
points in M by 1 along the first dimension and add some
extra boxes, each one contributing too much to be chosen
by the greedy or the optimal algorithm. For this we define

M ′ ={(x1 + 1, x2, . . . , xd) | (x1, . . . , xd) ∈M},
B =

⋃
1≤i<n−d{(1, C · i, C · (n− d− i), C, . . . , C)},

N =M ′ ∪B,

where C > 2(1 + ε + σ)2 is a sufficiently large number. As
|M | = d+1, N contains exactly n boxes. Furthermore, each
point in B uniquely dominates the rectangular region

[0, 1]×[C(i−1), Ci]×[C(n−d−i−1), C(n−d−i)]×[0, C]d−3,

when considering only points from B. Hence, we have
CONB(x) ≥ Cd−1 for all x ∈ B. The contribution of x in
N can be smaller than the contribution of x in B. However,
the contribution cannot decrease by more than the overall
hypervolume of M ′ as every point lying in the one contribut-
ing space but not in the other one has to be dominated by a
point in M ′. Therefore CONN (x) ≥ CONB(x)−HYP(M ′).
We further know that the hypervolume of M ′ is bounded

from above by 2 (1 + ε + σ)d as each i-th coordinate of a
point in M ′ is less than 1 + ε+σ for 2 ≤ i ≤ d and less than
2 + ε+ σ < 2 + 2ε+ 2σ for i = 1. Hence,

CONN (x) ≥Cd−1 − 2 (1 + ε+ σ)d

>2d−1(1 + ε+ σ)2d−2 − 2 (1 + ε+ σ)d

≥4 (1 + ε+ σ)d − 2 (1 + ε+ σ)d

≥2 (1 + ε+ σ)d

≥HYP(M ′).

This implies that it is better to remove from N all elements
in M ′ than to remove one element in B. Therefore none
of Sλopt or Sλgreedy can contain a point in B for 2 ≤ λ ≤ d.
Moreover, the contribution of an element x ∈ M to M is
the same as the contribution of the corresponding element
x′ ∈ M ′ to N , as the boxes in B cut away all additional
dominated space (every box in B dominates [0, 1] × [0, 1 +
ε+ σ]d−1). Hence

CONN (Sλopt(N)) = CONM (Sλopt(M)),

CONN (Sλgreedy(N)) = CONM (Sλgreedy(M))

for 2 ≤ λ ≤ d, which implies that their ratio is at least κ as
shown for the case n = d+ 1.

To validate that significant differences indeed occur in real
data sets, we have calculated the greedy and the optimal
λ-set contribution for some populations on fronts from the
DTLZ library [10]. To allow an easy verification of our re-
sults we used the populations generated by [18] available
from http://www.wfg.csse.uwa.edu.au/hypervolume/. For
different λ’s we calculated for all populations the greedy
λ-set Sλgreedy and the optimal λ-set Sλopt. We observed
relative differences of up to one third between calculating
the contribution greedily or optimally. Some representative
numbers of larger deviations between both contributions are
shown in Table 1. Note that even a small difference between
the contribution of the greedy and the optimal λ-set can
misguide the search process.

3. ALGORITHM

Consider a set S of boxes in Rd, n := |S|. Throughout this
chapter, we use the term λ-set for a subset T ⊆ S with
|T | = λ. We also say that T is a λ-subset of S. Similarly,
we use λ≤-set for denoting any set T ⊆ S with |T | ≤ λ, or
say that T is a λ≤-subset of S.

The optimal λ-set T ∗ of S is a λ-set with CONS(T ∗) min-
imal among all λ-sets T . This set T ∗ is the set we would like

105

to discard from our solution set S. The task of finding T ∗

can easily be accomplished by computing HYP(S \T) for all
λ-sets T (and T = ∅), as CONS(T) = HYP(S)−HYP(S\T).
The main idea of our algorithm is that for doing this we do
not have to compute these hypervolume measures indepen-
dently, but can “parallelize” the execution of the algorithm
the currently fastest hypervolume algorithm is based on: the
algorithm of Overmars and Yap [16]. Therefore, we present
their ideas in short and give a sketch of our changes after-
wards.

The general framework of the algorithm is the same as
the one of Bentley [2]: do a space sweep along dimension d
stopping at each endpoint of a box in decreasing order and,
inserting the new box, solve the dynamic (d−1)-dimensional
measure problem. The latter is the same as the problem of
computing the hypervolume, but the boxes are given one by
one and we have to output the current hypervolume after
each box. Bentley’s original approach to this dynamic prob-
lem took O(nd−2 logn). Those (d−1)-dimensional measures
then have to be multiplied by the length of the interval in
dimension d we overleaped and summed up to get the overall
hypervolume of S. Confer [2] for details and correctness of
this formula. Note that Bentley solved a more general prob-
lem than computing the hypervolume. In our context we,
other than Bentley, never have to delete boxes, as all boxes
have the same lower d-th coordinate 0 (as they all share the
origin as a joint corner).

For the tree approach by Overmars and Yap [16] to the
dynamic problem we need some more terminology. For a
point x ∈ Rd we denote its i-th coordinate by xi. In general,
we will denote an d-dimensional object as d-object if we want
to emphasize that it is an object lying in Rd. We consider
a d-box B to be a set [0, b1] × . . . × [0, bd], so that we can
think of B also as the point (b1, . . . , bd) ∈ Rd. We will use
this dualism often, speaking of boxes and points being the
same. Moreover, we consider a (d − 1)-region R, or just
region for short, to be a set [a1, b1]× . . .× [ad−1, bd−1], i.e.,
a rectangular region in Rd−1. For such a region we define
R∗ to be the d-region R × [0, U], where U := max{xd |
x ∈ S} is a fixed upper bound for the d-th coordinates of
the points in S. Furthermore, we speak of the projected
box Bπ by dropping the d-th coordinate of the box B, i.e.,
Bπ = [0, b1] × . . . × [0, bd−1]. Also, for a set S of points (or
boxes) in Rd we denote by Sπ the set of all projected boxes
{(x1, . . . , xd−1) | (x1, . . . , xd) ∈ S}.

Definition 1. A d-box B is said to partially cover a
(d−1)-region R if the boundary of Bπ intersects the interior
of R. B is said to (fully) cover R if R ⊆ Bπ.

We speak of the two i-boundaries of a box B being the
two sets {x ∈ B | xi = 0} and {x ∈ B | xi = bi}. Ad-
ditionally, we let the i-interval of a box or region to be its
projection on the xi-axis. Then we speak of a box B being
an i-pile of the region R, if for each 1 ≤ j ≤ d− 1, j 6= i the
j-interval of R is fully contained in the j-interval of B. Less
formally that means that within a region R all j-intervals
of i-piles of R only differ for j = i. We consider a set S of
d-boxes to form a trellis in the region R, if each box in S
is an i-pile for some 1 ≤ i ≤ d − 1 in R. See Figure 2 for
an illustration of a general trellis as defined by Overmars
and Yap. At last, we will need a restricted hypervolume:
For any region R and finite point set T ⊂ Rd we define

HYPR∗(T) := vol(R∗∩
⋃
x∈T [0, x1]× . . .× [0, xd]), which is

the hypervolume dominated by T restricted to R∗.
To calculate the volume efficiently, Overmars and Yap [16]

cleverly use a partitioning of the (d− 1)-dimensional space
by an orthogonal partition tree. There each node u is asso-
ciated to a (leaf-)region Ru The root is associated to a re-
gion Rroot with R∗root being a bounding box for all the boxes
in S. We will in this paper always assume R∗root to be the box
BB = [0,BB1]×. . .×[0,BBd] with BBi = max{xi | x ∈ S}.
Additionally, the associated region to each node splits up to
the two children covering and intersection free, i.e., if `(u)
and r(u) are the two children of u, then R`(u) ∪Rr(u) = Ru
and R`(u)∩Rr(u) has zero Lebesgue measure. In every leaf `
they require that any box in S (the problem instance) that
partially covers R` is a pile for R`, so that the boxes in any
leaf form a trellis.

Overmars and Yap [16] show how to build such a tree
with several nice properties. Among others, they prove (in
their Lemma 4.2) the following three properties which will
be useful in the remainder.

Lemma 2. The partition tree built by the algorithm of
Overmars and Yap has the following properties:

• The depth of the tree is O(logn).
• Each projection of a box in S partially covers
O(n(d−2)/2) leaf-regions.
• Each projection of a box in S partially covers
O(n(d−2)/2 logn) regions of inner nodes.

Note, we build this tree only for the first d−1 dimensions,
while Overmars and Yap solve the problem in d dimensions,
which explains the difference in the statements.

For inserting or deleting a box in this tree, one only has
to update the measure in each of the influenced regions.
This can be done in constant time for internal nodes and in
logarithmic time for the leafs, as we will see in the next but
one section. Hence, this tree helps to efficiently determine
the dynamic measure.

Streaming variant
Overmars and Yap [16] also present a streaming variant of
their algorithm. It uses less space but elsewise performs the
same operations as the tree variant, just in a different or-
dering. The tree variant can be seen as a sweep in “time”
(being the d-th coordinate), where we insert a box into the
tree when it is reached in time. We can rearrange this the
following way: We traverse the tree, and for each leaf we
sweep the “time” inserting all boxes that influence the cur-
rent leaf. In other words, we do not perform every insertion
one by one on the whole tree structure, but look at the leaf-
regions and perform all the insertions that will influence the
region at hand. This rearrangement is possible as we know
all insertion times beforehand. The benefit of the latter
variant is that we do not have to explicitly store the whole
tree structure: As Overmars and Yap managed to simulate
the splitting of an inner node just by looking at the boxes
that influence the associated region, we just need the tree
structure implicitly, reducing the amount of storage to O(n).
This variant fits better our purpose of a practical algorithm.

Trellises
What is left is how to deal with the leaf-regions of the
tree. Overmars and Yap [16] saw that maintaining the

106

p1p2

p3

q

xy

z

Figure 1: A three-dimensional example of a set M ⊆ R3
>0 such

that the greedy λ-set Sλgreedy(M) gives a much higher contribution

than the optimal λ-set Sλopt(M).

measure of a projected trellis dynamically can be done in
O(logn): Consider a region R, i.e., a rectangle with side
lengths L1, . . . , Ld−1. Furthermore, consider the i-piles of
this region: by projecting them onto dimension i, we can
determine their measure by solving a 1-dimensional mea-
sure problem with overlapping intervals, which can be main-
tained in O(logn) per update by an interval tree. This way,
we get Mi, the measure of the 1-dimensional problem of the
i-piles. Then we can compute the measure of the projected
trellis easily as

d−1∏
i=1

Li −
d−1∏
i=1

(Li −Mi)

as explained in [16].

Beume and Rudolph [5] noticed that in the case of the
hypervolume indicator the measures Mi can be maintained
even in constant time, since we do not delete boxes and the
interval overlapped by the i-piles is always of the form [0, r]
for some r ∈ R, so that we just have to save the largest right
end of such an interval, which can be updated in O(1).

Sketch of our algorithm

Roughly speaking, the algorithm of Overmars and Yap can
be summarized as follows:

• By building the partition tree, compute for all leaf-
regions R the hypervolume HYPR∗(S) of the space
dominated by S restricted to R∗.
• Sum up these volumes.

The crucial observation is that the space dominated by S
restricted to R∗ as considered in the first step forms a trellis,
whose hypervolume can be determined efficiently.

As sketched at the beginning of Section 3, we want to
compute all the hypervolumes HYP(S \ T) for λ-sets T in
parallel. Observing that we can use the same partitioning
tree for S\T as for S, we can come up with a simple adaption
of the above method:

Figure 2: A 2-dimensional trellis for arbitrary boxes as in Over-

mars and Yap [16]. There, a trellis consists of long vertical (pair-

wise disjoint) rectangles superposed on long horizontal (pairwise

disjoint) rectangles. The dotted rectangle around the trellis shows

the corresponding region R.

• By building the partition tree, compute for all leaf-
regions R the hypervolume HYPR∗(S \ T) for all
λ-subsets T of S.
• Sum up these volumes independently to get

HYP(S \ T) for each T .

One way to carry out the first step is described in the fol-
lowing. For this, we compute for every leaf-region R and all
λ≤-sets U the following volumes MR

U .

Definition 2. The volume MR
U denotes the volume of

the space in R∗ that is not dominated by S \U , but is dom-
inated by every S \W for W (U .

This way every point in R∗ not dominated by S\T is counted
in exactly one of the measures MR

U with U ⊆ T . We get

HYPR∗(S \ T) = vol(R∗)−
∑
U⊆T

MR
U . (1)

Using this and postponing the summation for each T we can
restate the method now as follows:

• Compute the measures MR
U for all leaf-regions R and

λ≤-sets U
• Sum up these measures to get MU :=

∑
RM

R
U (the

sum goes over all leaf-regions R)
• For each λ-set T compute HYP(S \T) = vol(R∗root)−∑

U⊆T MU

The subtle point making this method superior to the näıve
approach is that most of the MR

U ’s are actually zero. For
seeing this, let us take a closer look on how one would com-
pute the values MR

U : Inside R∗ we can do a space sweep
along dimension d, just as in the algorithm of Bentley [2],
stopping at each of the d-th coordinates of the points in S
in decreasing order. At the stop for x ∈ S, we have to in-
sert the box x and compute a (d− 1)-dimensional measure,

namely the volume MR,x
U :

Definition 3. The volume MR,x
U denotes the volume of

the (d− 1)-dimensional space in R that is not dominated by
Sxπ \ Uπ, but is dominated by every Sxπ \ Wπ for W (U ,
where Sx = {y ∈ S | yd ≥ xd} denotes the set of already
inserted boxes.

107

We multiply this measure by the covered distance xd−xNd
in the d-th dimension, where xNd is the d-th coordinate of
the next stop. This is summed up over all stops to get the
measure MR

U .

This way, we reduced the computation of MR
U to MR,x

U ,
which is a measure inside the first d−1 dimensions of a trellis,
which have a fairly simple geometric structure, as depicted
in Figure 3. In the picture we can see for each part, to which
measure MR,x

U it corresponds. The set {A,D} for example

marks the space corresponding to MR,x
{A,D}. There we can

also verify equation (1) (reduced to d− 1 dimensions): The
hypervolume of the space dominated by all but the points
A and D equals the total volume of R minus the volumes
of the parts marked with {A,D}, {A}, {D} and ∅, i.e., the
subsets of {A,D}.

Moreover, observe that MR,x
U is non-zero only if U con-

tains the largest `i i-piles in R for some `i, but no other i-
pile, i = 1, . . . , d− 1. In the example we may choose ∅, {A},
{A,B} or {A,B,C} being the 1-piles contained in U to get a

non-zero MR,x
U , but not, e.g., only {B}. As we need to com-

pute MU only for λ≤-sets U , we additionally condition on
|U | =

∑d−1
i=1 `i ≤ λ. But then there are at most as many non-

zero MR,x
U ’s, as there are (d−1)-tuples (`1, . . . , `d−1) ∈ Nd−1

0

with
∑d−1
i=1 ≤ λ, which is a constant number for d and λ be-

ing constant. This is why there is only a constant number of
non-zero MR,x

U ’s for R and x fixed, which implies that there
is only a small number of non-zero MR

U ’s for R fixed. As we
will see in the next section in detail, we can even determine
those non-zero values quickly, even in the same asymptotic
runtime as we need for the standard algorithm of Overmars
and Yap. Computing the hypervolumes HYP(S \ T) for
all λ-sets T can then be accomplished by summing up all
MU with U ⊆ T , as pointed out above, from which we can
compute CONS(T) = HYP(S) − HYP(S \ T), as we get
HYP(S) = vol(R∗root) −M∅ for free, and thus quickly de-
termine the optimal λ-set.

Details of the algorithm

ComputeMeasures

One obvious arising problem concerns boxes that fully cover
a region of some inner node of the tree. In such a case Over-
mars and Yap collapse the interval in dimension d, where
the region is fully covered, into a single moment, memoriz-
ing the deleted volume, and recur. We may not do this, as
the fully covering box may be in the set T we disregard, so
that in HYP(S \ T) the region is not fully covered. This is
why we do not collapse any intervals, but have to pass the
fully covering boxes to the recursive calls, so that we can
deal with them in the leaf-nodes. Note that the runtime
analysis of Overmars and Yap’s algorithm does not rely at
any point on collapsing intervals, which is why we get the
same asymptotic runtime. It does, however, rely on the fact,
that inside a leaf-node we spend time O(|S′| logn) and in an
inner node O(|S′|), where S′ is the set of boxes in S that
partially cover the region at hand. Hence, we may not pass
all fully covering boxes to the recursive calls to be inside
this time bound. Luckily, any measure MR

U is zero, if the
fully covering boxes of R contained in U are not the ` largest
ones for some `, i.e., have largest d-th coordinate among all
fully covering boxes. This stems from the fact that for fully
covering boxes x ∈ U , y 6∈ U with d-th coordinates xd ≤ yd

ABC ABC

D

E

{A}

{A,D} {D}{A,B,D}

{A,B} Ø{A,B,C}

E

F

{A,D,E} {D,E}

{D,E,F}

Figure 3: The first two dimensions of a 3-dimensional trel-

lis consisting of the hypervolume-boxes defined by S =

{A,B,C,D,E, F}. Here, a trellis consists of boxes that cover

the region completely in each of the (d − 1) dimensions except

one. The dotted rectangle indicates the corresponding region R.

we have HYPR∗(S \ U) = HYPR∗(S \ (U \ {x})), so that
MR
U = 0. This is why we need to pass only the up to λ+ 1

largest covering boxes to the recursive calls. Since this is a
constant number, we do not increase the runtime in an inner
node or leaf-node asymptotically.

The streaming variant of [16] is essentially the same as the
algorithm ComputeMeasures (cf. Algorithm 1), only that
we added the set Cov containing the up to λ + 1 largest
covering boxes, i.e., out of the set C of boxes that fully
cover the region R at hand (including covering boxes of any
parent region) we save the min{λ+ 1, |C|} many ones with
greatest d-th coordinate. This set is updated determining
the set U ⊆ S of boxes fully covering the region R, where S
is the current set of boxes. Everything after determining the
set Cov′ is copied from Overmars and Yap: We proceed by
computing the measures in a trellis, if the remaining boxes
S′ form one, and by splitting the region R into two regions
R1, R2 and recursing, otherwise. For splitting we need the
sets S′1 and S′2, where S′1 is the set of all boxes in S′ that
have a 1- or 2- or . . . or (i− 1)-boundary in R and S′2 is the
set of boxes in S′ that do not have such a boundary in R.
For details of this splitting method confer [16]. Note that we
never split a region along dimension d as is implied by the use
of Overmars and Yaps splitting method and our definition
of trellis (which considers only the first d− 1 dimensions).

The procedure ComputeMeasuresTrellis will need the
boxes S′ to be sorted by d-th coordinate. This can be
achieved easily by sorting the boxes before the first call
of ComputeMeasures and maintaining this ordering dur-
ing all steps of ComputeMeasures, without increasing
the overall asymptotic runtime. Hence, we may assume in
the following, that S′ in the input of ComputeMeasures-
Trellis is sorted.

Computing the set Cov′ can be done in O(|S|), assuming
λ to be constant. Hence, as long as we provide a Compute-
MeasuresTrellis-function which runs in O(|S′| logn) for
the set of boxes S′, which is exactly the same runtime as
Overmars and Yap’s, we do not increase the overall runtime
of O(nd/2 logn) of their algorithm.

For determining the needed storage consider the following
trick of Overmars and Yap [16]: If we save the boxes in U we
can reconstruct the old S by joining U and S′. Hence, we
can send S′ down the recursion, not copying it; we just have
to reconstruct it at the end of the recursion call. This way,

108

Algorithm 1 ComputeMeasures(R,S, i,Cov, λ) com-
putes the measures MU of the λ≤-subsets U of the set of
boxes S in the region R∗ ⊆ Rd, where i is the current split-
ting dimension and Cov is a set containing the up to λ+ 1
largest covering boxes.

discard boxes in S not influencing R
determine the set U ⊆ S of boxes fully covering R
S′ := S \ U
determine the new set Cov′ ⊆ Cov ∪ U
if the boxes in S′ form a trellis in R then

ComputeMeasuresTrellis(R,S′,Cov′, λ)
else

determine the sets S′1 and S′2 (as defined on page)
if S′1 6= ∅ then

split R into R1, R2 along the median i-boundary in
S′1
ComputeMeasures(R1, S

′, i,Cov′, λ)
ComputeMeasures(R2, S

′, i,Cov′, λ)
else if S′2 contains more than

√
n i-boundaries then

split R into R1, R2 along the median i-boundary in
S′2
ComputeMeasures(R1, S

′, i,Cov′, λ)
ComputeMeasures(R2, S

′, i,Cov′, λ)
else

ComputeMeasures(R,S′, i+ 1,Cov′, λ)
od

od

no box is saved at two places at any time, so that the overall
space for the sets S and U is just O(n). Since the size of Cov
is λ and thus constant, we can save it normally, getting an
additional space needed of O(λ logn), as the recursion depth
equals the depth of the partition tree which is O(logn) by
Lemma 2, so that we overall need a storage of O(n). Note
that if we would not follow this trick we had a storage of
O(n logn), i.e., O(n) in each of the O(logn) levels of the
recursion.

ComputeMeasuresTrellis

To complete the description of ComputeMeasures we
have to provide the procedure ComputeMeasuresTrellis,
which will report the measures MR

U . These measure will
then be summed up to get MU from which we can directly
compute the hypervolume dominated by any S \ T , for T a
λ-subset of S, as sketched in the preceeding section. One
way to compute these measures is given in Algorithm 2.

There, at first, we remove all boxes from the set of boxes S
that do not influence the current region R at all. The vari-
able xLd is going to be the d-th coordinate of the last box in-
serted and initialized to BBd. We will maintain an ordered
list of the up to λ+1 largest i-piles of the (d−1)-region R for
each i, i.e., the i-piles with greatest i-th coordinate. Those
will be the boxes Aij , 1 ≤ i < d, 1 ≤ j ≤ λ + 1, which are
undefined initially and get updated every time we insert a
box, so that Ai1 is the greatest i-pile, Ai2 the second greatest
and so on. We use (A)i to denote the maximal i-th coor-
dinate of a point in a box A, i.e., Ai (viewed as a point).
For simplicity, we define (A)i to be 0 if A is undefined and
Ai0 = R to be the region itself for each i.

Going further, we add Cov to S, which we need, since
each fully covering box is a pile of R, and those boxes are

Algorithm 2 ComputeMeasuresTrellis(R,S,Cov, λ)
computes the measures MR

U for each λ≤-subset U of S,
where the boxes in S restricted to R∗ ⊆ Rd form a trellis
and Cov is a set containing the up to λ+ 1 largest covering
boxes.

discard boxes in S not influencing R
set Aij := undef (1 ≤ i ≤ d− 1, 1 ≤ j ≤ λ+ 1)

set Ai0 := R (1 ≤ i ≤ d− 1)
S := S ∪Cov ∪ {(0, . . . , 0)}
xLd := BBd

initialize MR
U ’s to 0

for all x ∈ S ordered by decreasing xd do
for all (k1, . . . , kd−1) ∈ Nd−1

0 with
∑d−1
i=1 ki ≤ λ and

Aiki defined for all i do

U := {Aij | 1 ≤ i < d and 1 ≤ j ≤ ki}
MR,x
U :=

∏d−1
i=1 ((Aiki)i − (Aiki+1)i)

MR
U := MR

U + (xLd − xd) ·MR,x
U

od
if x is a k-pile: update Akj (1 ≤ j ≤ λ+ 1)

xLd := xd
od
for all U with non-zero MR

U do
MU := MU +MR

U

od

not already in S. Since we need the set S sorted according
to d-th coordinate and S was sorted in the beginning, we
have to insert the points in Cov into S properly, which can
be done in O(|S|) as |Cov| = O(1). Additionally, we need
to add the dummy point (0, . . . , 0) to S, as we want to sweep
along the entire d-interval of R∗, i.e., we want to end at 0.

Now, we go through all the boxes in S ordered by d-th
coordinate in decreasing order. For each point x ∈ S,
we go through all the tuples (k1, . . . , kd−1) ∈ Nd−1

0 with∑d−1
i=1 ki ≤ λ, but only those, for which Aiki is not unde-

fined. Each such tuple corresponds to a set U = {Aij | 1 ≤
i < d and 1 ≤ j ≤ ki}, where all occurring Aij are defined
for the condition mentioned before. We then compute the
(d− 1)-dimensional measure not covered by Sx \ U , but by
Sx \ W for any W (U , where Sx = {y ∈ S | yd > xd}
denotes the set of the already inserted boxes. This measure
is MR,x

U =
∏d−1
i=1 ((Aiki)i− (Aiki+1)i). It has to be multiplied

by the length of the interval of the d-th coordinate we are
currently regarding, which is xLd −xd (as xLd was the last d-th
coordinate of an insertion). The resulting product has to be
added to MR

U . We implicitly initialize the measures MR
U to

0. Also, we do not want to explicitly save each value MR
U ,

as most of them are zero, but save only the non-zero ones.
Both points can be achieved by using a dynamic hash-table,
that contains U and MR

U iff MR
U is non-zero.

Afterwards, we determine the number k, 1 ≤ k < d, for
which x is a k-pile in R. If this number is not unique, which
can only happen if the box fully covers R, assign an arbitrary
1 ≤ k < d. Then we update the largest k-piles Akj , 1 ≤ j ≤
λ + 1, i.e., we insert x at the correct position, shifting all
smaller ones by one position.

In the end we report the computed measures MR
U , i.e., we

add them to MU . Here, again, we will implicitly initializing
each MU with 0 (before the start of ComputeMeasures)
and save U and MU in a dynamic hash-table for every non-
zero MU .

109

Considering the runtime we see that everything inside the
main loop can be done in constant time: Since d and λ
are considered to be constant, we have to update a con-
stant number of boxes Aij . Furthermore, there are at most

(λ+ 1)d−1 many tuples (k1, . . . , kd−1), since every entry lies
between 0 and λ. Since we can view this as assigning at most
λ many ones to d− 1 many buckets, the number of tuples is
also bounded from above by

∑λ
i=0(d− 1)i < (d− 1)λ+1. All

we do with such a tuple can be done in constant time for the
same reason, which establishes, that ComputeMeasures-
Trellis runs in O(|S|). Observe that this is even bet-
ter than Overmars and Yaps runtime of O(|S| logn), so
that we definitely get their overall asymptotic runtime of
O(nd/2 logn).

Correctness

We now show that the above methods are indeed correct.

Lemma 3. The measures MU computed by Compute-
Measures satisfy the following equation for any λ≤-set T
of S:

HYP(S \ T) = vol(BB)−
∑
U⊆T

MU

Proof. The described algorithm partitions the bounding box
BB into a number of leaf-regions that contain trellises.
Since we sum up over all of those regions, all we have to
show is that for each region R for which we call Compute-
MeasuresTrellis it holds that

HYPR∗(S \ T) = vol(R∗)−
∑
U⊆T

MR
U .

Now, inside R∗ we sweep along the d-th dimension con-
sidering intervals [xd, x

L
d], where the boxes influencing the

(d − 1)-dimensional measures stay the same, and sum up
weighted by xLd − xd. Since we start with xLd = BBd

and end at the dummy point (0, . . . , 0) with xd = 0 our
sweep indeed covers the interval [0,BBd]. Hence, the sum-
mation along dimension d is correct as long as it holds
that at the stop for x ∈ S, with Sx = {y ∈ S |
yd > xd and y partially covers R} the set of already inserted
boxes:

HYPR(Sxπ \ Tπ) = vol(R)−
∑
U⊆T

MR,x
U . (2)

Note that we are here dealing with (d− 1)-dimensional vol-
umes, which is why we used the projected set of boxes Sxπ
and Tπ.

Let T be of the form as in the pseudo code, i.e., T = {Aij |
1 ≤ i < d and 1 ≤ j ≤ ki} for some (k1, . . . , kd−1) ∈ Nd−1

0

with
∑d−1
i=1 ki ≤ λ and all Aiki defined. We compute (non-

zero) measures MR,x
U only for subsets U ⊆ T of the form

{Aij | 1 ≤ i < d and 1 ≤ j ≤ `i} for some (`1, . . . , `d−1) ∈

Nd−1
0 with `i ≤ ki for all i. Thus, we have:∑

U⊆T

MR,x
U

=
∑

(`1,...,`d−1)∈Nd−1
0

`i≤ki for all i

MR,x

{Aij |1≤i<d and 1≤j≤`i}

=
∑

(`1,...,`d−1)∈Nd−1
0

`i≤ki for all i

d−1∏
i=1

((Ai`i)i − (Ai`i+1)i)

=

d−1∏
i=1

ki∑
`i=0

((Ai`i)i − (Ai`i+1)i)

=

d−1∏
i=1

((Ai0)i − (Aiki+1)i)

=

d−1∏
i=1

(Ri − (Aiki+1)i).

There, we denote by Ri the maximal i-th coordinate of a
point in R. Observe that Sxπ \ Tπ is of a very simple form
(restricted to R): It forms a trellis where the maximal i-pile
is Aiki+1. This means that the space inside R not overlapped

by this trellis is a rectangle with side lengths Ri − (Aiki+1)i
for i = 1, . . . , d− 1, so that we established the equality∑

U⊆T

MR,x
U = vol(R)−HYPR(Sxπ \ Tπ).

Note that the above argument also makes sense if Aiki+1

is not defined, since then we have (Aiki+1)i = 0. This gives
us correctness for sets T of the aforementioned form.

If, on the other hand, T is not of the indicated form, then
it has some maximal subset T ′ ⊆ T , which is of this form,
i.e., T ′ = {Aij | 1 ≤ i < d and 1 ≤ j ≤ ki} for some

(k1, . . . , kd−1) ∈ Nd−1
0 . Since T ′ is maximal, either Aiki+1

is not contained in T or it is not defined. In both cases
every box in Tπ \ T ′π is included in some box in Sxπ \ T ′π, so
that those boxes do not influence the measure in R, i.e., we
have HYPR(Sxπ \Tπ) = HYPR(Sxπ \T ′π). Also, we will report
a measure for a set U ⊆ T only if U ⊆ T ′ by construction,
so that we have, using the former case:

HYPR(Sxπ \ Tπ) = HYPR(Sxπ \ T ′π)

= vol(R)−
∑
U⊆T ′

MR,x
U

= vol(R)−
∑
U⊆T

MR,x
U

This shows the desired equality. It also implies that any box
which is not among the largest λ in one dimension does not
contribute to our measures at all, which also makes clear why
we only need the λ+ 1 largest covering boxes in Cov.

Putting everything together

After we computed the measures MU , we can compute the
actual contribution of a λ-set T easily, using Lemma 3. We

110

have:

CONS(T) =HYP(S)−HYP(S \ T)

=(vol(BB)−M∅)− (vol(BB)−
∑
U⊆T

MU)

=
∑
∅6=U⊆T

MU

This confirms the following combined procedure:

Algorithm 3 ComputeOptimalSubset(S, λ) computes
the optimal λ-subset T of the set of boxes S in Rd.

initialize MU ’s to 0
ComputeMeasures(BB, S, 1, ∅, λ)
return argmin{

∑
∅6=U⊆T MU | T ⊆ S, |T | = λ}

Since T has size at most λ, it has at most 2λ subsets,
which is a constant. Hence, given the measures MU we can
compute the contribution of all λ-sets in O(nλ) (as their
number is bounded by this), so that we get an overall run-

time of O(nd/2 logn + nλ) for ComputeOptimalSubset.
Its correctness follows directly from Lemma 3.

As mentioned in the preceding section, we need a big hash-
table to store the non-zero measures MU . Since there are
O(nλ) λ≤-subsets of a size-n set, there are O(nλ) entries in
the hash. On the other hand, by Lemma 2 each d-box par-
tially covers O(n(d−2)/2) many leaf-regions. As Compute-
MeasuresTrellis runs in O(|S′|), where S′ is the set of
boxes in S that partially cover the region R at hand, we
report O(|S′|) non-zero measures MR

U in each region. This

way, we get an upper bound of O(nd/2) reported non-zero
measures. Since there are at most this many entries in
the hash-table, ComputeOptimalSubset needs a space of
O(min(nd/2, nλ)), using a dynamically growing hash-table.

4. DISCUSSION

We have presented an algorithm which calculates the opti-
mal λ-set Sλopt(M) of a population of size n = |M | in time

O(nd/2 logn+nλ) for d > 2. For d > 3 this improves all pre-

viously published algorithms by a factor of order nmin{λ,d/2}.

For small λ (λ 6 d/2) the algorithm gives an improvement
in the runtime of the calculation of the hypervolume by a
factor of order nλ. Hence even for the greedy calculation of
S1

opt = S1
greedy, we have a speed up by a factor of n.

For very large λ the algorithm might still be intractable.
It is open whether this can be avoided. Our algorithm allows
the calculation of Sλopt in the same time as S1

opt if λ 6 d/2.

We therefore suggest the following compromise between Sλopt

and Sλgreedy for large λ:

Sλcomp(M) := Sλopt(M) for all λ 6 d/2,

Sλ+d/2
comp (M) := Sλcomp(M) ∪ Sd/2opt (M \ Sλcomp(M))

for all λ > d/2.

As CON(Sλgreedy) > CON(Sλcomp) > CON(Sλopt) for all λ,
above improved greedy algorithm returns λ-sets with the
same or maybe smaller contributions than the classical
greedy algorithm within the same asymptotic runtime.

Acknowledgements

The authors would like to thank the anonymous reviewers
for several useful suggestions regarding the presentation of
this paper. This work was partially supported by a post-
doctoral fellowship from the German Academic Exchange
Service (DAAD).

References
[1] J. Bader and E. Zitzler. HypE: An Algorithm for

Fast Hypervolume-Based Many-Objective Optimiza-
tion. TIK Report 286, Institut für Technische Infor-
matik und Kommunikationsnetze, ETH Zürich, Nov.
2008.

[2] J. L. Bentley. Algorithms for Klee’s rectangle problems,
1977. Department of Computer Science, Carnegie Mel-
lon University, Unpublished notes.

[3] N. Beume, C. Fonseca, M. López-Ibáñez, L. Paquete,
and J. Vahrenhold. On the complexity of computing
the hypervolume indicator. Technical report CI-235/07,
Technical University of Dortmund, December 2007.

[4] N. Beume, B. Naujoks, and M. Emmerich. SMS-
EMOA: Multiobjective selection based on dominated
hypervolume. European Journal of Operational Re-
search, 181(3):1653–1669, 2007.

[5] N. Beume and G. Rudolph. Faster S-metric calcula-
tion by considering dominated hypervolume as Klee’s
measure problem. In Proc. Second International Con-
ference on Computational Intelligence (IASTED ’06),
pages 233–238, 2006.

[6] L. Bradstreet, L. Barone, and L. While. Maximising hy-
pervolume for selection in multi-objective evolutionary
algorithms. In Proc. IEEE Congress on Evolutionary
Computation (CEC ’06), pages 6208–6215, 2006.

[7] K. Bringmann and T. Friedrich. Approximating the vol-
ume of unions and intersections of high-dimensional ge-
ometric objects. In Proc. 19th International Symposium
on Algorithms and Computation (ISAAC ’08), volume
5369 of Lecture Notes in Computer Science, pages 436–
447. Springer, 2008.

[8] K. Bringmann and T. Friedrich. Approximating the
least hypervolume contributor: NP-hard in gen-
eral, but fast in practice. In Proc. 5th International
Conference on Evolutionary Multi-Criterion Optimiza-
tion (EMO ’09), 2009. To appear, available from
http://arxiv.org/abs/0812.2636.

[9] D. Brockhoff and E. Zitzler. Improving hypervolume-
based multiobjective evolutionary algorithms by using
objective reduction methods. In Proc. IEEE Congress
on Evolutionary Computation (CEC ’07), pages 2086–
2093, 2007.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable multi-objective optimization test problems. In
Proc. IEEE Congress on Evolutionary Computation
(CEC ’02), pages 825–830, 2002.

[11] M. Emmerich, N. Beume, and B. Naujoks. An EMO
algorithm using the hypervolume measure as selection
criterion. In Proc. Third International Conference on
Evolutionary Multi-Criterion Optimization (EMO ’05),
pages 62–76, 2005.

[12] C. Igel, N. Hansen, and S. Roth. Covariance ma-
trix adaptation for multi-objective optimization. Evol.
Comput., 15(1):1–28, 2007.

111

[13] J. Knowles, D. Corne, and M. Fleischer. Bounded
archiving using the Lebesgue measure. In Proc. IEEE
Congress on Evolutionary Computation (CEC ’03), vol-
ume 4, pages 2490–2497, Dec 2003.

[14] J. D. Knowles. Local-Search and Hybrid Evolutionary
Algorithms for Pareto Optimization. PhD thesis, De-
partment of Computer Science, University of Reading,
UK, 2002.

[15] B. Naujoks, N. Beume, and M. T. M. Emmerich.
Multi-objective optimisation using S-metric selection:
application to three-dimensional solution spaces. In
Proc. IEEE Congress on Evolutionary Computation
(CEC ’05), pages 1282–1289, 2005.

[16] M. H. Overmars and C.-K. Yap. New upper bounds in
Klee’s measure problem. SIAM J. Comput., 20(6):1034–
1045, 1991. Announced at 29th Annual Symposium on
Foundations of Computer Science (FOCS ’88).

[17] R. L. While, L. Bradstreet, L. Barone, and P. Hingston.
Heuristics for optimizing the calculation of hyper-
volume for multi-objective optimization problems. In
Proc. IEEE Congress on Evolutionary Computation
(CEC ’05), pages 2225–2232, 2005.

[18] R. L. While, P. Hingston, L. Barone, and S. Huband.
A faster algorithm for calculating hypervolume. IEEE
Trans. Evolutionary Computation, 10(1):29–38, 2006.

[19] X. Zhou, N. Mao, W. Li, and C. Sun. A fast algorithm
for computing the contribution of a point to the hy-
pervolume. In Proc. Third International Conference on
Natural Computation (ICNC ’07), volume 4, pages 415–
420, 2007.

[20] E. Zitzler. Hypervolume metric calculation,
2001. Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Switzerland,
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c.

[21] E. Zitzler, D. Brockhoff, and L. Thiele. The hy-
pervolume indicator revisited: On the design of
Pareto-compliant indicators via weighted integration.
In Proc. Fourth International Conference on Evolution-
ary Multi-Criterion Optimization (EMO ’07), volume
4403 of Lecture Notes in Computer Science, pages 862–
876. Springer, 2007.

[22] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Proc. 8th International Con-
ference Parallel Problem Solving from Nature (PPSN
VIII), volume 3242 of Lecture Notes in Computer Sci-
ence, pages 832–842. Springer, 2004.

[23] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
Pareto approach. IEEE Trans. Evolutionary Computa-
tion, 3(4):257–271, 1999. Announced at 5th Interna-
tional Conference Parallel Problem Solving from Nature
(PPSN V).

[24] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. da Fonseca. Performance assessment of multiob-
jective optimizers: an analysis and review. IEEE Trans.
Evolutionary Computation, 7(2):117–132, 2003.

112

