
Escaping Local Optima with Diversity
Mechanisms and Crossover

Duc-Cuong Dang
University of Nottingham

Nottingham, UK

Tobias Friedrich
Hasso Plattner Institute

Potsdam, Germany

Timo Kötzing
Hasso Plattner Institute

Potsdam, Germany

Martin S. Krejca
Hasso Plattner Institute

Potsdam, Germany

Per Kristian Lehre
University of Nottingham

Nottingham, UK

Pietro S. Oliveto
University of Sheffield

Sheffield, UK

Dirk Sudholt
University of Sheffield

Sheffield, UK

Andrew M. Sutton
Hasso Plattner Institute

Potsdam, Germany

ABSTRACT
Population diversity is essential for the effective use of any
crossover operator. We compare seven commonly used di-
versity mechanisms and prove rigorous run time bounds for
the (µ+1) GA using uniform crossover on the fitness function
Jumpk. All previous results in this context only hold for un-
realistically low crossover probability pc = O(k/n), while we
give analyses for the setting of constant pc < 1 in all but one
case. Our bounds show a dependence on the problem size n,
the jump length k, the population size µ, and the crossover
probability pc. For the typical case of constant k > 2 and
constant pc, we can compare the resulting expected optimi-
sation times for different diversity mechanisms assuming an
optimal choice of µ:
• O

(
nk−1

)
for duplicate elimination/minimisation,

• O
(
n2 logn

)
for maximising the convex hull,

• O(n logn) for det. crowding (assuming pc = k/n),
• O(n logn) for maximising the Hamming distance,
• O(n logn) for fitness sharing,
• O(n logn) for the single-receiver island model.

This proves a sizeable advantage of all variants of the
(µ+1) GA compared to the (1+1) EA, which requires Θ(nk).
In a short empirical study we confirm that the asymptotic
differences can also be observed experimentally.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Genetic algorithms; recombination; crossover; diversity; run
time analysis; theory

1. INTRODUCTION
There are numerous empirical and a few theoretical stud-

ies supporting the claim that crossover is beneficial. How-
ever, we are still far from a good understanding why

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4206-3/16/07.

DOI: http://dx.doi.org/10.1145/2908812.2908956

crossover is beneficial. This is not only true for evolutionary
computation, but also for models in population genetics.
When and how recombination increases the speed of adap-
tion is a fundamental question. It is also called “the queen
of problems in evolutionary biology” by Graham Bell [3] and
others.

Understanding why recombination improves evolution is a
major open problem in both evolutionary computation and
population genetics. The key to a successful crossover step
is a sufficient amount of diversity within the population.
A diverse population has higher chances to find dissimilar
individuals and to create fitter offspring by recombining dif-
ferent building blocks. Diversity-preserving mechanisms can
therefore significantly enhance the performance of crossover.

Most studies on diversity-preserving mechanisms are
solely empirical [5, 15], for genetic programming [1, 4], or on
the infinite population model [2]. We focus on the simple ge-
netic algorithm with finite population called (µ+1) GA. Our
aim is to develop rigorous run time bounds of the (µ+1) GA
with different diversity mechanisms. We want to study how
diversity helps to escape local optima. The standard testbed
for this is the Jumpk landscape. Jumpk : {0, 1}n → N is a
simple pseudo-Boolean test function with a large plateau
for x with |x|1 = n − k and a unique global maximum at
|x|1 = n. The name is derived from the fact that a (1+1) EA
has to jump over a gap of Hamming distance k from the
plateau to the global optimum. For a formal introduction of
the (µ+1) GA and Jumpk, see Section 2.

In this paper, we study rigorously a variety of diversity
mechanisms of the (µ+1) GA on the Jumpk function. We
observe on the Jumpk function how a diverse population
spreads on local optima and eventually manages to escape
them. Our results show that already small changes in the
tie-breaking rule of the (µ+1) GA can make a big difference.
We rigorously prove asymptotic run time upper bounds for
different diversity mechanism. The respective proofs itself
give insight into how the diversity mechanism help escaping
local optima.

Run time results. The first rigorous analysis of Jumpk
was achieved by Jansen and Wegener [11]. They proved
that the expected optimisation time of the (1+1) EA on
Jumpk is Θ(nk +n logn) [11, Thm. 4]. Jansen and Wegener
[11] and Kötzing, Sudholt, and Theile [12] also analyzed
the (µ+1) GA, but both their analyses require a vanishing
crossover probability of order pc = O(k/n). To the best
of our knowledge, this is the first rigorous analysis of the
(µ+1) GA on Jumpk that shows an advantage of crossover

645

Mechanism General case k = 2 k = 4

Duplicate elimination, Theorem 3.1 O
(
n logn+ nk−1

)
O(n logn) O

(
n3
)

Duplicate minimisation, Theorem 3.2 O
(
n logn+ nk−1

)
O(n logn) O

(
n3
)

Deterministic crowding, Theorem 3.3 O
(
n logn+ ne5k

)
O(n logn) O(n logn)

Convex hull maximisation, Theorem 4.1 O
(
n2 logn+ 4k

)
O
(
n2 logn

)
O
(
n2 logn

)
Hamming distance max., Theorem 4.2 O

(
n logn+ nk log k + 4k

)
O(n logn) O(n logn)

Fitness sharing, Theorem 4.4 O
(
n logn+ nk log k + 4k

)
O(n logn) O(n logn)

Island model, Theorem 5.1 O
(
n logn+ kn+ 4k

)
O(n logn) O(n logn)

Table 1: Comparison of the asymptotically best known run times bounds for Jumpk with k = O(1). All results hold for
a constant crossover probability pc < 1; expect deterministic crowding, which only holds for pc = k/n. For all diversity
mechanisms, we assume a best-possible choice of the population size µ, which is µ = 2 in all cases. More general results are
presented in the respective theorem.

for a crossover probability up to constant pc < 1. All of our
results (except deterministic crowding) still hold for con-
stant crossover probabilities.

Our results are summarised in Table 1. The table presents
the run time bound for a best-possible population size µ for
each diversity mechanism. Our main results are as follows.

We consider three varieties of diversity-preserving mech-
anisms: (1) methods that encourage genotypic uniqueness,
(2) methods that increase genotypic distance, and (3) meth-
ods that employ parallelism. In the first variety, tie-breaking
mechanisms are used to promote genotypic uniqueness in the
population. The method of duplicate elimination breaks
ties in the selection process by making sure an offspring re-
places a duplicated string out of the least-fit individuals.
The advantage is that the crossover operator does not have
to wait to get two different individuals. Theorem 3.1 shows
that for µ, k = o(n) this gives an expected optimisation time
of O

(
µ2n+ n logn+ nk−1

)
.

Very similar to duplicate elimination is duplicate min-
imisation. In this case ties are broken such that the least-
fit individual that has the highest number of duplicates is
removed. This lowers the time to get many pairs of dif-
ferent individuals. For µ, k = o(n) this results in Theo-
rem 3.2 to the slightly better expected optimisation time of
O
(
µn+ n logn+ µ logµ+ nk−1

)
.

Deterministic crowding always chooses a parent of the
current offspring for removal in the selection. This allows to
get different individuals more efficiently. Theorem 3.3 shows
that in this case for pc = k/n, k = o(

√
n) the expected

optimisation time is O
(
µn logn+ ne5kµk+2

)
. Note that our

result for deterministic crowding is the only analysis which
does not extend up to pc = Θ(1).

The second variety of diversity-preserving mechanisms we
investigate are based on increasing genotypic distance be-
tween individuals in the population. A geometric crossover
tends to reduce the size of the convex hull of the popula-
tion [13]. It is therefore natural to break ties via a Con-
vex hull maximisation. For constant pc < 1, µ ≤ n/k,
k ≤ n/2, Theorem 4.1 shows an expected optimisation time
of O

(
µn2 logn+ 4k/pc

)
.

Maximising the convex hull can be simulated by Max-
imising the total Hamming distance among the popu-
lation. For constant pc < 1, µ < n/(2k), k ≤ n/8, Theo-
rem 4.2 shows an expected optimisation time of O(µn logn+
µ2kn log(µk) + 4k/pc). Theorem 4.4 proves that the same
bound holds for Fitness sharing, where the fitness of an
individual is lowered if other individuals are close-by.

The third and final variety of mechanism we study is
based on relying on parallelism to obtain and preserve di-
versity. In an island model, diversity is attained by keep-
ing parts of the population on separate processors. For
the single-receiver island model [16], for pc = 1, µ ≥ 2,
k = o(

√
n/µ), Theorem 5.1 shows an expected optimisation

time of O
(
n logn+ µ2kn+ µ24k

)
.

Experiments. Note that all results obtained are asymp-
totic upper bounds and not necessarily tight. Thus, we
complement our theoretical results with a small experimen-
tal study of Jumpk. We observe that already for small k,
the (µ+1) EA requires an enormous time to find the global
optimum; while the (µ+1) GA is much faster already with-
out any diversity mechanism. The different diversity mech-
anisms of the (µ+1) GA are all beneficial. We can empiri-
cally observe a ranking of which diversity mechanism helps
the most to speed up Jumpk.

2. PRELIMINARIES
Test function. We are concerned with optimising the
pseudo-Boolean fitness functions Jumpk : {0, 1}n → N.
Jumpk was introduced by Jansen and Wegener [11] and is
defined, for all x ∈ {0, 1}n, as

Jumpk(x) =

{
k + |x|1 if |x|1 = n ∨ |x|1 ≤ n− k ,
n− |x|1 otherwise,

where |x|1 =
∑n
i=1 xi is the number of 1-bits in x. Jumpk is

symmetric, i.e., it only depends on the number of 1s and not
their position. It is locally optimal for any individual x with
|x|1 = n− k, the plateau, however, its only global maximum
is the all-ones string 1n. Between the plateau and the global
optimum there is a gap of Hamming distance k, which has
to be jumped over in order to optimize the function, thus
the name.

Genetic algorithm. Our algorithm of interest is the
(µ+1) GA. It makes use of a mutation operator ‘mutate’
and a binary crossover operator ‘crossover’. mutate(x) takes
an individual x and flips each bit independently with prob-
ability 1/n. crossover(x, y) performs a uniform crossover of
x and y, i.e., each bit from the resulting string is a uni-
formly at random chosen bit from the parents’ respective
bits. Crossover is only performed with probability pc in each
iteration, mutation is always performed (after crossover, if
any crossover is performed). In contrast to previous analy-
ses of the (µ+1) GA, we also allow crossover probabilities
pc = 1− Ω(1).

646

We always remove elements with lowest fitness. How-
ever, we do not necessarily break ties uniformly at random
but according to specific tie-breaking rules determined by
the applied diversity mechanism. The pseudocode for the
(µ+1) GA can be seen in Algorithm 1.

Algorithm 1: The (µ+1) GA for given µ, pc

1 P ← µ individuals, uniformly at random from {0, 1}n;
2 while 1n /∈ P do
3 Choose p ∈ [0, 1] uniformly at random;
4 if p ≤ pc then
5 Choose x, y ∈ P uniformly at random;

6 z ← mutate
(
crossover(x, y)

)
;

7 else
8 Choose x ∈ P uniformly at random;
9 z ← mutate(x);

10 P ← P ∪ {z};
11 Choose one element from P with lowest fitness,

breaking ties according to the tie-breaking rule, and
remove it from P ;

The most interesting behaviour of the diversity mecha-
nisms presented in this paper occurs after the entire popu-
lation is stuck at local optima. However, for completeness,
we also want to bound the time it takes for the population to
get into such a state. The following lemma is easily proved
in the same manner as for the (µ+1) EA [17] by noting
that (1) before the population reaches the plateau, Jumpk
is identical to OneMax and (2) the (µ+1) GA performs the
same steps as the (µ+1) EA during generations that it does
not perform crossover. Therefore, any slow-down caused by
crossover can only contribute a constant factor to the run
time, as long as pc = 1−Ω(1). We only need an extra µ logµ
term that captures the waiting time until all individuals are
on the plateau.

Lemma 2.1. Consider the (µ+1) GA optimizing Jumpk
with pc = 1− Ω(1). Then the expected time until the entire
population is on the plateau is O(µn+ n logn+ µ logµ).

After sufficient progress is made in diversity, crossover and
mutation can work together to create an optimal solution in
o
(
nk
)

time. This is captured by the following lemma and
will be necessary for some of the results later in the paper.

Lemma 2.2. Consider a population P on the Jumpk
plateau (f(x) = n − k for all x ∈ P). We partition P
into equivalence classes. For any constant 0 < c < 1, if
the largest equivalence class has size at most cµ, then the
optimal solution is created by uniform crossover followed by
mutation with probability Ω(n−(k−1)).

Proof. Since the size of the largest equivalence class is no
larger than cµ, the probability that two distinct parents are
selected for crossover is Ω(1). For the remainder of the proof,
we assume that two parents x, y are selected with x 6= y.

Let 2d > 0 denote the Hamming distance between x and
y. Then x and y have d 1s among the 2d bits that differ
between parents and n− k− d 1s outside this area. Assume
that crossover sets exactly i out of these 2d bits to 1, which
happens with probability

(
2d
i

)
2−2d. Then mutation needs to

flip the remaining k + d− i 0s to 1. The probability of this
occurring is

2d∑
i=0

(
2d

i

)
1

22dnk+d−i

(
1− 1

n

)n−k−d+i
= Ω(n−(k−1)) ,

where we bound the sum by dropping all but the zeroth term
and use 4−d ≥ 1

4
n−(d−1), since d > 0 and we take n to be

large enough.

3. DIVERSITY WITH UNIQUENESS
We first consider diversity mechanisms that correspond

to tie-breaking rules that try to promote having unique in-
dividuals in the population either by explicitly eliminating
duplicates or by enforcing selection to occur between parent
and offspring (who are more likely to be non-unique).

3.1 Duplicate Elimination
In this setting, we consider the (µ+1) GA using duplicate

elimination as a tie-breaking mechanism that operates as
follows. When breaking ties on the lowest-fitness individual
in line 11 of Algorithm 1, if there are no duplicates among
the least-fit individuals, one is chosen at random to remove.
Otherwise, we always choose one so that the number of du-
plicated strings decreases.

Theorem 3.1. Consider the (µ+1) GA using duplicate
elimination to break ties, a crossover probability such that
pc = Ω(1) and pc = 1 − Ω(1), and a population size of
µ < k(n − k)/2. The expected optimisation time on Jumpk
with k = o(n) is O

(
µ2n+ n logn+ nk−1

)
.

Proof. By Lemma 2.1 and our upper bound on µ, the ex-
pected time until the whole population is on the plateau is
O(µn+n logn). Let 0 < c < 1 be an arbitrary constant. We
argue that after O(µ2n) generations in expectation, there are
at most cµ duplicates in the population. A duplicate pair is
a pair (x, y) such that x = y. For all z ∈ {0, 1}n we de-
fine the (possibly empty) set S2(z) = {y ∈ {0, 1}n : f(y) =
n− k ∧ dH(z, y) = 2} where dH denotes Hamming distance.
Let x ∈ P be conditioned on the event that every point in
P is contained on the plateau. Then |S2(x)| = k(n− k), so
due to our bounds on µ, |S2(x) \ P | ≥ k(n− k)/2.

If there are duplicates in the population, a new plateau
point can be generated as follows. First, select a duplicate
pair x, x′ as parents and perform crossover to obtain x′′. Ob-
viously x = x′ = x′′. Now, mutation flips exactly two specific
bits of x′′ to create one of the points in S2(x′′) \ P . We call
such a mutation a novel mutation. The probability for any
novel mutation on x′′ is at least

1

n2

(
1− 1

n

)n−2

|S2(x′′) \ P | ≥ 1

n2

k(n− k)

2e
= Ω(1/n) .

As long as there are at least cµ duplicates, the probability
of choosing a duplicate pair for parents can be bounded as
follows. Consider a partition of the population at time t
such that each partition contains all copies of a particular
string. Let s1 ≥ s2 ≥ · · · ≥ sa ≥ 1 denote the sequence of

partition sizes. Let `∗ = max{i : si > 1}. If
∑`∗

i=1 si ≥ cµ,
then the number of duplicate pairs is at least

`∗∑
i=1

(
si
2

)
≥ 1

2

`∗∑
i=1

si ≥ cµ/2 .

647

Therefore, under the condition that there are at least cµ
duplicates, the probability that a duplicate pair is selected
for recombination is at least (cµ/2)/

(
µ
2

)
= Ω(1/µ).

If a novel mutation occurs in the offspring, then it will be
accepted, and consequently a duplicate will be removed from
the population. The number of duplicates cannot increase.
Moreover, it decreases in each generation with probability
Ω
(
1/(µn)

)
. Hence, the expected waiting time until all but

cµ duplicates have been removed from the plateau is O(µ2n).
After this time, we maintain the invariant that the size

of the largest equivalence class cannot be higher than cµ.
Thus, in each subsequent generation, the probability of
generating the optimal string is bounded from below by
Lemma 2.2. The expected number of generations until the
optimal string appears in the population after this point is
thus O(nk−1).

3.2 Duplicate Minimisation
Duplicate minimisation is similar to duplicate elimination,

except when breaking ties we do not choose an arbitrary
duplicate, but the an individual that has the highest number
of duplicates.

Theorem 3.2. Consider the (µ+1) GA using duplicate
minimisation to break ties, a crossover probability such that
pc = Ω(1) and pc = 1 − Ω(1), and a population size of
µ < k(n − k)/2. The expected optimisation time on Jumpk
with k = o(n) is O

(
µn+ n logn+ nk−1

)
.

Proof. The proof is identical to the proof of Theorem 3.1,
except how we handle the initial gain of diversity on the
plateau. In the case of duplicate minimisation, we have the
extra property that the size of the largest equivalence class
cannot increase over time. Hence, we only have to wait until
the size of the largest equivalence class is at most cµ (instead
of the entire duplicate count, as with duplicate elimination).
This saves us an extra µ-factor in the waiting time to reach
a point where we can apply Lemma 2.2.

Again, since µ = O(n), Lemma 2.1 bounds the expected
time until the whole population is on the plateau by O(µn+
n logn), hence, for the remainder of the proof, we assume
that the entire population has already reached the plateau.
Let Xt be the count of duplicates in the population at time
t. Let Yt denote the size of the largest equivalence class,
that is, the cardinality of the largest equivalence class in the
population at time t. Let x be the offspring generated at
time t. If x belongs to one of the partitions of size Yt, then
the size of one of these partitions is temporarily increased
before survival selection, but then duplicate minimisation
ensures Yt+1 = Yt since one of the members of the partition
of size Yt + 1 is removed uniformly at random. In every
other case, the size of the largest partition stays the same
or decreases.

Thus we only must wait until Yt ≤ cµ to apply Lemma 2.2.
In each iteration, Xt is decreased by one if a novel point is
created. As stated in the proof of Theorem 3.1, the proba-
bility of a novel mutation given a duplicate pair for parents
is Ω(1/n). Conditional on Yt > cµ, the probability of se-
lecting a duplicate pair and subsequently creating a novel
offspring is at least

(
Yt
2

)
/
(
(n
(
µ
2

))
>
(
cµ
2

)
/
(
n
(
µ
2

))
= Ω(1/n).

Let (X̂t)t≥0 be the stochastic process defined by

X̂t =

{
Xt if Yt > cµ ,

0 otherwise.

Since X̂t − X̂t+1 ≥ 0 and decreases by at least one with
probability Ω(1/n), the waiting time until Yt ≤ cµ is O(µn).
From this point and beyond, the size of the largest equiv-
alence class is at most cµ and the proof is completed by
applying Lemma 2.2.

3.3 Deterministic Crowding
We consider deterministic crowding as described in [8]. In

effect, this tie-breaking rule always chooses a parent indi-
vidual of the current offspring for removal in the selection
phase (in particular, the offspring always survives). Thus,
for mutation, the parent is always removed; for crossover,
one parent uniformly chosen at random is removed.

Theorem 3.3. Consider the (µ+1) GA with pc = k/n.
Suppose that ties in the selection procedure are handled by
deterministic crowding. Then the expected number of itera-
tions until an optimal individual is created when running on
Jumpk, k = o(

√
n), is O(µn+n logn+µ logµ+ne5kµk+2).

Proof. According to Lemma 2.1, after O(µn + n logn +
µ logµ) rounds, all individuals are on the plateau.

The remaining part of this proof follows the ideas pre-
sented in the one from Theorem 7 of [12]1. We want to make
sure that we end up having two individuals that do not have
a 0 in common and that these get chosen for crossover that
succeeds in creating the optimum.

This process is divided into two phases. Phase 1 considers
the probability of mutating two individuals such that they
end up sharing no 0. Phase 2 then considers the probability
of a crossover to occur that chooses the two individuals of
phase 1. The phases are, too, separated into several events
that are sufficient for the desired outcome.

Phase 1 lasts n rounds without any crossover and should
generate two different individuals that do not share a sin-
gle 0. Phase 2 goes on for n/k rounds and should generate
the optimum. Therefore, a harmful mutation, i.e., one that
changes at least one of the two designated individuals, must
not occur.

We start off with phase 1 and decompose this phase into
the events E1–E5.

E1: The event that no crossover occurs in n rounds. Its
probability is (1− pc)n ≥ (1− k/n)n ≥ e−k

(
1− o(1)

)
.

E2: The event, conditional on E1, that there are at least k
mutations during phase 1 that flip two bits such that a 1-bit
and a 0-bit get flipped. Note that an individual generated
this way is on the plateau.

A single such mutation happens with probability q := k/n·
(n − k)/n · (1 − 1/n)n−2 ≥ k/n · 3−1 if n is large enough.
Trivially, q ≤ k/n holds.

The probability of E2 happening is therefore at least(
n

k

)
qk(1− q)n−k ≥ nk

kk

(
k

n
· 1

3

)k (
1− k

n

)n−k

≥ 3−k
(

1− k

n

)(n
k
−1)k

≥ (3e)−k .

E3: The event, conditional on E1, that any mutation
that creates a new individual on the plateau does so by just

1In this proof, we set pc = k/n instead of bounding it only from
above. This corrects an error that appears in the proof of Theo-
rem 7 of [12], in which the reciprocal of the crossover probability
erroneously does not appear in the run time bound.

648

flipping a single 0 (and of course a single 1), i.e., it is unlikely
that at least two 0s get flipped, the probability of which
would be at most

(
k
2

)
· 1/n2 ≤ k2/n2.

The probability of this never happening during phase 1
and thus the probability of E3 is therefore bounded by(

1− k2

n2

)n
≥ 1−O

(
k2

n

)
k=o(

√
n)

≥ 1− o(1) .

E4: The event, conditional on E1, E2, and E3, that two
designated individuals get chosen for the k mutations. In
the end, these individuals should be the ones chosen for
crossover. The probability of choosing the correct individu-
als for mutation is at least (2/µ)k.

Our tie-breaking rule is deterministic crowding, so the off-
spring will always survive because the parent will be re-
moved. Hence, the probability for E4 is at least (2/µ)k.

E5: The event, conditional on E1 through E4, that the
two individuals from E4 actually drift apart such that, in
the end, they do not share any of their 0s. To do so, the
individuals must increase their Hamming distance to one
another by 2. Let i denotes the number of 0-bits that do
not have to be mutated anymore. This probability is at
least

k−1∏
i=1

(
k − i
k
· n− k − i

n− k

)
≥
(
n− 2k

n− k

)k−1 k−1∏
i=1

k − i
k

≥
(

1− k

n− k

)k−1

· (k − 1)!

kk−1

≥
(

1− k2

n− k

)
·
(
k
e

)k
kk
≥ e−k(1− o(1)) .

We now focus on phase 2 and condition on the events E1
through E5.

E6: The event that during the next n/k rounds no accept-
ing mutation occurs and that at least one crossover choosing
the correct two individuals is performed.

We first consider the mutations that could be harmful.
Note that for such a mutation it is necessary to flip at least
one 0-bit. Thus we calculate the probability that during
each mutation none of the k 0s of any individual get flipped.
The probability of this happening is at least (1− k/n)n/k ≥
e−1
(
1− o(1)

)
.

We now look at the crossover. The probability of at
least one crossover choosing the two correct individuals is
at least

(
1− (1−pc)n/k

)
·
(
1/
(
µ
2

))
≥ (1− e−1)/µ2 ≥ e−1µ−2.

The probability that the crossover creates the optimum is
2−2k(1 − 1/n)n ≥ 2−2ke−1. All in all, the probability of E6
is at least e−3 · 2−2kµ−2

(
1− o(1)

)
.

The probability of all of the events E1 through E6 hap-
pening is thus at least Ω(e−5kµ−k−2), and the length of such
an event is n + n/k = O(n). Hence, the expected time
to create the optimum, once the plateau is reached, is in
O(ne5kµk+2).

4. DIVERSITY WITH DISTANCE
If we have µ ≤ n/k, then it is possible for the population

to be perfectly spread, i.e., any two individuals do not share
a position with a 0. We will see that this state is obtained
quickly with three different diversity mechanisms.

Once any two individuals do not share a position with
a 0, every crossover operation has a probability of 4−k to
generate the optimum.

4.1 Convex Hull Maximisation
Given two bit strings x, y ∈ {0, 1}n, uniform crossover can

produce any bit string z such that, for all i ≤ n, zi ∈ {xi, yi};
in this sense, any such z is in between x and y. Accordingly
one can define the convex hull of a set P ⊆ {0, 1}n as the set
of all those bit strings which are producible with repeated
application of uniform crossover. In this sense, evolutionary
search with crossover means searching the convex hull of the
population [13].

Thus, it makes sense to consider a tie-breaking rule which
maximizes the size of this convex hull. Since the size of
the convex hull of a set P of bit strings is determined by
the number of positions i for which there is an x ∈ P with
xi = 0 and a y ∈ P with yi = 1, we can formalize this tie-
breaking rule as follows. Given a population P of bit strings
with worst fitness, remove an individual z ∈ P such that

n∑
i=1

[∃x, y ∈ Pr{z} : xi = 0 ∧ yi = 1]

is maximised, where [B] denotes the Iverson bracket (indi-
cator function) for a proposition B.

Theorem 4.1. Consider the (µ+1) GA with µ ≤ n/k
and pc = 1 − Ω(1) > 0. Suppose that ties in the selec-
tion procedure are handled by maximising the convex hull.
Then the expected number of iterations until an optimal in-
dividual is created when running on Jumpk, k ≤ n/2, is
O(µn2 logn+ 4kp−1

c).

Proof. First we determine the time needed until all in-
dividuals are on the plateau. By Lemma 2.1, this is
O(µn+ n logn+ µ logµ). Note that µ logµ gets dominated
by µn because we bound µ by a polynomial in n.

The rest of this proof is similar to the one of Theorem 3
in [9]. We first introduce some terms that come in handy
for the rest of the proof.

We define bad 0s as 0s at a bit position such that there
exists another individual having a 0 at that same position.
We do not want to have such 0s, because they contradict our
goal of all individuals ultimately having their 0s at unique
positions.

Analogously we define a good 1 as a 1 at a bit position
such that there exists no individual that has a 0 at that
same position. We call such a position good as well. During
mutation, good 1s can be used to turn into 0s that no other
individual has.

We proceed via drift analysis and define our potential h to
be the number of good positions. Let h′ denote the potential
after one iteration of the algorithm, and let A denote the
event that h′ < h. Note that h′ cannot increase as each
good position decreases the value of the convex hull by one,
thus decreasing the convex hull if we end up with more good
positions than before. So we can easily estimate

E[h− h′ | h] ≥ E[h− h′ | h,A] Pr(A | h) ≥ Pr(A | h) .

We decompose the analysis of Pr(A | h) into four smaller
events.

E1: The event to choose an individual with a bad 0 for
mutation. If total diversity has not been reached, there is
at least one individual having a bad 0. So the probability of
E1 is at least 1/µ · (1− pc).

E2: The event that the mutation flips exactly one 0
and exactly one 1 (thus the mutated individual is on the

649

plateau). Note that E2 does not focus on the 0 being a bad
one and the 1 being a good one. The probability of any
two-bit-flip mutation is k/n · (n− k)/n · (1− 1/n)n−2.

E3: The event, conditional on E1 and E2, to choose a bad
0 for mutation. The probability to do so is at least 1/k.

E4: The event, conditional on E1 and E2, to choose a
good 1. Due to the definition of h, the probability of E4 is
h/(n− k).

Taking all of this together, we get that the probability of
A, given h, is at least

1− pc
µ
· 1

n
· h
n
·
(

1− 1

n

)n−2

= Ω

(
h

µn2

)
.

Using the multiplicative drift theorem [7], we get a run time
of O(µn2 logn) until reaching maximal diversity.

At last, time needed to perform crossover after reaching
maximum diversity takes expected p−1

c rounds. Since all two
different individuals have no 0s in common, such a crossover
is successful with probability 1/22k. This results in an overall
waiting time of 4kp−1

c in the end.

4.2 Total Hamming Distance
In the section before we looked at the maximisation of

the convex hull of a population P. The convex hull operator
only looks, per position, for two individuals having different
bits at said position.

A more thorough operator can take all the bits per in-
dividual into account to give a more detailed view on the
diversity of P. Such an operator is the one maximising the
total Hamming distance of all individuals in P.

For any set of bit strings P we let

g(P) =
∑
x∈P

∑
y∈P

dH(x, y)

be the total Hamming distance of P. We consider the tie-
breaking rule which, given a population P, removes an indi-
vidual z ∈ P such that g(Pr{z}) is maximised.

Theorem 4.2. Consider the (µ+1) GA with µ < n/(2k)
with pc = 1−Ω(1) > 0. Suppose that ties in the selection pro-
cedure are handled by maximising total Hamming distance.
Then the expected number of iterations until an optimal in-
dividual is created when running on Jumpk, k ≤ n/8, is
O(n logn+ µ2kn log(µk) + 4kp−1

c).

Proof. This proof is similar to the one of Theorem 4.1 and
uses the same terms of bad 0s and good 1s.

Using Lemma 2.1, all individuals are on the plateau within
O(µn+ n logn+ µ logµ) steps. The µ logµ term is domi-
nated by µn because of our bound on µ.

The remaining analysis is, again, done via a drift argu-
ment. Note that the maximum of g(P) is 2kµ(µ− 1); thus,
we let our potential function h be 2kµ(µ − 1) − g(P) and
show that this potential reaches 0.

The initial potential is at most 2kµ(µ − 1) and h cannot
increase, due to the selection operator always choosing an
individual to discard such that the total Hamming distance
is not decreased.

As before, let h′ denote the potential after a mutation and
let A denote the event that the potential decreased. We have
E[h− h′ | h] ≥ Pr(A | h). Again, we decompose Pr(A | h).

E1: The event that an individual having a bad 0 is chosen
for mutation. Each bad 0 adds at most 2(µ− 1) to h. Since

each individual can have up to k bad 0s, there are at least
h/
(
2k(µ − 1)

)
individuals having at least one bad 0. The

probability of E1 is therefore at least h/
(
2kµ(µ−1)

)
·(1−pc).

E2: The event that mutation creates an individual on the
plateau by flipping a 0- and a 1-bit. The probability of E2
is thus at least k/n · (n− k)/n · (1− 1/n)n−2.

E3: The event, conditioned on E1 and E2, to choose a
bad 0 during mutation. The respective probability is at
least 1/k.

E4: The event, conditioned on E1 and E2, to choose a
good 1 during mutation. We pessimistically assume that
the total Hamming distance (= 2kµ(µ− 1)− h) divided by
(µ− 1) is the number of 1s that are no longer good because
each good 1 adds (µ − 1) to the total Hamming distance.
The mutation must choose one of the remaining good 1s.
Thus, the probability of E4 is at least

n− k − 2kµ(µ−1)−h
µ−1

n− k =
n+ h

µ−1
− k (2µ+ 1)

n− k .

Note that the numerator is always nonnegative for µ <
n/(2k). Because we need µ ≥ 3, it follows that k ≤ n/8.

Overall, the probability of A is at least

h(1− pc)
2kµ(µ− 1)

· 1

n
·
n+ h

µ−1
− k (2µ+ 1)

n
·
(

1− 1

n

)n−2

≥
h(1− pc)

(
1 + h

(µ−1)n
− 2µ+1

n
k
)

2µ2kn
e−1 ≥ h(1− pc)

2µ2kn
e−1 ,

which is positive as long as maximal diversity (h = 0) has
not been reached. Note that this is our desired drift and
that 1− pc = Ω(1) > 0.

We can now bound the expected time until maximal di-
versity has been reached by using the multiplicative drift
theorem [7]. This yields an expected number of rounds in
O
(
µ2kn log(µk)

)
.

Now all that is left is that a crossover is performed that
generates the optimum. Again, the expected number of
steps for this event is 4kp−1

c . This completes the proof.

4.3 Fitness Sharing
We consider a tie-breaking rule that makes use of fitness

sharing as described in [8]. The actual fitness f(x) of an
individual x gets skewed by how similar it is with respect to
a certain measure d to other individuals. The new shared
fitness f̄(x) is the basis of the tie-breaking mechanism, where
we just delete one individual with worst shared fitness.

The general scheme of the fitness sharing mechanism is
parameterised with a metric d and two numbers α and σ.
Given a population P of individuals with worst fitness, we
want to remove an individual z ∈ P such that∑

x∈Pr{z}

f(x)∑
y∈Pr{z}max

{
0, 1−

(
d(x,y)
σ

)α}
is maximised. That means that there is a penalty for the
similarity of x to all other individuals y up to a distance
of σ; α determines the shape of the penalty.

In this paper we consider the Hamming distance, i.e.,
d = dH, and we set α = 1, that is, we have a linear penalty.
Note that we only use this fitness sharing rule for break-
ing ties (this ensures that the initial climb to the plateau
is undisturbed). We call this tie-breaking rule Hamming
fitness sharing.

650

Lemma 4.3. Given a population P of individuals all having
the same fitness; suppose that any two individuals of P differ
by at most σ. Then the Hamming fitness sharing tie-breaking
rule maximises the total Hamming distance of P.

Proof. Since all individuals x ∈ P have the same fit-
ness, we can ignore the impact of the fitness on the tie-
breaking rule. Furthermore, since individuals can differ
by at most σ, the maximum in the fitness sharing expres-
sion is not necessary. So we want to remove an individ-

ual z ∈ P such that
∑
x∈Pr{z}

(∑
y∈Pr{z}(1−

dH(x,y)
σ

)
)−1

is maximised. That is the same as minimising the term∑
x∈Pr{z}

∑
y∈Pr{z}−dH(x, y) since we just change the

monotony and remove the offset of
∑
y∈Pr{z} 1 and the com-

mon factor 1/σ; this is just the same as maximising the total
Hamming distance of P.

Thanks to this lemma, we now know that Hamming fitness
sharing and maximising the Hamming distance are equiv-
alent. Thus, we can immediately carry over all run time
results from the maximisation of the Hamming distance to
fitness sharing, as stated in the following theorem.

Theorem 4.4. Consider the (µ+1) GA with µ < n/(2k)
with pc = 1 − Ω(1) > 0. Suppose that ties in the selection
procedure are handled by Hamming fitness sharing with σ ≥
2k. Then the expected number of iterations until an optimal
individual is created when running on Jumpk, k ≤ n/8, is
O(n logn+ µ2kn log(µk) + 4kp−1

c).

Proof. The time needed to reach the plateau is by
Lemma 2.1 in O(µn+ n logn+ µ logµ). As we bound µ
by a polynomial in n, the µ logµ term is dominated by µn.

After reaching the plateau, Lemma 4.3 yields that on the
plateau Hamming fitness sharing is just maximisation of to-
tal Hamming distance. Thus, the statement follows from
the proof of Theorem 4.2.

5. ISLAND MODEL
An easy way to ensure diversity in a population is to keep

different parts strictly separate. Previous results [14] have
shown that island models can provide enough diversity that
can be subsequently leveraged by crossover. We consider a
single-receiver island model, described in [16], as follows. We
have µ+ 1 islands, µ of them running a (1+1) EA indepen-
dently from one another. Furthermore, there is one island
which is the receiver island. Each iteration it chooses two of
the µ islands uniformly at random, copies their respective
best-so-far individuals, and then performs uniform crossover
on those, hence pc = 1. The resulting offspring replaces the
resident individual if it has higher fitness. We say that the
island model succeeds if the receiver island produces the op-
timum. We do not employ any particular tie-breaking rule
in the islands (and, in the case of a tie, choose a survivor
uniformly at random).

Theorem 5.1. Consider the island model with pc = 1, µ =
O(nc) islands for any c, and µ ≥ 2. For optimizing Jumpk,
k = o(

√
n/µ), the expected run time until the optimum is

produced is O
(
n logn+ µ2kn+ µ24k

)
.

Proof. In this proof, we follow the same language as in the
proof of Theorem 4.1.

In expectation, after O
(
n lognd

)
steps, for a constant d >

0, a single (1+1) EA is on the plateau with probability 1−
1/nd [6]. So the probability of µ independently running
(1+1) EAs being all on the plateau after O

(
n lognd

)
steps

is
(
1−1/nd

)µ
, which goes toward 1 as n goes to infinity from

of our constraint on µ and because we can choose d > c.
Once all (1+1) EAs are on the plateau, we proceed via

drift analysis: we define a potential for the island model and
show that there is a bias toward 0. Fix two islands under
consideration. The potential Xt at point t (starting from the
plateau) is defined as follows: it is 0 if the receiver island
produced the optimum, else we have a look at the individuals
of the two fixed islands. Assume that these individuals have
i ≤ k of their 0s in common. Xt is then iµ2ne2 + µ24ke.

The drift is the expected change in potential, i.e., E(Xt−
Xt+1 | Xt). We make a case distinction to whether the
potential decreases or increases. In order to compute the
drift, we assume Xt > 0 to be given. Let i be such that
Xt = iµ2ne2 + µ24ke.

First we consider i > 0. Whenever the potential decreases,
it decreases by at least µ2ne2.

We now lower-bound the probability of the potential de-
creasing, i.e., the two individuals increase their Hamming
distance: we assume that only one individual flips a bad 0
and a good 1 and that our two individuals are chosen. No
other bits are mutated. Therefore, the probability is at least

2

µ2

(
1− 1

n

)n−2

· n− 2(k − i)− i
n

· i
n

(
1− 1

n

)n
≥ 1

µ2ne2
.

Thus, the overall positive drift is at least 1.
If we now consider i = 0, we easily get a positive drift

of at least 1 as well, since then all that is left to create the
optimum is to have the uniform crossover always choose the
correct bits of the 2k positions where the two individuals
differ, and not mutating any bit after crossover, resulting in
a probability of at least 1/(µ24ke).

We now upper-bound the negative drift. We only consider
the case that i increases by 1. An increase by more than 1
is possible but far more unlikely since more bit flips have to
occur, leading to an additional factor of 1/n2 in the prob-
ability for each additional 1. We make up for the so lost
terms by multiplying our negative drift with a constant c.

The change in potential conditioned on a decrease as we
defined it is −µ2ne2, and the probability of such a decrease
is at most ck2/n2: each of the two individuals can only
decrease the distance to the other one by flipping one of its
own 0s and flipping a 1 where the other individual has a
0. The absolute value of the negative drift is thus at most
c(µke)2/n. Using our assumption regarding k, this results
in a negative drift in o(1). The additive drift theorem [10]
hence yields an expected run time of O

(
µ2kn+ µ24k

)
when

starting from the plateau. Taking the time needed for all
islands to be on the plateau into account, we get the desired
run time of O

(
n logn+ µ2kn+ µ24k

)
.

6. EXPERIMENTS
Since the theoretical results presented in the previous sec-

tion are asymptotic and they mostly provide upper bounds
on the run time of the algorithms, we also implemented the
(µ+1) GA and compared the theoretically analysed diver-
sity mechanisms experimentally. The population size is set
to µ = 4e lnn. Full crossover is enabled (pc = 1.0) and the

651

problem size n is varied in [100, 1000] (with a step size of
25). In each tested setting, the run is replicated 100 times
with different random seeds and the number of function eval-
uations, denoted as ‘# evaluations’, is reported as the run
time. The result for k = 4 is shown in Figure 1. Note that we
also did the experiment with pc = 0 for the no-mechanism
setting, e.g., comparing the EA with the GAs, however, the
average run time for n = 100 in this experiment is already
2.28 · 108, which cannot be displayed in the figure.

On average, the highest contribution to the reduction of
the run time in order is fitness sharing, then convex hull
maximisation, deterministic crowding, and, finally, dupli-
cate elimination and minimisation have quite similar aver-
age run times. We also notice that the the island model with
µ = 2 requires approximately the same average numbers of
evaluations as deterministic crowding. Overall, compared to
the standard (µ+1) GA, all the diversity mechanisms con-
tribute to the reduction of the average run time, as well as
to the stability of the result.

200 400 600 800 1000

n

0

1

2

3

4

5

6

7

8

9

m
ea

n,
st

d
(#

ev
al

ua
tio

ns
)

×104 k = 4

no mechanism
dupl. elim.
dupl. min.
island (µ = 2)

det. crowding
conv. hull max.
fit. sharing

Figure 1: Performance of the diversity mechanisms.

7. CONCLUSION
We have considered the role of selection-based diversity

mechanisms used together with crossover for escaping lo-
cal optima. We prove rigorous upper bounds on the run
time of the (µ+1) GA for seven well-known diversity mech-
anisms optimising the Jumpk function. Our results reveal a
qualitative difference in the ability of the different diversity
mechanisms to escape local optima.

In contrast to previous theoretical work on crossover for
Jumpk, our upper bounds do not rely on unreasonably small
(e.g., vanishing with n) crossover probabilities, but instead
cover the more practical case of constant crossover probabil-
ities. Furthermore, our proofs provide insight into the ways
that diversity mechanisms, when applied as a tie-breaking
rule in selection, can quickly spread the population out
over the jump plateau in order to get enough diversity for

crossover to combine the correct solution components to es-
cape the set of local optima.

Acknowledgements
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 618091 (SAGE)
and from the EPSRC under grant no. EP/M004252/1.

References
[1] E. Alfaro-Cid, J. J. M. Guervós, F. F. de Vega, A. I.

Esparcia-Alcázar, and K. Sharman. Bloat control oper-
ators and diversity in genetic programming: A compar-
ative study. Evol. Comput. Journal, 18:305–332, 2010.

[2] J. Arabas. Approximating the genetic diversity of pop-
ulations in the quasi-equilibrium state. IEEE Trans.
Evol. Comput., 16:632–644, 2012.

[3] G. Bell. The masterpiece of nature the evolution and
genetics of sexuality. 1982.

[4] E. K. Burke, S. M. Gustafson, and G. Kendall. Diver-
sity in genetic programming: an analysis of measures
and correlation with fitness. IEEE Trans. Evol. Com-
put., 8:47–62, 2004.

[5] N. Chaiyaratana, T. Piroonratana, and N. Sangkawel-
ert. Effects of diversity control in single-objective and
multi-objective genetic algorithms. J. Heuristics, 13:
1–34, 2007.

[6] B. Doerr and L. A. Goldberg. Adaptive drift analysis.
Algorithmica, 65:224–250, 2013.

[7] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative
drift analysis. Algorithmica, 64:673–697, 2012.

[8] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt.
Analysis of diversity-preserving mechanisms for global
exploration. Evol. Comput. Journal, 17:455–476, 2009.

[9] W. Gao and F. Neumann. Runtime analysis for max-
imizing population diversity in single-objective opti-
mization. In Proc. of GECCO ’14, pp. 777–784, 2014.

[10] J. He and X. Yao. A study of drift analysis for esti-
mating computation time of evolutionary algorithms.
Natural Computing, 3:21–35, 2004.

[11] T. Jansen and I. Wegener. The Analysis of Evolutionary
Algorithms - a Proof That Crossover really can help.
Algorithmica, 34:47–66, 2002.

[12] T. Kötzing, D. Sudholt, and M. Theile. How crossover
helps in pseudo-boolean optimization. In Proc. of
GECCO ’11, pp. 989–996, 2011.

[13] A. Moraglio and D. Sudholt. Runtime analysis of con-
vex evolutionary search. In Proc. of GECCO ’12, pp.
649–656, 2012.

[14] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sud-
holt. On the effectiveness of crossover for migra-
tion in parallel evolutionary algorithms. In Proc. of
GECCO ’11, pp. 1587–1594, 2011.

[15] R. K. Ursem. Diversity-guided evolutionary algorithms.
In Proc. of PPSN VII, pp. 462–474, 2002.

[16] R. A. Watson and T. Jansen. A building-block royal
road where crossover is provably essential. In Proc. of
GECCO ’07, pp. 1452–1459, 2007.

[17] C. Witt. Runtime Analysis of the (µ+1) EA on Simple
Pseudo-Boolean Functions. Evol. Comput. Journal, 14:
65–86, 2006.

652

