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1. Introduction

A recurring computational task in the profiling of relational databases is the
discovery of hidden dependencies between attributes. For instance, unique
column combinations (UCCs) are subsets of attributes such that the value
combinations appearing in them are duplicate-free. An inclusion-wise mini-
mal UCC reveals structural properties of the stored information and serves
as a small fingerprint of the data. Unique column combinations, however,
are equivalent to hitting sets in hypergraphs. While finding a single minimal
hitting set is trivial, it is usually not enough to decide the existence of a single
UCC. Instead, one aims to compile a comprehensive list of all dependencies.
The UCCs are then used for subsequent data cleaning and enable certain
query optimizations [1, 47]. One thus has to solve the transversal hypergraph
problem. This is the task of enumerating all minimal hitting sets of a given
hypergraph without repetitions.

Besides data profiling, the transversal hypergraph problem also emerges
in many other fields, like artificial intelligence [40], machine learning [26],
distributed systems [39], integer linear programming [12], and monotone
logic [31]. Despite the large interest, the exact complexity of the enumeration
problem is still open. A hypergraph can have exponentially many minimal
hitting sets, ruling out any polynomial algorithm. Instead, one could hope
for an output-polynomial method whose running time scales polynomially in
the input size and the total number of solutions. Unfortunately, we do not
know how to achieve this. The currently fastest algorithm was presented
by Fredman and Khachiyan [37] and runs in time NO(log N/ log log N), where N
denotes the combined input and output size. It is the major open question
in enumeration, whether the transversal hypergraph problem can be solved
in output-polynomial time [25, 32, 50, 56].

In the absence of a tractable algorithm for general inputs, special classes
of hypergraphs have received a lot of attention. For example, it is known
that the transversal hypergraph problem admits an output-polynomial algo-
rithm when restricted to hypergraphs with bounded edge size [11] or dual-
conformality [46], as well as acyclic hypergraphs [30, 31].

In this work, we are interested in the case where the maximum solution
size is small. Given a hypergraph, let k∗ be the maximum cardinality of its
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minimal hitting sets. This is known as the transversal rank. Indeed, it is
very common for hypergraphs arising in data profiling to have low transver-
sal rank, see [48, 53]. Eiter and Gottlob [30] gave an output-polynomial
algorithm for hypergraphs for which k∗ is a constant. We discuss their ap-
proach in detail in Section 3.1. Unfortunately, their algorithm is not usable
in data profiling applications as its space consumption scales with the output
size. Also, one would like to have a guarantee on the delay, the worst-case
time between two consecutive outputs, that is independent of the number of
solutions. Lastly, although the transversal rank can be expected to be small
usually no a priori bound on k∗ is known before the enumeration. In fact,
it is W[1]-hard to compute k∗ and NP-hard to approximate, see Section 3.1.
We are able to improve in all those aspects and obtain an algorithm that is
oblivious to k∗, has a space requirement independent of the output size, and,
in the case that k∗ is constant, has polynomial delay.

Central to our approach is a subroutine that decides for a set X of ver-
tices whether it is contained in any minimal hitting set. We examine the
parameterised complexity of this extension problem, when parameterised by
|X|. We identify it as one of the first natural problems to be complete for
the class W[3]. Prior to the first announcement of this result, there were only
two other problems known with this property. The first one was given by
Chen and Zhang [19] in the context of supply chain management and Bläsius,
Friedrich, and Schirneck [9] added the detection of inclusion dependencies in
relational data. Since then, Casel et al. [17] used the techniques developed in
Section 4 to show W[3]-hardness already for the special case of extension to
minimal dominating sets in bipartite graphs. Very recently, Hannula, Song,
and Link [41], building on [9], have proven that independence detection in
databases is complete for W[3] as well.

We also approach the extension problem with tools from fine-grained
complexity. Assuming the Strong Exponential Time Hypothesis (SETH), we
prove that our subroutine algorithm is almost optimal. Moreover, we argue
that closing the remaining gap between the upper and lower bound is likely
to be hard, using a nondetermistic extension of SETH recently conjectured
by Carmosino et al. [15]. Next, we give an overview of our results in detail.

1.1. Our Contribution
We solve the transversal hypergraph problem with simultaneously polyno-
mial delay and space on hypergraphs with bounded transversal rank. More

3



generally, we devise an algorithm that does not need to know k∗. Notwith-
standing, the analysis of the delay depends on the transversal rank.

Theorem 1. There exists an algorithm that on n-vertex, m-edge hypergraphs
enumerates the minimal hitting sets with delay O(mk∗+1 n2) in O(mn) space,
where k∗ is the maximum cardinality of any minimal hitting set.

At its core, the algorithm is a tree search in the space of all vertex subsets.
The tree is pruned by deciding for a given set X whether it can be extended
to a minimal hitting set. We analyse the parameterised complexity of this
decision with respect to the parameter |X|.

Theorem 2. The extension problem for minimal hitting sets is complete for
W[3] when parameterised by the cardinality |X| of the set to be extended.

It may seem counterintuitive to solve the enumeration problem by reduc-
ing it to a hard decision problem. The key property we use is that extension
is tractable, provided that X contains only a few vertices.

Theorem 3. There exists an algorithm that decides for an n-vertex, m-edge
hypergraph and a set X of vertices whether X is contained in any minimal
hitting set in time O(m|X|+1 n) and space O(mn).

It is natural to ask whether the exponential dependency on |X| in the
running time can be improved. We give several conditional lower bounds,
all of which indicate that Theorem 3 is close to optimal. They present a
trade-off between the strength of the conjecture one is willing to assume and
the strength of the resulting bound.
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Theorem 4. Let f be an arbitrary computable function. No algorithm can
decide for an n-vertex, m-edge hypergraph and a set X of vertices whether
X is contained in any minimal hitting set

(i) in time f(|X|) · poly(m, n), unless W[3] = FPT;

(ii) in time f(|X|) · (m + n)o(|X|), unless W[2] = FPT;

(iii) in time m|X|−ε · poly(n) for any constant |X| ≥ 2 and ε > 0, unless the
Strong Exponential Time Hypothesis fails.

The SETH-lower bound matches our algorithmic result up to a factor of m.
There is a complexity-theoretic obstacle for closing the remaining gap. We
argue that if one could show tight SETH-hardness of the extension prob-
lem with a time bound of m|X|+1−ε · poly(n) via a deterministic reduction,
this would refute the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) [15] and thereby resolve several open problems in circuit complex-
ity and satisfiability.

Finally, we evaluate an implementation of our algorithm by applying it
to the discovery problem of minimal UCCs. Our experiments show that our
method is much faster on hypergraphs stemming from real-world databases
than the running time bounds would suggest. In practice, a few simple
checks can avoid the worst-case behaviour on many instances, which boosts
the performance. We also confirm the low memory footprint of our approach.

1.2. Outline
Next, we fix notation and recall basic concepts from combinatorics and com-
plexity theory. In Section 3, we first review what is known about the transver-
sal rank and then present our enumeration algorithm. There, the extension
problem for minimal hitting sets is only used as a black box. It is discussed
in detail in Section 4. Section 5 combines the results of the previous two
sections and proves the bounds on the delay and space. In Section 6, we
report on the empirical performance of our method in the context of data
profiling. The work is concluded in Section 7.

2. Preliminaries

For a set S, let P(S) be the power set of S. We use N+ = {1, 2, . . . } for the
positive integers, and, for k ∈ N+, we set [k] = {1, 2, . . . , k}. Computational
objects are implicitly assumed to be encoded as bit strings from {0, 1}∗.
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2.1. Hypergraphs and Hitting Sets
A hypergraph is a non-empty, finite vertex set V ̸= ∅ together with a system
of subsets H⊆P(V ), the (hyper-)edges. A hypergraph is identified with its
edge set H if this does not create ambiguities. We do not exclude special
cases like the empty hypergraph (H = ∅), an empty edge (∅ ∈ H), or isolated
vertices (V ⊋ ⋃

E∈H E). The number of edges is n = |V |, the number of edges
m = |H|. The rank of a hypergraph H is the maximum cardinality of its
edges. A graph is a hypergraph whose edges all have size exactly 2.

A transversal or hitting set of a hypergraph (V,H) is a set H ⊆ V such
that H has a non-empty intersection with every edge E ∈ H. A transversal is
(inclusion-wise) minimal if it does not properly contain any other transversal.
We extensively use the following observation.

Proposition 5 (Folklore). Let H be a hypergraph and H a hitting set of H.
Then, H is minimal if and only if every x ∈ H has a private edge Ex ∈ H
such that Ex ∩H = {x}.

The minimal hitting sets of H form the transversal hypergraph Tr(H) on
the same vertex set V. We occasionally denote the number of its edges by
Nmin. We abbreviate the rank of the transversal hypergraph rank(Tr(H)) as
transversal rank, and, if H is clear from the context, we use k∗ to denote it.

A hypergraph is Sperner if none of its edges is properly contained in an-
other. The minimisation ofH is the subhypergraph of inclusion-wise minimal
edges, min(H) = {E ∈ H | ∀E ′ ∈ H : E ′ ⊆ E ⇒ E ′ = E}. Note that min(H)
and Tr(H) are always Sperner hypergraphs. Regarding transversals, it does
not make a difference whether the full hypergraph is considered or its min-
imisation as we have Tr(H) = Tr(min(H)). Moreover, the minimisation and
transversal hypergraph are mutually dual, meaning Tr(Tr(H)) = min(H).
For any two Sperner hypergraphs G and H, we have G = Tr(H) if and only
if H = Tr(G). The minimisation is computable in quadratic time. In this
work, we therefore assume all hypergraphs to be Sperner.

Any total ordering ≼ of the vertex set V induces a lexicographical order
on P(V ). Following the definition in [45], we say a subset S ⊆ V is lexico-
graphically smaller (or equal) than subset T , denoted S ≼lex T , if either they
are equal or the ≼-smallest element in which S and T differ is in S. We call
a hypergraph on a totally ordered vertex set an ordered hypergraph
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2.2. Parameterised Complexity and the Strong Exponential Time Hypothesis
The decision problem of a set Π ⊆ {0, 1}∗ is to answer for an instance
I ∈ {0, 1}∗ whether I ∈ Π. Such a problem is parameterised if I comes
augmented with a non-negative integer parameter k. We then have Π ⊆
{0, 1}∗×N+. A parameterised problem is fixed-parameter tractable (FPT), if
there exists a computable function f : N+ → N+ such that the input (I, k) can
be decided in time f(k) · poly(|I|). The class of all fixed-parameter tractable
problems is denoted by FPT. Slightly abusing notation, we say any algorithm
(not only for decision problems) that takes time f(k) · poly(|I|) runs in FPT-
time. We mostly employ more expressive quantizations of the input size,
which are still polynomially related to the encoding length |I|. For example,
if the instance I = (V,H) is a hypergraph, we use n = |V | and m = |H|.

Let Π and Π′ be parameterised problems. A parameterised reduction from
Π to Π′ is a function computable in FPT-time that maps an instance (I, k)
of Π to an equivalent instance (I ′, k′) of Π′ such that there is a computable
function g with k′ ≤ g(k). A parameterised reduction is called linear [18] if
g is a linear function, that is, if k′ = O(k). All parameterised reductions we
give in this work are linear.

Parameterised reductions give rise to a hierarchy of complexity classes,
the W-hierarchy. There are several equivalent ways to define it [36]; we
choose the one in terms of circuits. A (Boolean) circuit is a directed acyclic
graph whose vertex set consists of input nodes, NOT-, AND-, and OR-gates,
with the obvious semantics, and a single output node. AND- and OR-gates
have potentially unbounded fan-in. A (Boolean) formula is a circuit in which
every gate has fan-out 1. The depth of a circuit is the maximum length of a
path from an input to the output node. The weft is the maximum number of
large gates with fan-in larger than 2 on any path. The Weighted Circuit
Satisfiability problem is to decide for a given circuit C and a positive inte-
ger k whether C has a satisfying assignment of (Hamming) weight k, that is,
with exactly k input nodes set to true. The parameter is k. The class W[P]
is the collection of all parameterised problems that admit a parameterised
reduction to Weighted Circuit Satisfiability. Analogously, for or any
positive integer t, the Weighted Circuit Satisfiability restricted to cir-
cuits of constant depth and weft at most t is the defining complete problem
for the class W[t]. The classes FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[P]
form the W-hierarchy. All inclusions are conjectured to be strict, see [27, 52]

Another source of conditional lower bounds is the Strong Exponential
Time Hypothesis (SETH) [44]. It states that, for every ε > 0, there exists
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a positive integer k = k(ε) such that no algorithm can decide the satisfi-
ability of Boolean formulas in conjunctive normal form with k literals per
clause (k-CNF SAT) on n variables in time O(2(1−ε)n). A weaker assump-
tion is the Exponential Time Hypothesis (ETH) [43, 44] that 3-CNF SAT
cannot be solved in time 2o(n). ETH implies that the W[1]-complete Inde-
pendent Set problem on n-vertex, m-edge graphs cannot be solved in time
f(k) · (m + n)o(k), whence W[t] ̸= FPT for all t ≥ 1 [18].

2.3. Enumeration Complexity
It is enough for our purposes to define enumeration informally as the task of
computing and outputting all solutions to a computational problem without
repetition.1 We are only concerned with the transversal hypergraph prob-
lem, that is, given a hypergraph H, enumerating the edges of Tr(H). An
output-polynomial enumeration algorithm runs in time polynomial in both
the input and output size. That means the enumeration succeeds within
poly(n, m, Nmin) steps. A seemingly stronger requirement is an incremental
polynomial algorithm, generating the solutions in such a way that the i-th
delay, the time between the (i−1)-st and i-th output, is in poly(n, m, i). This
includes the preprocessing time until the first solution arrives (i = 1) and the
postprocessing time between the last solution and termination (i = Nmin+1).
It is known that the transversal hypergraph problem can be solved in output-
polynomial time if and only if it admits an incremental polynomial algo-
rithm [6]. This is not necessarily true for other enumeration problems. The
strongest form of output-efficiency is that of polynomial delay, where the de-
lay is universally bounded by a polynomial in the input size only. One can
also restrict the space consumption. Ideally, the algorithm only uses space
polynomial in the input. Even if Nmin is guaranteed to be polynomial in m
and n, the space should be independent of Nmin.

2.4. Relational Databases and Unique Column Combinations
To describe relational data, we fix a non-empty, finite (relational) schema R.
The elements of R are the attributes or columns and each attribute comes
implicitly associated with a set of admissible values. Rows over R are tuples
r whose entries are indexed by R such that, for each a ∈ R, the value r[a] is
admissible for attribute a. For a set X ⊆ R of columns, we let r[X] denote

1Enumeration should not be confused with merely counting the number of solutions.
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the subtuple of r consisting only of the entries indexed by X. A (relational)
database r over R is a finite set of rows.

In some database r over schema R, a set X ⊆ R is a unique column
combination (UCC) if for any two distinct rows r, s ∈ r, r ̸= s, we have
r[X] ̸= s[X]. A UCC is (inclusion-wise) minimal if it does not properly
contain any other UCC. There is a one-to-one correspondence between UCCs
and transversals. Let r, s ∈ r be distinct rows and {a ∈ R | r[a] ̸= s[a]} their
difference set. Then, the (minimal) UCCs are exactly the (minimal) hitting
sets of the hypergraph of difference sets for all pairs of rows in r.

3. Enumerating Minimal Hitting Sets

In this section, we outline our enumeration algorithm for minimal hitting sets.
Our main motivation comes from data profiling, so we design our method
with an eye on instances that have small solutions. Nevertheless, we aim for a
general-purpose algorithm and do not restrict the possible input hypergraphs.
Therefore, the algorithm does not make any assumptions on the inputs and
relies only on the given hypergraph itself. Its analysis, however, incorporates
the transversal rank. Before we present our algorithm, we discuss some
alternative approaches and asses how we can improve upon them.

3.1. On the Transversal Rank
We review here what is known algorithmically about the transversal rank
k∗. This also serves to highlight the subtle differences in measuring the com-
plexity of an enumeration algorithm. Eiter and Gottlob [30] showed that
the transversal hypergraph problem can be solved in incremental polyno-
mial time on instances for which k∗ is bounded. Their result hinges on the
following proposition.

Proposition 6 (Eiter and Gottlob [30]). Let H and G be two hypergraphs on
the same vertex set V and let k = rank(G). There exists an algorithm that de-
cides whether G = Tr(H) in time O(|H||G||V |+(|H|+|G|)|V |k+1 + |H|k+2|V |)
and space O((|H|+|G|)|V |). Moreover, if G ⊊ Tr(H), the algorithm finds a
minimal transversal T ∈ Tr(H)\G within the same bounds.

The enumeration starts with the empty hypergraph G = ∅ and repeatedly
checks whether G = Tr(H), that is, whether G already contains all solutions.
If not, a new solution T /∈ G is computed. Note that G ⊆ Tr(H) is an
invariant, whence k = rank(G) is always at most k∗ = rank(Tr(H)). However,
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this approach has two drawbacks. It is already unfortunate that the delay
depends on |G| and thus on |Tr(H)|, but it is indeed prohibitive in practice
that the space consumption scales with the number of solutions.

If one is working with a class of hypergraphs for which one suspects k∗

to be small, albeit no a priori bound is known, one could be tempted to
compute the transversal rank first and then brute-force all sets up to that
size. Computing k∗ is NP-hard [20, 21]. Bazgan et al. [3] further showed that
it is W[1]-hard, parameterised by k∗, and that k∗ cannot be approximated
within a factor of n1−ε for any constant ε > 0, unless P = NP.

The parameterised hardness stems from the potentially unbounded size
of the hyperedges. Fernau [35] showed that the transversal rank of a graph2

can be computed in FPT-time by presenting an algorithm running in time
O(2k∗) + poly(n), which was later improved to 1.5397k∗ · poly(n) [10]. For an
arbitrary constant c, Damaschke [24] used Proposition 6 to give an algorithm
that computes the transversal rank of a hypergraph whose edges have at most
c vertices in time ck∗· pc(m, n), where pc is a polynomial whose degree depends
on c. If c is seen as another parameter (namely, computing k∗ parameterized
by c+k∗), there exists an FPT-algorithm running in time 2ck∗· poly(m, n) [2].

Returning to hypergraphs with unbounded edge size, the parameterized
reduction in [3, Theorem 23] that shows the W[1]-hardness of computing the
transversal rank has a quadratic blowup in the parameter. The lower bound
on Independent Set by Chen et al. [18] (see Section 2.2) thus implies
that k∗ cannot be computed in time f(k∗)(m + n)o(

√
k∗) for any computable

function f , unless the Exponential Time Hypothesis fails. Very recently and
independently of each other, Araújo et al. [2] as well as Dublois, Lampis, and
Paschos [28] raised the bound to f(k∗)(m + n)o(k∗). This essentially matches
the currently fastest algorithm, which uses the following characterization
of the transversal rank by Berge and Duchet [5]. For a hypergraph (V,H),
subhypergraph H′ ⊆ H, and vertex v ∈ V , let degH′(v) = |{E ∈ H′ | v ∈ E}|
denote the degree of v in H′.

Proposition 7 (Berge and Duchet [4, 5]). Let (V,H) be a Sperner hypergraph
and k ≥ 2 an integer. The transversal rank of H is at most k if and only if,
for all subhypergraphs H′ ⊆ H with |H′| = k + 1 edges, there exists an edge
of H that is contained in the set {v ∈ V | degH′(v) > 1}.

2This is more commonly known as Maximum Minimal Vertex Cover [10, 35].
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Recall from Section 2.1 that the assumption of the input hypergraph
being Sperner does not loose generality. One can thus test the condition of
Proposition 7 for increasing k. The value that satisfies it for the first time
is k∗. The last iteration dominates the running time, which gives a bound
of O

((
m

k∗+1

)
(k∗ + m)n

)
= O(mk∗+2 n). The subsequent test of the sets with

up to k∗ vertices adds another O(mnk∗) term. The enumeration time is
polynomial for bounded k∗, but the algorithm does not admit any non-trivial
guarantees on the delay. Also, the space requirement again depends on the
total number of solutions since the algorithm has to avoid testing supersets
of minimal solutions.

In contrast, we give an algorithm with delay O(mk∗+1 n2), which is better
than the bound above for m > n. More importantly though, our algorithm
uses space that is only linear in the input size regardless of k∗.

3.2. Backtracking Enumeration with an Extension Oracle
It is a common pattern in the design of enumeration algorithms to base
them on a so-called extension oracle as introduced by Lawler [49]. The
oracle, tailored to the combinatorial problem at hand, is queried with a set
of elements of the underlying universe and decides whether there exists a
solution that contains these elements. Applications of this technique usually
involve settings in which the extension problem is solvable in polynomial
time, like for cycles and spanning trees [55], motif search in graphs [7], or
satisfying assignments for restricted fragments of propositional logic [22].
For us, the situation is different in that the extension problem for minimal
hitting sets is NP-complete [13]. We show later in Section 4 that the problem
is also hard in a parameterised sense. At first, it may seem paradoxical that
reducing enumeration to a hard decision problem can speed up the resulting
algorithm. We exploit the fact that the time needed to solve the extension
problem is small (enough) for sets that contain only a few vertices.

The original oracle technique [49] consists of fixing certain elements of
the partial solution and then extending it to the optimum, with respect to
a certain ranking function, among all objects that share the fixed elements.
During the computation the new candidates are stored in a priority queue.
The main bottleneck is the space demand of the queue. For every partial
solution, the number of newly introduced candidates can be equal to the size
of the universe, meaning exponential growth. Therefore, modifications are
necessary to implement the technique efficiently.
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In addition to the extension oracle, we use a decision tree to guide the
search for minimal solutions in the power lattice of all subsets of the universe.
This is known as backtracking enumeration [55] or flashlight technique [51].
It allows us to reduce the space requirement to only polynomial in the input.

In the following, we show how to combine both ideas. Let (V,H) be a
hypergraph. Suppose we are given an oracle that, queried with disjoint sets
X, Y ⊆ V, answers whether there exists a minimal solution T ∈ Tr(H) such
that X ⊆ T ⊆ V \Y , that is, whether X is extendable avoiding Y . We use
this to enumerate all such T . If X ∪ Y = V, this can only be T = X itself.
Otherwise, we recursively compute the solutions for the pairs (X ∪{v}, Y )
and (X, Y ∪{v}), where v is a vertex neither contained in X nor Y . In other
words, we (implicitly) build a binary tree whose nodes are labelled with
the pairs (X, Y ). The node (∅, ∅) is the root and the children of (X, Y ) are
(X ∪{v}, Y ) and (X, Y ∪{v}). Let ≼ be a total order on V. Always choosing
the v as the ≼-smallest element of V \(X ∪ Y ) gives a universal branching
order. This obviates the need of additional communication between the nodes
or any shared memory. It is another ingredient to reduce the space demand.
In particular, we do not need to record previously found solutions to guide the
search. Distinct branches of the tree are independent making the algorithm
trivially parallelisable. This is, however, not the focus of this work.

In the absence of any pruning, the recursion would produce the full binary
tree with leaves (X, V \X) for every possible set X ∈ P(V ). However, we
only need to enter the subtree if one of its leaves is labelled with a minimal
hitting set. For the subtree rooted in (X, Y ), this is the case iff X can be
extended to a minimal hitting set without the vertices in Y .

We formalise this approach in Algorithm 1. Assume for now that subrou-
tine extendable(X, Y ) solves the extension problem for the given pair of sets
and additionally reports if X itself is already a minimal hitting set. Namely,
it returns minimal if X ∈ Tr(H), true if there exists some T ∈ Tr(H) with
X ⊊ T ⊆ V \Y , and false otherwise. We defer the implementation details
of extendable to Section 5. Procedure enumerate handles the work inside
a node of the decision tree. Besides the depth-first, pre-order traversal of the
tree, it also exercises two short-cut evaluations. For this, the ternary variable
isExpendable holds the result of the first check. If the set X∪{v} is a minimal
solution, we output it and return. If it cannot be extended, we immediately
recurse on the right-child without calling the potentially expensive second
check extendable(X, Y ∪ {v}). The initial call is enumerate(∅, ∅, V ).
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Algorithm 1: Recursive algorithm for the Transversal Hypergraph
problem. The initial call is enumerate(∅, ∅, V ).

Data: Non-empty ordered hypergraph (V,≼,H).
Input: Partition (X, Y, R) of the vertex set V .
Output: The minimal hitting sets T ∈ Tr(H) with X ⊆ H ⊆ V \Y .

1 Procedure enumerate(X, Y, R):

2 if R = ∅ then return X;
3 v ← min≼ R;
4 isExtendable ← extendable(X∪{v}, Y );
5 if isExtendable == minimal then return X ∪ {v};
6 if isExtendable == true then enumerate(X ∪ {v}, Y, R\{v});
7 if (isExtendable == false or extendable(X, Y ∪ {v}) == true)

then enumerate(X, Y ∪ {v}, R\{v});

Lemma 8. Let (V,H,≼) be a non-empty ordered hypergraph. Suppose, for
disjoint sets X, Y ⊆ V , subroutine extendable(X, Y ) decides whether there
exists a T ∈ Tr(H) with X ⊆ T ⊆ V \Y and, if so, whether X = T . Then,
Algorithm 1 enumerates the edges of Tr(H) in ≼-lexicographical order.

Proof. The correctness is almost immediate from the discussion above. Only
the shortcut evaluations have not yet been argued. If the set X ∪ {v} is not
only extendable without Y, but even minimal itself, then adding any more
vertices from V \(X ∪ Y ∪ {v}) will make it unextendable. Adding these
vertices to Y instead does not change X ∪ {v} being a minimal solution. In
summary, we already know in advance the outcomes of all extension checks
in the whole subtree rooted in (X ∪ {v}, Y ). The set X ∪ {v} is the only
solution that remains in that tree and we can safely output it and backtrack.

Regarding the second shortcut in line 7, the recursion enters the node
(X, Y ) only if there exists a T ∈ Tr(H) with X ⊊ T ⊆ V \Y . If the first
check extendable(X ∪ {v}, Y ) returns false, no such T contains the ver-
tex v. Instead, all solutions occur in the subtree rooted at the right child
(X, Y ∪ {v}) and we do not need to perform the second evaluation. Note
that extendable(X, Y ∪ {v}) cannot return minimal due to X ̸= T .

In the extreme case of H having not a single hitting set (that is, ∅ ∈ H)
both checks in lines 6 and 7 fail already in the root node. The algorithm
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then returns immediately without an output. Here, we use the assumption
that H has at least one vertex and thus R = V ̸= ∅ holds in the root.

Finally, we prove that the algorithm outputs the minimal transversals
in lexicographical order. First, observe that the labelling of the nodes is
injective as it encodes the unique path from the root. To see this, let v1 ≼
v2 ≼ . . . ≼ vn be the total order. Any node with distance k to the root has
X∪Y = {v1, . . . , vk} and X contains exactly those branching nodes at which
the recursion entered the left child. Now let a = (Xa, Ya) and b = (Xb, Yb)
be two distinct leaves such that the pre-order traversal visits a before b. We
have Xa ̸= Xb from the injective labelling, whence the symmetric difference
Xa△Xb = (Xa\Xb) ∪ (Xb\Xa) is non-empty. Define v = min≼ Xa△Xb.
This is the branching vertex of the lowest common ancestor of a and b.
Algorithm 1 first tries to add v to the current partial solution in line 6, from
which v ∈ Xa and Xa ≼lex Xb follow.

Algorithm 1 bears some similarity to the backtracking method by Elbas-
sioni, Hagen, and Rauf [33, Figure 1]. The main difference is the search for
new solutions. In our algorithm, the nodes in the decision tree maintain the
partial solution X and additionally the set Y of vertices that have already
been excluded. The branching vertex v is chosen, somewhat arbitrarily, by
the order ≼. In contrast, the algorithm in [33] works only on the partial
solution X and explicitly computes a new vertex to extend it, which is com-
putationally expensive. Also, their check whether X is already minimal is
redundant. This information can be obtained as a by-product of a careful
implementation of extendable at no extra cost, see Lemma 18.

We employ the order on the vertex set to reduce the need for coordination
during the search. The induced lexicographic order on the outputs can also
be useful in the application domain. For example in the context of data profil-
ing, it ensures that “interesting” unique column combinations are discovered
first. Suppose the attributes of a database are ranked by importance, then
the lexicographic enumeration starts with those combinations that contain
many important attributes. However, the order also raises some complexity-
theoretic issues. Computing the lexicographically smallest minimal hitting
set is NP-hard [29, 45]. Therefore, it is unlikely that any implementation of
the extension subroutine can lead to Algorithm 1 having polynomial delay
on all ordered hypergraphs. Notwithstanding, we present an implementation
such that our algorithm achieves polynomial delay at least on instances with
bounded transversal rank. We also evaluate the impact of the order on the
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empirical run time on real-world databases in our experiments in Section 6.

4. Minimal Hitting Set Extension

We previously assumed an oracle deciding whether a set of vertices can be
extended to a minimal hitting sets. Here, we examine the computational
hardness of this decision. The insights gained here will later lead to an
algorithm for the subroutine with an almost optimal running time.

It is easy to see that, for a hypergraph (V,H) and disjoint sets X, Y ⊆ V ,
there exists a minimal transversal T ∈ Tr(H) such that X ⊆ T ⊆ V \Y if
and only if the truncated hypergraph H′ = {E\Y | E ∈ H} has a minimal
hitting set T with X ⊆ T . Indeed, the witnessing transversal T is the same
for both H and H′. We thus define the extension problem as follows.
Minimal Hitting Set Extension (MinHSExt)

Instance: A hypergraph (V,H) and a sets X ⊆ V.
Parameter: The cardinality |X|.

Decision: Is there a minimal hitting set T of H with X ⊆ T?

Boros, Gurvich, and Hammer showed that the unparameterised variant of
MinHSExt is NP-complete in general but tractable if |X| is bounded [13].
This and the fact that minimal hitting sets in many applications are small
warrants a parameterised investigation with respect to the cardinality |X|.
Observe that MinHSExt generalises the extension problem for minimal ver-
tex covers in graphs. Casel et al. [16] proved W[1]-completeness of the latter.

In [13], MinHSExt was reduced to a certain covering problem in hyper-
graphs. We extend this result by proving that the extension and covering
problems are in fact equivalent under parameterised reductions. We then use
this equivalence to show that Minimal Hitting Set Extension is one of
the first natural problems to be complete for the parameterised complex-
ity class W[3]. We further prove conditional lower bounds on the running
time of any algorithm for the extension problem, assuming that certain col-
lapses in the W-hierarchy do not occur or that the Strong Exponential Time
Hypothesis is true, respectively.

4.1. W[3]-Completeness
We present necessary and sufficient conditions for a set of vertices to be a
subset of some minimal hitting set. This naturally extends the characterisa-
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tion of minimal transversals in Proposition 5. The result appears implicitly
in [13], we give a self-contained proof below.

Proposition 9 (Boros, Gurvich, and Hammer [13]). Let (V,H) be a hyper-
graph and X ⊆ V a set of vertices. There is a T ∈ Tr(H) with X ⊆ T if and
only if there exists a family of edges {Ex}x∈X ⊆ H such that

(i) for every vertex x ∈ X, we have Ex ∩X = {x};
(ii) for every edge E ∈ H contained in ⋃

x∈X Ex, we have E ∩X ̸= ∅.

Proof. Let T be a minimal hitting set that contains X. Proposition 5 guar-
antees a private edge Ex ∈ H with respect to T for every x ∈ X. Let further
E ∈ H be such that E ⊆ ⋃x∈X Ex. As T is a hitting set, there exists a vertex
y ∈ E ∩ T . From (⋃x∈X Ex) ∩ T = X, we conclude that y must be in X.
Hence, the private edges also fulfil Condition (ii).

Conversely, suppose {Ex}x∈X is a suitable collection of hyperedges. Con-
dition (ii) implies that H = X ∪ (V \⋃x∈X Ex) is a (not necessarily minimal)
hitting set of H. Let T ⊆ H be any minimal hitting set, then T contains
every x ∈ X as otherwise Ex would not intersect T by Condition (i).

We call an edge E a candidate private edge for x ∈ X (with respect to
set X) if E ∩ X = {x} holds. The partial solution X has some extension
T ∈ Tr(H) iff there is a collection of candidate private edges {Ex}x∈X that
satisfy Condition (ii). Then, the Ex indeed serve as private edges with respect
to T in the sense of Proposition 5.

In light of this characterisation, we define an intermediate parameterised
problem, which we call Multicoloured Independent Family. It cap-
tures the following computational task: given k lists of sets together with an
additional collection of “forbidden” sets, one has to select one set from each
list such that they do not completely cover any forbidden set.
Multicoloured Independent Family (MultIndFam)

Instance: A (k+1)-tuple (S1, . . . ,Sk, T ) of hypergraphs
on the common vertex set U .

Parameter: The non-negative integer k.
Decision: Are there edges S1 ∈ S1, . . . , Sk ∈ Sk such that ⋃k

i=1 Si

does not contain an edge of T ?
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The Multicoloured Independent Family problem generalises Mul-
ticoloured Independent Set on graphs where the vertex set is parti-
tioned into k “colour classes” and the desired independent set is required
to contain one vertex of each colour [23, 34]. In the generalisation, we in-
stead select sets of vertices such that their union has to be independent.
Now the sets have “colours” and the Si represent the colour classes. Multi-
coloured Independent Set is the special case in which the hypergraphs
Si consist entirely of singletons and T of the edges of the graph. Evidently,
Multicoloured Independent Family is W[1]-hard.

We now prove the equivalence between MultIndFam and MinHSExt.
We report the features of the second reduction in full detail as we need them
later for the fine-grained lower bounds.

Lemma 10. Minimal Hitting Set Extension and Multicoloured
Independent Family are equivalent under linear parameterised reductions.
The reduction to the Minimal Hitting Set Extension problem takes time
O((∑k

i=1 |Si| + |T |) · |U |) and results in instances with n = |U | + k vertices,
m = ∑k

i=1 |Si|+ |T | edges, and parameter |X| = k.

Proof. Let (H, X) be the input to MinHSExt. The set X is extendable iff
there are edges {Ex}x∈X ∈ H with Ex ∩X = {x} and their union ⋃

x∈X Ex

does not contain any edge that is disjoint from X. This can be phrased as
an instance of MultIndFam by defining, for each x ∈ X, the hypergraph
Sx = {E ∈ H | E ∩X = {x}}. The last hypergraph T consists of the edges
that are disjoint from X. Edges that intersect X in more than one vertex
can be cast aside. This is indeed a linear parameterised reduction.

For the inverse direction, let (U,S1, . . . ,Sk, T ) be the instance of Multi-
coloured Independent Family. Let X = {x1, . . . , xk} be a set of k new
vertices not previously in U . We define the hypergraph H on the vertex set
V = U ∪X by adding all edges of T as well as E ∪{xi} for every i ∈ [k] and
E ∈ Si. Hypergraph H can be computed in time

O
 k∑

i=1

∑
E∈Si

|E|+
∑

E′∈T
|E ′|

 = O
((

k∑
i=1
|Si|+ |T |

)
· |U |

)
.

For any set S ⊆ V , the containment S ∈ Si is equivalent to S∩X = {xi}.
Moreover, the elements of T are exactly those edges of H that are disjoint
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from X. Therefore, there are S1 ∈ S1, . . . , Sk ∈ Sk such that E ⊈ ⋃k
i=1 Si

holds for all E ∈ T if and only if {Si}i∈[k] satisfies Conditions (i) and (ii) of
Proposition 9, that is, iff X is extendable to a minimal hitting set of H.

The rich structure of Multicoloured Independent Family is ap-
preciated when designing algorithms. For the discussion of its complexity,
however, it is convenient to also have the freedom to choose the sets from a
single list. We thus define the following variant without colours.
Independent Family (IndFam)

Instance: Two hypergraph S, T on the common vertex set U
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Are there k distinct edges S1, . . . , Sk ∈ S such that ⋃k

i=1 Si

does not contain an edge of T ?

The two variants are indeed equivalent.

Lemma 11. Multicoloured Independent Family and Independent
Family are equivalent under linear parameterised reductions.

Proof. To reduce MultIndFam to its uncoloured variant, it is enough to
enforce that selecting two sets of the same colour is never a correct solution.
They must always cover some forbidden set. Let (S1, . . . ,Sk, T ) be an in-
stance of MultIndFam. For every index i ∈ [k], and S ∈ Si, we introduce
a new element xS,i. The sets are augmented with their respective elements,
S ∪ {xS,i}, and the results are collected in the single hypergraph S. Adding
the pair {xS,i, xS′,i} to T for each i and S ̸= S ′ ∈ Si invalidates all unwanted
selections. It is easy to check that this destroys no valid solution.

For the other direction, we make k copies of S and ensure that no two
copies of the same set are selected together. In more detail, we take a new
element xS,i for each S ∈ S and i ∈ [k], define Si = {S ∪ {xS,i} | S ∈ S},
and add the sets {xS,i, xS,j}i ̸=j to T .

In the remainder of this section, we prove that Independent Family is
complete for the class W[3]. This transfers to Multicoloured Indepen-
dent Family and eventually to Minimal Hitting Set Extension via
the reductions in Lemmas 10 and 11.
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Figure 1: Illustration of Lemma 12. On the left side is an instance of Independent
Family, on the right is the resulting circuit of weft 3. All edges are directed downwards.
Selecting {a, c}, {c, e}, and {c, g} from S solves the instance for parameter k = 3, any
other combination of three sets covers a member of T .

Lemma 12. There is a linear parameterised reduction from Independent
Family to the Weighted Circuit Satisfiability problem on constant-
depth circuits of weft 3. In particular, Independent Family is in W[3].

Proof. Given an instance I = (U,S, T , k) of IndFam, we build a Boolean
circuit C of weft 3 that has a satisfying assignment of Hamming weight k iff
I is a yes-instance. Figure 1 shows an example instance and the resulting
circuit. The nodes of C are in one-to-one correspondence to objects in I,
slightly abusing notation we do not distinguish between nodes and their
object. The input nodes are the edges of S. Circuit C has a large OR-gate
for each vertex in u ∈ U . Node S ∈ S is wired to gate u whenever u ∈ S.
Next, we introduce a layer of large AND-gates, one for each forbidden set
E ∈ T . Again, u is connected to E iff u ∈ E. The output of all AND-gates
lead to a single large OR-gate, its negated output is the output of C.

Note that the circuit can be constructed from instance I in polynomial
time. It has depth 4 and weft 3 as every path from an input node to the
output passes through exactly one large gate in each if the 3 layers and the
(small) NOT-gate. We claim that C is satisfied by setting the input nodes
S1, . . . , Sk to true if and only if the union ⋃k

i=1 Si contains no edge of T .
Let S1 to Sk be a selection of k distinct edges of S. Assigning true to

the Si and false to all others satisfies exactly the OR-gates u ∈ ⋃k
i=1 Si.

Any AND-gate E of the second layer is satisfied iff all its feeding OR-gates
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are satisfied, that is, iff E ⊆ ⋃k
i=1 Si. The results for all forbidden edges

E ∈ T are collected by the large OR-gate in the third layer and subsequently
negated. Circuit C being satisfied is thus equivalent to no edge E being
contained in the union of S1, . . . , Sk.

To also show hardness for W[3], we instead reduce from a problem on
Boolean formulas, that is, circuits in which every gate has fan-out 1. A
formula is called antimonotone and 3-normalised if it is a conjunction of
subformulas in disjunctive normal form (DNF) with only negative literals.
An example of an antimonotone, 3-normalised formula is

((x1 ∧ x2 ∧ x4) ∨ (x3 ∧ x4)) ∧ ((x1 ∧ x3) ∨ (x2 ∧ x5) ∨ (x1 ∧ x4 ∧ x5)).

The example has satisfying assignments of Hamming weight 0, 1, and 2, but
none of larger weight. The Weighted Antimonotone 3-normalised
Satisfiability problem (WA3NS) is the restriction of Weighted Cir-
cuit Satisfiability to antimonotone, 3-normalised formulas. It is com-
plete for the third level of the W-hierarchy [27, 36].

The intuition behind the W[3]-hardness proof is as follows. The circuit
C constructed in Lemma 12 has a single NOT-gate as the output node. The
OR-gates of the first layer are the only ones with fan-out larger than 1,
but they are connected exclusively to gates of the second layer. Moving the
negation all the way up to the inputs using De Morgan’s laws, and duplicating
the first layer at most |T | times hence results in an antimonotone formula
that is indeed 3-normalised. We show that this is not a mere artefact of the
reduction, but due to a characteristic property of the problem itself. Namely,
every antimonotone, 3-normalised formula can be encoded in an instance of
the Independent Family problem.

Lemma 13. There is a linear parameterised reduction from Weighted An-
timonotone 3-normalised Satisfiability to Independent Family.
In particular, Independent Family is hard for W[3].

Proof. A Boolean formula φ on the variable set Varφ is antimonotone and
3-normalised if and only if it can be written as

φ =
∧

d∈D

∨
c∈Cd

∧
ℓ∈Ld,c

¬xd,c,ℓ,

for an index hierarchy D, {Cd}d∈D, {Ld,c}d∈D, c∈Cd
, and xd,c,ℓ ∈ Varφ. The
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x1 ∧ ∧
(( )

∨(x2 x5 x6 )∨(x1 x3 x4 x5 )x2 x3

)
∧
(
(x2 x6 x7 x8) ∨ (x2 x6 x9) ∨ (x1 x2 x4 x5)

)
∧
(
(x1 x5 x8 x9 ) ∨ (x1 x3 x9 ) ∨ (x1 x2 x9 )

)

L1,1

C1

D
Sx7 = {L2,1}
Sx8 = {L2,1, L3,1}
Sx9 = {L2,2, L3,1, L3,2, L3,3}

T1 = {L1,1, L1,2, L1,3}
T :

Sx4 = {L1,3, L2,3}
Sx5 = {L1,2, L1,3, L2,3, L3,1}
Sx6 = {L1,2, L2,1, L2,2}

S:
Sx1 = {L1,1, L1,3, L2,3, L3,1, L3,2, L3,3}
Sx2 = {L1,1, L1,2, L2,1, L2,2, L2,3, L3,3}
Sx3 = {L1,1, L1,3, L3,2}

T2 = {L2,1, L2,2, L2,3}
T3 = {L3,1, L3,2, L3,3}

∨

Figure 2: Illustration of Lemma 13. On the left side is an antimonotone, 3-normalised
formula. Negative literals ¬xi are abbreviated as xi and conjunctions inside a clause as
juxtaposition. On the right is the resulting instance of Independent Family. Positions
marked with grey boxes are indexed by the respective sets: D for the DNF subformulas,
C1 for the conjunctive clauses of the first subformula, and L1,1 for the first clause of the
first subformula. The formula admits a satisfying assignment of weight 4 by setting x4, x5,
x7, and x8 to true. Equivalently, the union of the sets Sx4 , Sx5 , Sx7 , and Sx8 does not
cover any forbidden set in T . No assignment of Hamming weight at least 5 is satisfying.

index d ranges over the constituent DNF subformulas, c over their conjunctive
clauses, and ℓ over the negative literals in those clauses. Of course, a variable
may appear multiple times in the formula, so different triples (d, c, ℓ) may
point to the same variable.

We construct an instance (U,S, T , k) of Multicoloured Indepen-
dent Family that is a yes-instance if and only if φ has a weight-k sat-
isfying assignment. This is illustrated in Figure 2. We take as vertex
set the conjunctive clauses U = {Ld,c | d∈D, c∈Cd} and add the edge
Sx = {Ld,c | ∃ℓ : xd,c,ℓ = x} to S for each variable x ∈ Varφ. Namely, Sx con-
tains all clauses in which x occurs. The DNF subformulas are represented in
the hypergraph T via the edges Ed = {Jd,c | c ∈ Cd} for all d ∈ D.

The key observation of this lemma is the following. Consider a truth
assignment represented by the set A ⊆ Varφ of the variables assigned true.
Since φ is antimonotone, clause Ld,c is satisfied if and only if none of its
variables xd,c,ℓ is in A. As a result, subformula d is true if and only if A is
not a hitting set for the clauses of d.

Suppose the assignment A = {x1, . . . , xk} is satisfying. Then, the union⋃k
i=1 Sxi

contains exactly the conjunctive clauses that are not satisfied. If this
union were to cover any forbidden edge in T , the corresponding subformula,
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and hence φ, would be unsatisfied, a contradiction. Therefore, (U,S, T , k)
is a yes-instance of Independent Family. Conversely, let Sx1 through Sxk

be a selection of edges from S such that their union covers no member of T .
In other words, each subformula has at least one clause that is disjoint from
{x1, . . . , xk}. Assigning true to (exactly) those variables k-satisfies φ.

4.2. Fine-Grained Lower Bounds
We now discuss consequences of our reductions beyond parameterised com-
plexity. Namely, they allow us to derive lower bounds on the running time
of any algorithm for Minimal Hitting Set Extension from certain hy-
potheses, which are, however, still unproven.

The common believe that the complexity classes P and NP are different
can be seen as a conditional (super-polynomial) lower bound on the time com-
plexity of NP-hard problems. Similar things can be said about the assump-
tion W[1] ̸= FPT. Recently, this perspective has been further developed in
the area of fine-grained complexity. It tries to determine the exact exponent
of the time needed to solve various problems in the polynomial, exponen-
tial, and parameterised domain. The proven conditional lower bounds often
match closely with the best known algorithmic results, but they come with
the caveat of relying on even more unproven hardness assumptions. Such
bounds need to strike a balance between the plausibility of the conjecture
and the strength of the result following from it.

We offer three lower bounds on the extension problem. They are pre-
sented in order of increasing strength and are respectively derived from ever
stronger conjectures about the W-hierarchy and Boolean satisfiability. The
first one immediately follows from Minimal Hitting Set Extension be-
ing W[3]-complete. If W[3] ̸= FPT, there is no FPT-algorithm for extension
running in time f(|X|) · O((m+n)c) on hypergraphs with n vertices and m
edges for any computable function f and constant c. Note that the param-
eterised reductions above also show that Multicoloured Independent
Family and Independent Family cannot be solved respectively in time
f(k) · poly(|S1|, . . . , |Sk|, |T |, |U |) and f(k) · poly(|S|, |T |, |U |).

We derive the second lower bound from the stronger assumption that
W[2] ̸= FPT. For this, we use the following proposition3 by Chen et al. [18].

3The proposition follows from a more general result [18, Theorem 4.2] on the weighted
satisfiability of what the authors call structured Πt-circuits. For t = 3, the structure
coincides with that of antimonotone, 3-normalised formulas.
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Proposition 14 (Chen et al. [18]). Let f be an arbitrary computable func-
tion. If there exists an algorithm solving the Weighted Antimonotone
3-normalised Satisfiability problem on formulas of size m with n vari-
ables in time f(k) no(k) poly(m), then W[2] = FPT.

Note that the reductions from WA3NS to IndFam, and further to MultI-
ndFam and MinHSExt in Lemmas 10, 11 and 13 are all polynomial-time
computable and linear the sense that they increase the parameter by at most
a constant factor. In fact, they even preserve the parameter exactly. Any
algorithm solving the Minimal Hitting Set Extension problem in time
f(|X|)(m+n)o(|X|) on n-vertex, m-edge hypergraphs would thus give a fast
algorithm for Weighted Antimonotone 3-normalised Satisfiability
and thus imply the collapse W[2] = FPT. Similar bounds also hold for the
intermediate problems.

The above bound states that the exponent of the worst-case running time
for MinHSExt necessarily has a linear dependence on the parameter |X|.
We show next that the leading coefficient of that dependency is likely to
be 1. Consider the so-called Orthogonal Vectors (OV) problem as an
illustration of this kind of result. We are given two sets, each with n binary
vectors in d dimensions, and we ought to decide whether there is one vector
from each set such that their inner product is 0. Straightforwardly testing
all pairs yields an O(n2 d)-time algorithm. Maybe surprisingly, Williams [57]
showed that this cannot be improved to n2−ε ·poly(d) for any constant ε > 0,
at least not if one believes that CNF SAT on formulas with n variables cannot
be solved in time O(2(1−ε/2)n). Such an improved algorithm would be a huge
breakthrough in satisfiability, its conjectured non-existence is the core of the
Strong Exponential Time Hypothesis.

We derive our hardness result from a generalisation of OV, known as k-
Orthogonal Vectors. Let k ≥ 2 be an integer, and let xj denote the
j-th component of a vector x.
k-Orthogonal Vectors (k-OV)

Instance: Sets A1, . . . , Ak ⊆ {0, 1}d with |A1| = · · · = |Ak| = n.
Decision: Are there vectors x(1) ∈ A1, x(2) ∈ A2, . . . , x(k) ∈ Ak

such that ∑d
j=1

∏k
i=1 x(i)

j = 0?

The addition and multiplication are those in N, not the field F2. We also
emphasise that this defines a family of problems, one for each k ≥ 2, as
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opposed to a single parameterised problem.
There are different conjectures on the hardness of OV and k-OV in the

literature, we follow the nomenclature introduced by Gao et al. [38].

Conjecture 15 (k-Orthogonal Vectors conjecture in moderate dimensions).
For any constants ε > 0 and k ≥ 2, the k-Orthogonal Vectors problem
cannot be solved in time nk−ε · poly(d).

It is well-known that a slight change of the reduction in [57] proves that
SETH implies Conjecture 15. Nevertheless, it is consistent with our current
knowledge that the k-OV conjecture holds while SETH is false. The assump-
tions W[3] ̸= FPT and W[2] ̸= FPT used above also follow from SETH but are
possibly much weaker, see the discussion in [18, 23, 43, 44]. Again, no inverse
connection nor any relation between the conjectures on the W-hierarchy and
on k-Orthogonal Vectors are known.

We aim to disprove the existence of an algorithm for Minimal Hit-
ting Set Extension running in time m|X|−ε · poly(n) for any constant
ε > 0 and constant parameter |X|. By Lemma 10, such an algorithm
implies Multicoloured Independent Family being solvable in time
(∑k

i=1 |Si| + |T |)k−ε · poly(|U |). We show that the latter assertion contra-
dicts the k-Orthogonal Vectors conjecture.

Lemma 16. If there exists an algorithm solving Multicoloured Inde-
pendent Family in time (∑k

i=1 |Si| + |T |)k−ε · poly(|U |) for any constants
ε > 0 and k ≥ 2, then the k-OV conjecture fails.

Proof. Naturally, we reduce from k-OV. The construction can be seen in
Figure 3. Let A1, . . . , Ak ⊆ {0, 1}d be sets with n binary vectors each. The
constructed instance of MultIndFam has U = [k]× [d] as its vertex set. Let
1(x) = {j ∈ [d] | xj = 1} be the set with characteristic vector x. For each
i ∈ [k], we let the hypergraph Si represent the set Ai by adding the edge
{i} × 1(x) = {(i, j) | j ∈ 1(x)} for each x ∈ Ai. Hypergraph T contains
the edge Fj = [k] × {j} for every j ∈ [d]. Intuitively, Fj being completely
covered by the union of hyperedges means that the the corresponding vectors
all share a 1 in the j-th component.

Let x(1) ∈ A1, . . . , x(k) ∈ Ak be a selection of vectors. For any i ∈ [k]
and j ∈ [d], we have x(i)

j = 0 if and only if (i, j) is not contained in the edge
{i} × 1(x(i)) ∈ Si. Moreover, no edge of any other Sℓ, ℓ ̸= i, can contain
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A1 = {111110,

A1 = {011011,

A2 = {010111,

A2 = {011101,

A3 = {011011,

A3 = {011100,

S1 = {{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)},

S1 = {{(1, 2), (1, 3), (1, 5), (1, 6)},

S2 = {{(2, 2), (2, 4), (2, 5), (2, 6)},

S1 = {{(2, 2), (2, 3), (2, 4), (2, 6)},

S3 = {{(3, 2), (3, 3), (3, 5), (3, 6)},

S3 = {{(3, 2), (3, 3), (3, 4)},

T = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 2), (3, 2)},
T = {{(1, 3), (2, 3), (3, 3)}, {(1, 4), (2, 4), (3, 4)},
T = {{(1, 5), (2, 5), (3, 5)}, {(1, 6), (2, 6), (3, 6)}}

A1 = {001111,

A1 = {010101}

S1 = {{(1, 3), (1, 4), (1, 5), (1, 6)},

S1 = {{(1, 2), (1, 4), (1, 6)}}

A2 = {101110,

A2 = {111011}

S2 = {{(2, 1), (2, 3), (2, 4), (2, 5)},

S1 = {{(2, 1), (2, 2), (2, 3), (2, 5), (2, 6)}}

A3 = {110110,

A3 = {101111}

S3 = {{(3, 1), (3, 2), (3, 4), (3, 5)},

S3 = {{(3, 1), (3, 3), (3, 4), (3, 5), (3, 6)}}

Figure 3: Illustration of Lemma 16 for k = 3. On the left side is an 3-Orthogonal
Vectors instance with n = 4 vectors in d = 6 dimensions. On the right is the resulting
instance of Multicoloured Independent Family. The three vectors 010101 ∈ A1,
101110 ∈ A2, and 011011 ∈ A3 together are orthogonal, the union of the corresponding
edges from S1, S2, and S3 does not contain any edge of T .

(i, j). Therefore, we have Fj ⊈
⋃k

i=1({i} × 1(x(i))) iff ∏k
i=1 x(i)

j = 0. Finally,
this is the case for all Fj ∈ T iff the vectors x(1), . . . , x(k) are orthogonal.

Recall that k ≥ 2 is a constant. There are ∑k
i=1 |Si| + |T | = kn + d

edges on |U | = kd vertices and the output instance can be computed in
time O(knd + kd) = O(nd). Therefore, the assumed algorithm for Multi-
coloured Independent Family running in time (∑k

i=1 |Si| + |T |)k−ε ·
poly(|U |) would solve the k-Orthogonal Vectors instance in time

O((n + d)k−ε) · poly(d) = O(nk−ε + dk−ε) · poly(d) = nk−ε · poly(d).

4.3. The Nondeterministic Strong Exponential Time Hypothesis
Any algorithm solving the Minimal Hitting Set Extension problem in
time m|X|−ε ·poly(n) for arbitrary constants |X| and ε > 0 violates SETH. In
Section 5, we present an O(m|X|+1 n)-time solution. This raises the question
what is the “true” exponent of m. Although we believe that our algorithm
is optimal with respect to m, at least up to subpolynomial factors, we sketch
an argument why it might be hard to raise the lower bound of Lemma 16 to,
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say, m|X|+1−o(1) · poly(n) under SETH.
Carmosino et al. [15] identified a fundamental obstacle for proving SETH-

hardness. A co-nondeterministic algorithm for some decision problem is
one whose computation path may have nondeterministic transitions. On
a yes-instance, every path is required to produce the answer true, on a no-
instance, there must be at least one path resulting in false. The only known
co-nondeterministic algorithm for CNF SAT that improves over brute force is
randomized [58]. The Nondeterministic Strong Exponential Time Hypothesis
(NSETH) conjectures that this behaviour is inherent to the problem in that
no non-randomized co-nondeterministic algorithm can break the 2n-barrier
on formulas with n-variables.

Conjecture 17 (Nondeterministic Strong Exponential Time Hypothesis [15]).
For every constant ε > 0, there exists a positive integer k such that no co-
nondeterministic algorithm without access to randomness can decide k-CNF
SAT on n-variable formulas in time O(2(1−ε)n).

NSETH can be seen as a common generalisation of SETH and NP ̸= coNP.
The value of the conjecture lies not so much in its plausibility–it is false for
randomized algorithms–but the fact that both proving and refuting NSETH
has interesting consequences. Finding a fast co-nondeterministic algorithm
for satisfiability would immediately yield new circuit lower bounds, see [15].
Proving NSETH would, among other things, resolve the P vs. NP problem.

The conjecture also rules out the existence of certain fine-grained reduc-
tions. Consider a decision problem Π that admits an algorithm A running
in time T (m, n) and also a non-randomized co-nondeterministic algorithm B
running in time T (m, n)1−ε for some constant ε > 0. If NSETH is true, then
no deterministic reduction from CNF SAT to Π can prove that algorithm A is
optimal under SETH since the very same reduction would give an improved
co-nondeterministic algorithm for CNF SAT using algorithm B.

For the further discussion regarding the hardness of Minimal Hitting
Set Extension, we use the language of first-order model checking. For
an introduction to first-order logic in parameterised complexity, see the text-
book Flum and Grohe [36]. The equivalent Multicoloured Independent
Family problem can be seen as deciding whether the input (U,S1, . . . ,Sk, T )
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is a model4 for the formula

φ = ∃x1 ∈ S1 . . . ∃xk ∈ Sk ∀y ∈ T ∃z ∈ U : z ∈ y ∧
k∧

i=1
z /∈ xi.

MultIndFam is a graph problem in the sense that the maximum arity of any
relation in (U,S1, . . . ,Sk, T ) is 2. Formula φ has k existential quantifiers,
followed by a universal one, and then another existential quantifier. We
abbreviate this to ∃k∀∃. Since MultIndFam is W[3]-complete, the quantifier
structure is a characteristic property of the problem, see [36].

Let k be a positive integer. For a graph problem, let ℓ denote the total
number of “edges”, meaning the tuples in the binary relations. Note that
for MultIndFam ℓ can be as large as (∑k

i=1 |Si| + |T |) · |U |. Along the
lines sketched above, Carmosino et al. [15, Theorem 4] showed that under
NSETH the only graph problems with k + 2 quantifiers that can be proven
to be SETH-hard with a time bound ℓk+1−o(1) via deterministic reductions
are those with quantifier structure ∃k+1∀ or ∀k+1∃.

Using SETH to disprove the existence of an algorithm for Multicoloured
Independent Family running in time O(ℓk+1−ε), that is,

O
(( k∑

i=1
|Si|+ |T |

)
|U |

)k+1−ε
 =

(
k∑

i=1
|Si|+ |T |

)k+1−ε

· poly(|U |),

for any ε > 0, would therefore need to introduce randomness in a non-trivial
way or provide a breakthrough co-nondeterministic algorithm for CNF SAT.

5. An Algorithm for the Extension Problem

To finish the description of our hitting set enumeration algorithm, we need to
implement the subroutine for the extension problem. We not only assumed
that we can decide for disjoint sets X and Y whether X can be extended to
a minimal hitting set avoiding Y, we additionally claimed that it is possible
to find out whether X is itself a solution at no additional cost.

4Strictly speaking, we express the instance (U,S1, . . . ,Sk, T ) as a relational structure
over the universe U ∪ S1 ∪ · · · ∪ Sk ∪ T with unary relations S1, . . . , Sk, T , where Si x is
interpreted as x being an edge of Si, and one binary relation ∈ ⊆ U × (S1 ∪ · · · ∪ Sk ∪ T ).
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Algorithm 2: Algorithm for Minimal Hitting Set Extension.
Input: Hypergraph (V,H), H ̸= ∅, and

disjoint sets X = {x1, . . . , x|X|}, Y ⊆ V .
Output: minimal if X ∈ Tr(H), true if there is a T ∈ Tr(H)

with X ⊊ T ⊆ V \Y, and false otherwise.

1 if X = ∅ then
2 if V \Y is a hitting set then return true;
3 else return false;
4 initialise set system T = ∅;
5 foreach x ∈ X do initialise set system Sx = ∅;
6 foreach E ∈ H do
7 if E ∩X = {x} then add E\Y to Sx;
8 if E ∩X = ∅ then add E\Y to T ;
9 if ∃x ∈ X : Sx = ∅ then return false;

10 if T = ∅ then return minimal;
11 foreach (Ex1 , . . . , Ex|X|) ∈ Sx1 × · · · × Sx|X| do
12 W ← ⋃|X|

i=1 Exi
;

13 if ∀T ∈ T : T ⊈ W then return true;
14 return false;

Despite the hardness results, the investigation in Section 4 also revealed
some structure of the Minimal Hitting Set Extension problem that
can be exploited algorithmically. Justified by Lemma 10, we approach it via
Multicoloured Independent Family. Let H be the input hypergraph.
If H = ∅ does not contain a single edge, X is a minimal transversal if and
only if X = ∅ is empty as well. In the remainder we assume that H is non-
empty and solve the extension problem with Algorithm 2. To handle the set
Y of excluded vertices, the algorithm computes the truncated hypergraph
{E\Y }E∈H and then reduces it to an instance of MultIndFam. In fact,
both steps can be computed in one pass (lines 4–8). Lemma 16 suggests
that we cannot improve much over brute force when solving the resulting
instance, at least not in the worst case. There are, however, several sanity
checks possible that may avoid unnecessary computations in practice. The
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first check is the special case of an empty set X = ∅. It is extendable without
using Y if and only if V \Y is a hitting set, that is, iff Y does not contain an
edge. The other two checks (in lines 9 & 10) assess whether the instance at
hand can be decided immediately. If the checks are inconclusive, the instance
is indeed solved by brute force (lines 11–14). Note that the existence of a
minimal extension is decided without explicitly computing one. As shown in
Section 3, this is enough for the enumeration.

Recall that n = |V | denotes the number of vertices and m = |H| the
number of edges of the hypergraph. We now show that the running time of
Algorithm 2 matches the OV-lower bound of Lemma 16 up to an O(m)-factor.

Lemma 18. Let (V,H) be a non-empty hypergraph and X, Y ⊆ V disjoint
sets of vertices. Algorithm 2 returns minimal if X ∈ Tr(H) is a minimal
hitting set, true if there is a T ∈ Tr(H) with X ⊊ T ⊆ V \Y, and false
otherwise. The algorithms runs in O(( m

|X|)
|X| ·mn) time and O(mn) space.

Proof. The first part up to line 10 of the algorithm computes the reduction
from MinHSExt to MultIndFam (Lemma 10) for the truncated hyper-
graph (V \Y, {E\Y }E∈H). The sanity checks in lines 1, 9, and10 filter out
trivial instances. The foreach-loop starting in line 11 is then brute-forcing the
result of the reduction, checking all tuples in the Cartesian product ∏x∈X Sx.

Since H is non-empty, the empty set X = ∅ cannot be a hitting set of H.
For some X ̸= ∅ to be a hitting set, the corresponding hypergraph T must
be empty, as verified in line 10. Observe that this reduces Proposition 9 to
Proposition 5. Therefore, such an X is minimal iff every x ∈ X has a private
edge, which is exactly what is tested in line 9. In other words, Algorithm 2
correctly identifies the minimal transversals X and reports this by returning
the value Minimal from line 10.

Regarding the time complexity, we assume that all set operations (mem-
bership, product, union, intersection, and difference) are implemented such
that they take time proportional to the total number of elements contained
in the input and output of the operation. Checking whether V \Y is a hit-
ting set and computing the systems Sx1 , . . . , Sx|X| , and T can thus be done
in time O(mn). The running time is dominated by the brute-force phase.
The cardinality of the Cartesian product is maximum if all systems have
the same number of sets and no edge is cast aside. There are thus at most
(m/|X|)|X| many tuples. For each of them, the algorithm computes the union
W in O(|X|n) time and checks all forbidden sets in T in O(mn). The fact
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that every element of X has a candidate private edge implies |X| ≤ m and
O(|X|n + mn) = O(mn).

Regarding the space requirement, note that Sx and T are all disjoint
subhypergraphs of {E\Y }E∈H, using at most as much space as (V,H).

Finally, we use Lemma 18 to prove a guarantee on the maximum delay
between consecutive outputs of Algorithm 1. The bound is stated in terms
of the transversal rank k∗ = rank(Tr(H)). Recall that k∗ is not known to
the algorithm, the input consists only of the hypergraph itself. For bounded
transversal rank, we achieve polynomial delay. In particular, Algorithm 1
then solves the transversal hypergraph problem in output-polynomial time.

Lemma 19. Consider Algorithm 1 with Algorithm 2 implementing the sub-
routine extendable. On input (V,≼,H), it enumerates the edges of Tr(H)
in ≼-lexicographical order with delay O(mk∗+1 n2), where k∗ = rank(Tr(H)).
The algorithm uses O(mn) space.

Proof. The correctness was treated in Lemmas 8 and 18. We have also shown
there that the label of the current node contains all relevant information to
govern the tree search. In particular, it encodes the path to the node in the
(only implicitly constructed) recursion tree for backtracking. The total space
usage is thus dominated by the O(mn) of Algorithm 2.

We are left to bound the delay. The height of the tree is |V | = n. After ex-
iting a leaf, the pre-order traversal expands at most 2n− 1 inner nodes before
arriving at the next leaf. In the worst case, method extendable is invoked
in each of them, even with the shortcut evaluations. The O(( m

|X|)
|X| mn) =

O(m|X|+1 n) subroutine dominates the time spent in each node.
We prove that during the enumeration any set X appearing as the first

argument of extendable is of cardinality at most |X| ≤ k∗. To reach a con-
tradiction, assume a node (X, Y, R = V \(X∪Y )) with |X|> k∗ is expanded
by Algorithm 1. This cannot be the root as X is non-empty. Thus, prior to
entering (X, Y ; R), either extendable(X,Y ) has been called or the short-
cut evaluation inferred the outcome true from the previous calls. Set X
is neither a minimal solution nor can it be extended to one as its cardi-
nality is larger than the transversal rank. The check returned false and
(X, Y, R) is never entered, a contradiction. Therefore, the delay is bounded
by (2n− 1) ·O(mk∗+1 n) = O(mk∗+1 n2).
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6. Enumerating Unique Column Combinations

We apply our enumeration algorithm to hypergraphs arising in data profiling
as a proof of concept. Specifically, we want to solve what is known as the the
discovery problem of minimal unique column combinations. In data profiling
this term is more common than enumeration. Recall that a UCC for a
database r over schema R is a set X ⊆ R of columns such that the value
combinations appearing as subtuples r[X], r ∈ r, are duplicate-free.

Eiter and Gottlob [30] showed that the minimal UCCs can be discovered
in output-polynomial time if and only if the transversal hypergraph problem
has an output-polynomial solution. Their proof used a Turing-style reduction
that inherently requires exponential space. Additionally, there is a folklore
reduction from the discovery of UCCs to the enumeration of the hitting sets
of difference sets, which we sketched in Section 2.4. Intuitively, for any two
distinct rows r, s∈ r, a UCC must contain at least one attribute in which
r and s disagree; otherwise, the rows are indistinguishable. That reduction
is parsimonious5 in that it establishes a one-to-one correspondence between
the enumeration problems while using only polynomial time and space. It
also preserves set inclusions. For more details on parsimonious reductions
between enumeration problems, see the work of Capelli and Strozecki [14].
Bläsius, Friedrich, and Schirneck [9] improved upon the Turing-equivalence
in [30] by giving a parsimonious, inclusion-preserving reduction also in the
opposite direction, that is, from hitting sets to UCCs. Discovering minimal
UCCs is thus exactly as hard as the general transversal hypergraph problem.

This implies a two-phased approach for the discovery of UCCs. First,
generate the hypergraph of minimal difference sets. Secondly, list its min-
imal transversals. The first phase takes time polynomial in the size of the
database. The second phase, which has exponential complexity in the worst
case, is the focus of this paper. In the following, we thus assume that the
Sperner hypergraph of minimal difference sets is given as the input.

6.1. Data and Experimental Setup
We evaluate our enumeration algorithm on a total of 12 databases. Ten
of them are publicly available. These are the abalone, echocardiogram,
hepatitis, and horse datasets from the University of California Irvine

5The concept of parsimonious reductions between enumeration problems is inspired by
but should not be confused with the homonymous reductions for counting problems [14].
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(UCI) Machine Learning Repository;6 uniprot from the Universal Protein
Resource;7 civil_service,8 ncvoter_allc9 and flight_1k10 provided by
the respective authorities of the City of New York, the state of North Car-
olina, and the federal government of the United States; call_a_bike of the
German railway company Deutsche Bahn,11 as well as amalgam1 from the
Database Lab of the University of Toronto.12 They are complemented by
two randomly generated datasets fd_reduced_15 and fd_reduced_30 using
the dbtesma data generator.13 Databases with more than 100k rows are cut
by choosing 100k rows uniformly at random.

The algorithms are implemented in C++ and run on a Ubuntu 16.04
machine with two Intel® Xeon® E5-2690 v3 2.60 GHz CPUs and 256 GB RAM
We made the code and data available.14 In some experiments, we collect
the run times of intermediate steps, for example the calls to the subroutine
(Algorithm 2). To avoid interference with the overall run time measurements,
we use separate runs for these. Also, we average over multiple runs to reduce
the noise of the measurements. See the corresponding sections for details.

Table 1 gives an overview of the data. It lists the number of columns
and rows in the database, the number of vertices and edges of the resulting
hypergraph, the transversal rank/maximum cardinality of a minimal UCC,
as well as the number of solutions. The table is sorted by the number of
minimal hitting sets/UCCs. All plots below use this order.

After computing the minimal difference sets, we removed all vertices that
do not appear in any edge as they are irrelevant for the enumeration. There-
fore, the number n of vertices can be smaller than the number of columns in
the database. The particularly stark difference for flight_1k stems from a
large portions of the columns being empty. The total number of difference
sets of a database with |r| rows is

(
|r|
2

)
in the worst case. However, Table 1

shows that the number m of minimal difference sets tends to be much smaller

6archive.ics.uci.edu/ml
7uniprot.org
8opendata.cityofnewyork.us
9ncsbe.gov

10transtats.bts.gov
11data.deutschebahn.com
12dblab.cs.toronto.edu/∼miller/amalgam
13sourceforge.net/projects/dbtesma
14hpi.de/friedrich/research/enumdat
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Dataset Columns Rows n m k∗ UCCs
call_a_bike 17 100 000 13 6 4 23
abalone 9 4177 9 30 6 29
echocardiogram 13 132 12 30 5 72
civil_service 20 100 000 14 19 7 81
horse 29 300 25 39 11 253
uniprot 40 19 999 37 28 10 310
hepatitis 20 155 20 54 9 348
fd_reduced_15 15 100 000 15 75 3 416
amalgam1 87 50 87 70 4 2737
fd_reduced_30 30 100 000 30 224 3 3436
flight_1k 109 1000 53 161 8 26 652
ncvoter_allc 94 100 000 82 448 15 200 907

Table 1: The databases used in the evaluation, ordered by the number of minimal UCCs.
Columns and Rows denote the respective dimension of the database, n and m refer to the
resulting hypergraph of minimal difference sets, k∗ is the transversal rank, that is, the size
of the largest minimal UCC.

than r, let alone quadratic. Put it the other way around, only very few pairs
of rows actually contribute to the UCCs and the hypergraph perspective thus
provides a very compact representation of the discovery problem. As was ob-
served before by other researchers in data profiling, the maximum cardinality
k∗ of the minimal UCCs is small in practice. In particular, there does not
appear to be any relationship between k∗ and the input size.

6.2. Run Time, Delay, and Memory
Our enumeration method (Algorithm 1) branches on the vertices in a certain
global order. Although the order does not matter for our asymptotic bounds,
it does affect the shape of the explored decision tree, which in turn impacts
the practical run time. Even on the theoretical side, it has been shown that
there exist orders that render already finding the (lexicographically) first
solution an NP-hard search problem [29].

To support the enumeration, we heuristically sort the vertices descend-
ingly by the number of distinct values that appear in the corresponding
column of the original database. The intuition is that columns with many
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Figure 4: Overall run times of the enumeration algorithm. The dot marks the time using
the heuristic branching order. For all datasets except ncvoter_allc, the box plot shows
the times for 1000 random orders. Their median is indicated by a vertical line, the boxes
range from the first to third quartile, and the whiskers chart the 1.5 interquartile range
above and below those quartiles. Outliers outside of this range are marked by crosses.
Each data point is the average over 10 runs.

values have a higher discriminative power over the pairs of rows and thus are
more likely to appear in many minimal UCCs. Including an expressive vertex
makes many other vertices obsolete, which should lead to early pruning of
the tree. Conversely, excluding such vertices (adding them to the set Y in
Algorithm 2) makes it likely that only a few hitting sets survive, which also
prunes the tree early. Note that reducing the size of the decision tree, and
thus the number of subroutine calls, does not automatically reduce the run
time. The remaining calls may have a larger average return time. We discuss
this in more detail in Section 6.3. As a side note, preliminary experiments
showed that sorting the vertices by their hypergraph degree instead (that
is, the number of minimal difference sets in which they appear) resulted in
similar but slightly worse run times.

Besides using our heuristic order, we also evaluate the algorithms on 1000
random branching orders per dataset. The ncvoter_allc instance is an
exception as the larger enumeration times do not permit that many orders.
We report on ncvoter_allc separately. The run times, averaged over 10
measurements for each data point, are shown in Figure 4. Note that the
x-axis is scaled logarithmically. The boxes show the first to third quartile of
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the samples, with the median indicated as a horizontal line. The whiskers
represent the smallest data point within 1.5 interquartile range (IQR) of the
lower quartile and the highest one within 1.5 IQR of the upper quartile. We
count everything beyond that as outliers.

The median run times generally scale with the number of solutions,
which is to be expected. They range from 0.25 ms for the 23 minimal
UCCs of call_a_bike to roughly 27 min for the more than 200k solutions
of ncvoter_allc. The only exceptions from this trend, that have shorter
enumeration times albeit more solutions, are the artificially generated in-
stances fd_reduced_15 and fd_reduced_30. For most of the instances, the
branching order had only little impact and the enumeration times are concen-
trated around the median. Our heuristic outperformed the median random
order on all instances, indicating that it is a solid choice in practice. On
the flight_1k dataset, the heuristic even resulted in a better run time than
any of the random orders. For ncvoter_allc, however, the influence of the
branching order was significantly larger. Using the heuristic, the enumera-
tion completed in less than half an hour. For comparison, on four out of
the eleven random orders we tested, the process only finished after 59.7 h,
105.3 h, 113.7 h, and 167.7 h, respectively. The other seven runs exceeded the
time limit of 168 h (one week).

Lemma 19 gives a worst-case guarantee on the delay that depends on
the maximum size k∗ of a minimal UCC. The box plot in Figure 5 shows
the empirical delays when using the heuristic branching order. Again, the
time-axis is logarithmic. Recall that the output order of the solutions is
entirely determined by the branching order of the vertices. Each data point
in Figure 5 corresponds to one output, it was obtained by averaging the delay
prior to the same solution over 100 runs. The plot shows that there is a high
variance in the delays for the different solutions of an instance. The extreme
case is ncvoter_allc where the delays range from the order of 1× 10−1 ms
to over 1 × 103 ms. Nevertheless, the maximum delay was always less than
2 s, which is reasonably low. The ncvoter_allc instance also has the largest
solutions with k∗ = 15. However, the next smaller datasets in that category,
horse and uniprot with transversal ranks of 11 and 10, respectively, have
a much lower delay. In general, we cannot confirm a significant correlation
between k∗ and the empirical delays. In the following section, we investigate
the delays more closely by looking at the run time distribution of the calls
to the subroutine.

In Lemma 19, we also prove a bound on the space requirement, which is
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Figure 5: Delays between consecutive outputs of minimal unique column combinations
using the heuristic branching order. The box plots show the same quartiles as in Figure 4.
Each data point is the average over 100 runs.

independent of the number of solutions. We measured the memory con-
sumption during the enumeration as an average over 5 runs, except for
nc_voter_allc where we did only a single run. All datasets used between
4.52 MB and 4.68 MB RAM. For comparison, just loading the program with-
out an input takes 4.41 MB. The memory overhead is marginal and inde-
pendent of the number of solution. In our experiments, it even seemed to be
insensitive to the given instance.

6.3. Subroutine Calls
The only potential reasons for super-polynomial delays are the calls to Al-
gorithm 2. It is interesting to examine how many calls we need during the
enumeration and how long they actually take in practice. For our heuristic
branching order, we measured the run times of each individual call, averaged
over 100 runs to reduce the noise. Figure 6 shows the complementary cumu-
lative frequencies (CCF) of the run times in a log-log plot. That means, for
each time t on the x-axis, the plot shows on the y-axis the number of calls
with run time at least t. We exclude the artificial instances fd_reduced_15
and fd_reduced_30 for now, they are reported separately.

First, we examine the impact of the total number of calls on the run time.
The legend of Figure 6 is ordered by increasing number of solutions, the same
as in the previous plots. For the real-world databases, this is also the same
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Figure 6: The complementary cumulative frequencies of the run times of the subroutine
calls on the real-world databases using the heuristic branching order. Plot (a) shows all
calls, (b) only those entering the brute-force loop in line 11 of Algorithm 2. Each data
point is the average of the same call over 100 runs.

37



as ordering them by increasing enumeration time. For comparison, the total
number of subroutine calls is marked by the y-value of the left-most endpoint
of each curve. The two orders are almost the same. An interesting excep-
tion is the hepatitis dataset. It has fewer calls than horse and uniprot,
but these calls take more time on average, leading to a higher overall run
time. Instance amalgam1 needs even more calls, which then outweighs the
smaller average. Similarly, the calls for horse take more time than those for
uniprot, but the higher number in the latter case causes a longer run time.
In preliminary experiments, we observed these effects also when comparing
different branching orders for the same dataset. Aiming for a small number
of calls is a good strategy, although there are cases where a higher number
of easier calls gives a better result.

Next, we discuss the distribution of the calls. The prominent (almost)
horizontal lines on the left of Figure 6a stem from the few trivial calls with
X = ∅. Those are one to two orders of magnitude faster than all other calls
since they do not need to construct the instance of Independent Family.
For the non-trivial cases with X ̸= ∅, the extension algorithm first checks
whether the resulting instance can already be decided by the sanity checks
in lines 9 and 10 of Algorithm 2. This way, a significant portion of them
can be solved in linear time. These calls can be seen in the CCF plots as
the steep dip immediately following the horizontal lines. Observe that the
y-axis is logarithmic, so the proportion of trivial and easy subroutine calls
is actually significant. Over all databases, slightly more than half of the
calls are solved this way. In fact, for the three instances with the most calls,
namely, amalgam1, flight_1k, and ncvoter_allc, no more than 32% of the
calls entered the brute-force loop in line 11.

This loop is the only part of the algorithm that may requires super-
polynomial running time. Figure 6b shows the CCFs only for the brute-
force calls. The differences between Figures 6a and 6b in the lower parts
of call_a_bike and uniprot are artefacts of the separate measurements
to create these plots. The run times are heterogeneously distributed with
many fast invocations and only a few slow ones. As an example, we in-
vestigate the calls of the flight_1k instance. The database has 1000 rows
over 109 columns of which 39 are empty and 17 more do not participate in
any minimal difference set. The output of flight_1k are 26 652 minimal
UCCs. During the enumeration process Algorithm 2 is called 242 449 times,
22 (0.009%) calls are trivial, the vast majority of 165 767 (68.4%) are decided
easily by the sanity checks, the remaining 76 660 (31.6%) calls enter the loop.
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Of the brute-force calls, 41 353 (53.9%) take only a single iteration to find a
suitable combination of candidate private edges verifying that the respective
input set X is indeed extendable to a minimal solution (line 13). However,
there are also two calls that need the maximum of 74 880 iterations, which
corresponds to a run time of 16 ms. In those two cases, all possible combina-
tions of potential witnesses had to be tested, only to conclude that the set
is not extendable (line 14). It is inherent to the hardness of Minimal Hit-
ting Set Extension that those inputs that are not extendable because all
combinations of candidate private edges cover at least one unhit edge incur
the highest number of iterations and thus longest subroutine run times, see
Lemma 18. Fortunately, those occasions were rare in our experiments. In
the case of flight_1k, only 622 calls take more than 10 000 iterations, they
make up for 0.8% of the brute-force calls and 0.2% of all invocations.

The run time distributions for the other real-world databases are similar
to that of flight_1k, see Figure 6a. There is always a non-vanishing chance
that any given call to the subroutine incurs a high run time, which is hardly
avoidable for a worst-case exponential algorithm, but even the slowest calls
are reasonably fast in practice. However, the majority of calls is far away from
the worst case, leading to a very low run time on average. The heterogeneity
of the brute-force calls is also showing in the CCFs (Figure 6b). They roughly
resemble a power-law distribution (straight lines in a log-log plot), albeit their
tendency towards small run times (concavity of the plots) is stronger than
one would expect for a pure power-law.

Another important point of saving related to the subroutine are those
calls that are never actually executed due to the shortcut evaluation in line 7
of Algorithm 1. We compared the implementation as presented here with
a version in which this optimization is turned off. Still, the latter version
outputs a minimal hitting set as soon as it is found in line 5. We used
the heuristic branching order again. Over all real-world instances, the ratio
of calls of the non-optimized version that are skipped by the shortcuts is
between 12.36% for the abalone dataset and 66.11% for ncvoter_allc, with
a median saving of 37.42%. The skipped calls are those for which we can
be certain that the given partial solution is indeed extendable, but not yet
minimal. Besides the few calls with X = ∅, all of them would have entered
the brute-force phase to find a suitable set of candidate private edges. On the
other hand, they do not need to cycle through all possible combinations and
thus are not the hardest calls. A given ratio of skipped calls does not directly
translate to a certain time saving. Compared to the enumeration time of the
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Figure 7: The complementary cumulative frequencies of the run times of the subroutine
calls on the artificial using the heuristic branching order.

non-optimized version, the shortcuts gain moderate speedup factors from
1.12 for abalone up to 2.26 on the uniprot dataset, with a median of 1.43.

Finally, the two artificial instances fd_reduced_15 and fd_reduced_30
behave very differently from the real-world databases. Figure 7 shows their
CCFs. The staircase shape indicates that there are only five types of calls,
with roughly the same run time for all calls of the same type. Also, the
shortcut evaluation hardly saves anything on those datasets. Only 1.90%
of the calls for fd_reduced_15 and 4.97% for fd_reduced_30 are skipped,
resulting in a speedup factor of 1.06 on both instances.

7. Conclusion

We devised a backtracking algorithm for the transversal hypergraph problem
by reducing the enumeration to the NP-complete decision whether a set of
vertices can be extended to a minimal solution. Although this may seem
counterintuitive, it allowed us to reduce both the space usage of the enumer-
ation and the delay. In particular, we proved that the transversal hypergraph
problem can be solved simultaneously with polynomial delay and space on
instances whose transversal rank is bounded. We further showed that the ex-
tension problem, when parameterised by the size of the set to be extended,
is a natural complete problem for the complexity class W[3]. We presented
several conditional lower bounds and showed that our extension algorithm
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is almost optimal under SETH. With the nondeterministic generalization of
SETH, we identified a complexity-theoretic barrier for closing the remaining
gap between our algorithmic results and the lower bound.

The features of our enumeration method make it particularly suitable for
the profiling of relational databases, an application domain where the solu-
tions are expected to be small. Since the size of the largest solution is the
degree of the worst-case time bound, it could have been that the run times
are still prohibitively large in practice. To guard against such issues, we eval-
uated our algorithm by discovering the minimal unique column combinations
of several real-world and artificially generated databases. The experiments
showed that our method succeeds within a reasonable time frame, even when
tasked with computing several hundred thousand solutions.

As the empirical run time depends on the branching order of the vertices,
we gave a heuristic that achieves good results in practice by reducing the
number of calls to the extension subroutine. We also verified that the main
reason for the low overall run times is not only the small number of calls but
the fact that the calls are very fast on average. In particular, they regularly
avoid the worst case, which was the basis for the large theoretical bound.

The tree search underpinning our algorithm obviates the need of expen-
sive coordination between branches or any post-processing of the solutions.
This makes our method easy to implement and memory-efficient. In partic-
ular, approaching the discovery of unique column combinations as a hitting
set problem resulted in an algorithm that does not need to store previous
solutions. This seems to be a major issue even for current state-of-the-art
data profiling algorithms such as DUCC [42] and HyUCC [54]. Papenbrock and
Naumann, the authors of HyUCC, posed the following challenge [54].

For future work, we suggest to find novel techniques to deal with
the often huge amount of results. Currently, HyUCC limits its
results if these exceed main memory capacity [...].

We believe that this can be solved by viewing data profiling from a hitting-
set perspective. However, there are still some problems that need to be
overcome to obtain a ready-to-use algorithm. The enumeration phase is the
hard core of the problem, but it does not seem to be the true bottleneck in
practice. Instead, the quadratic preprocessing step of preparing the minimal
difference sets of the database for our experiments regularly took much longer
than actually enumerating all solutions. Here, careful engineering has the
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potential of huge speedups on real-world instances. Combining this with
the natural advantages of our enumeration algorithm might yield the novel
technique we are looking for.
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