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Abstract Randomized rumor spreading was recently shown to be a very
efficient mechanism to spread information in preferential attachment net-
works. Most interesting from the algorithm design point of view was the
observation that the asymptotic run-time drops when memory is used to
avoid re-contacting neighbors within a small number of rounds.

In this experimental investigation, we confirm that a small amount of
memory indeed reduces the run-time of the protocol even for small network
sizes. We observe that one memory cell per node suffices to reduce the run-
time significantly; more memory helps comparably little. Aside from ex-
tremely sparse graphs, preferential attachment graphs perform faster than
all other graph classes examined. This holds independent of the amount of
memory, but preferential attachment graphs benefit the most from the use
of memory. We also analyze the influence of the network density and the
size of the memory. For the asynchronous version of the rumor spreading
protocol, we observe that the theoretically predicted asymptotic advan-
tage of preferential attachment graphs is smaller than expected. There are
other topologies which benefit even more from asynchrony.

We complement our findings on artificial network models by the corre-
sponding experiments on crawls of popular online social networks, where
again we observe extremely rapid information dissemination and a siz-
able benefit from using memory and asynchrony.

1 Introduction

Randomized rumor spreading is a class of simple randomized distributed algo-
rithms, all building on the paradigm that nodes of a network contact random
neighbors to exchange information. Despite being very simple protocols, they
proved to be very efficient both in theoretical investigations [14, 15, 23, 26–32, 36]
and in practical applications [19, 33].

In a recent work [22], the authors analyzed the performance of the classical
phone call model of Karp et al. [32] on networks following the preferential attach-
ment model suggested by Barabási and Albert [1] to model real-world networks.
The model assumes that new vertices attach to already-present vertices with a
probability proportional to their degree. The problem of rumor spreading on these
networks was first considered by Chierichetti, Lattanzi, and Panconesi [16] who
showed that O(log2 n) rounds suffice with high probability. In [22], an asymptot-
ically tight rumor spreading time of Θ(log n) was proven, which is the same order
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of magnitude as for many other network topologies including complete networks,
hypercubes and many classical random graph classes. Surprisingly, this run-time
drops to the again tight order of Θ(log n/ log logn) when the protocol is modified
so that contacting the same neighbor twice in a row is avoided. This observation is
important from the viewpoint of algorithm design, since such a mechanism is very
simple to implement. However, so far such fine-tuning has rarely led to provably
better algorithms.

The aim of this work is to use an experimental investigation in order to (a)
better understand the performance of randomized rumor spreading protocols
on preferential attachment networks; in the long run, this might help in the
design of efficient communication networks; and (b) to better understand the
advantage of equipping nodes with a small amount of memory, which is used
to avoid contacting a constant number of previous contactees; this is interesting
from the viewpoint of algorithm design.

In summary, our main findings are the following. Generally, rumor spreading is
very fast in preferential attachment networks, significantly faster than in random-
attachment networks and hypercubes (which are much denser), and faster than
in complete networks (unless the density is very small). There is a clearly visible
advantage of keeping track of the most-recently-contacted neighbor (using a one-
item memory) in preferential attachment networks, particularly if the density is
small. There is less to be gained from memory on random attachment networks
and almost no gain in complete networks and hypercubes. Additional memory
is of some benefit, but not very much.

For communication in social networks in particular, it makes sense to consider
an asynchronous version of the rumor spreading protocol with nodes acting at
exponentially distributed times (with expectation one). For random graphs with
a given expected degree distribution that follows a power law with exponent in
(2, 3), Fountoulakis et al. [29] showed very recently that the push-pull protocol
becomes much faster in the asynchronous setting. A recent theoretical analy-
sis [23] proves a reduced time of O(

√
logn) in preferential attachment graphs

and argues that random-attachment graphs, complete graphs and hypercubes
keep their Θ(log n) times. Our experiments show that the asynchronous model
is faster on all graph classes, but a clearly greater advantage for preferential
attachment graphs is not visible.

We conducted similar experiments on crawls of the Twitter and Orkut online
social networks. Interestingly, we observe an even faster information dissemina-
tion than in preferential attachment graphs of corresponding size and density.
These experiments also confirm that tracking one neighbor (one-item memory)
cell leads to a significant improvement, whereas using additional memory to
track more neighbors does not produce significant gains.

Rumor Spreading Protocols

When talking about rumor spreading, in this paper we generally refer to the
random phone call model introduced by Karp et al. [32]. This is a push-pull pro-
tocol, meaning that information is exchanged between initiator and recipient of
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a call in both directions. A push-protocol with only the caller sending informa-
tion to the recipient has also been widely discussed in the literature [27, 30], in
particular, for the application of making replicated databases consistent [19, 33].
As shown in [16], however, the push protocol has very poor performance in pref-
erential attachment networks.

The random phone call model is a synchronized protocol. In each round, each
node of the network calls a random neighbor and both exchange information with
each other. If one of the communication partners was informed at the beginning
of the round, then both will be at the end of the round. An asynchronous analog
of the protocol is discussed in Section 5.

It is interesting to enhance the random phone call model by excluding recently-
contacted neighbors. When allowing a memory of size k, each node v chooses
his next communication partner uniformly at random from all his neighbors
except the previous min{k, deg(v)− 1} contactees. Note that nodes with degree
d(v) ≤ k+1 act as in the quasirandom model of Doerr, Friedrich, and Sauerwald
[20] with randomly chosen lists.

Network Models

We are mainly interested in the preferential attachment (PA) model of Barabási
and Albert [1]. The density of the resulting graph is controlled by a single pa-
rameter m. The model iteratively adds new vertices, which are connected to
m already present vertices with a probability proportional to their degree. See
Bollobás, Riordan, Spencer, and Tusnády [8, 9] for a precise description of this
random graph model. It can be easily seen that for m = 1 the graph is dis-
connected with high probability. We therefore focus on m ≥ 2. Under this as-
sumption, the diameter is Θ(log(n)/ log logn) with high probability [8]. Besides
various other typical properties of social networks[3, 6, 7, 18, 28], it also has
been shown that the degree distribution follows a power law [9].

In addition to the PA model, we shall also include random-attachment net-
works in our investigation. In this network model, also known as the m-out
model [5], each node chooses m other nodes as neighbors uniformly at random;
finally, this neighbor relation is made symmetric and multiple edges are removed.
Consequently, we obtain a random graph with average degree close to 2m and
minimum degree at least m. These graphs form a good point of comparison
with preferential attachment graphs with density parameter m, where nodes
also choose m random neighbors, but according to the preferential attachment
paradigm.

Related Work

For many network topologies, the random phone call model very quickly dis-
tributes a piece of information initially only present at one node to all other
nodes. In addition, due to its randomized nature, this process is highly robust
against transmission failure. Karp et al. [32] show that in complete networks
(any node can talk to any other node), (1+o(1)) log3(n) rounds suffice to spread
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a rumor in the whole network. Similarly, Elsässer [25] proved a bound of Θ(log n)
rounds for Erdős-Rényi random graphs Gn,p with p ≥ polylog(n)/n. For hyper-
cubes, a Θ(logn) bound follows from the O(log n) bound of Feige et al. [27]
for the push protocol together with the trivial lower bound stemming from the
logarithmic diameter of the hypercube.

In a recent paper [22], the authors proved that the random phone call protocol
spreads a rumor to all vertices of a preferential attachment graph in Θ(log n)
rounds as well. This improves over the previous O(log2 n) bound by Chierichetti
et al. [16], but falls short of showing that these graphs, which are often used to
model social networks, support rumor spreading better than classical network
topologies. This is achieved in some sense in [22]. If we slightly alter the protocol
such that a node chooses its communication partner uniformly at random from
all neighbors excluding the one contacted in the previous round, then the rumor
spreading time reduces to O(log n/ log logn), which is a tight bound because it
is the diameter of these graphs [8].

Note that excluding previous contactees has almost no effect on classical net-
work topologies. By checking the proofs of the results cited above, we see that also
when excluding a constant number of previous contactees, the Θ(log n) bound
remains valid for complete graphs, hypercubes and random graphs. The quasi-
random protocol of Doerr et al. [20] is a way of excluding all previous contactees.
It has been investigated only in the pushmodel, where againmany knownΘ(log n)
run time bounds have been verified. An experimental investigation [21] revealed
that the quasirandom protocol is faster than the independent one, minimally for
complete networks, but noticeably for sparser ones like random graphs and hyper-
cubes. Unfortunately, our current results cannot be compared to these, because
the latter are based only on push protocols. Baumann et al. [2] observed that the
behavior of the quasirandom protocol changes significantly if the nodes known
which of their neighbors already received the rumor.

2 Fast Broadcasting in Preferential Attachment Graphs,
Influence of Graph Density

The result of [22] shows that rumor spreading in the random phone call
model with memory size at least one has an asymptotically faster run-time of
Θ(log n/ log logn) in preferential attachment graphs, in contrast to the Θ(log n)
time observed (i) for the no-memory version on preferential attachment graphs
and (ii) regardless of memory on most classical graphs like complete graphs, hy-
percubes, and random attachment graphs. Since in [22] only asymptotic results
were proven, it is not clear if the proven differences are apparent for reasonable
graph sizes. This is the focus of the current section of this paper. We have ex-
amined the average time needed to inform all vertices, starting from a random
vertex, for different graphs.

In Figure 1, we show the broadcast times observed for complete graphs,
hypercubes, and preferential and random attachment graphs with density pa-
rameters m = 2 and m = 10, with one-item memory. We observe that rumor
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(b) density parameter m = 10.

Fig. 1. Comparison of synchronous rumor spreading with one-item memory on
preferential attachment graph ( ), random-attachment graph ( ), complete
graph ( ), and hypercube ( ). The two charts show different density parameters
of the preferential and random-attachment graph. The results for complete graphs and
hypercubes are equivalent in both charts; they are given for comparison. The x-axis
corresponds to the number of vertices n = 25 . . . 223. The y-axis corresponds to the
run-time to inform all vertices, averaged over 10,000 runs.
For m = 10 the preferential attachment graph performs faster than all other graph
classes. For not too large (n ≤ 223) and very sparse case (m = 2) considered, the
complete graph is even faster than the preferential attachment graph.

spreading is quite fast in preferential attachment graphs ( ), faster than in
hypercubes ( ) and random-attachment graphs ( ) for both density pa-
rameters m = 2 and m = 10, and even faster than in complete graphs ( )
for m = 10. Hence only the very sparse preferential attachment graphs with
m = 2 are outperformed by complete graphs for n ≤ 107. As for n ≥ 104 the two
last-mentioned charts constantly get closer, we expect that for sufficiently large
graphs, information spreading is also faster on sparse preferential attachment
graphs than on complete graphs.

We also observed structurally different behavior of the information spreading
process on the different graphs. To be precise, let us consider graphs with n = 106

vertices andm = 2, averaged over 10,000 runs. Then on average 57% of the nodes
of a random attachment graph are informed with a pull operation (and 43% via
push). On the other hand, in preferential attachment graphs 73% of the nodes
are informed by a pull operation. Moreover, on average such a pull operation
transfers the rumor from a high degree node (with degree 66 on average) to a
node with low degree (with degree 3 on average). This matches the structure
used in the proofs of [16, 22, 29].

The path by which a piece of information is spread in a preferential attachment
graph seems to differ from the typical paths in a random attachment graph. We
measured the number of hops a piece of information needed to inform a node
and compared this to its graph distance. In general, it is preferable to have a
good correlation between the two measures [34]. The graph distance from the
source gives a lower bound for the number of hops needed to inform a node. We
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call the difference between the number of hops needed and the graph distance
the delay. If the delay is small, the information is spread on nearly-shortest
paths. On random attachment graphs we observed that vertices which are less
than six steps away from the source have a delay of less than one on average.
On preferential attachment graphs, nodes with distance between two and six
from the source have on average a delay of four. This shows that on preferential
attachment graphs the information is not spread via shortest paths, but via
detours. This again has been used in the theoretical analyses of [16, 22, 29].

3 The Effect of Short-Term Memory

Perhaps the most surprising finding of [22] is that keeping track of a certain small
number of recently-contacted neighbors, and avoiding selecting any of these when
randomly choosing the next communication partner, significantly reduces the time
needed to inform all nodes of preferential attachment networks. More precisely, it
was shown that for the classical random phone call model, this time is Θ(log n).
If the communication partners are chosen uniformly at random from all neighbors
except the one called in the previous round (one-item memory), then this time
decreases to Θ(log n/ log logn). Using additional memory to track more than one
recent contactee, however, does not yield times better than Θ(log n/ log logn).

In this section, we experimentally investigate this phenomenon. Figure 2 shows
the average time needed to inform all nodes. We first discuss the results on
preferential attachment graphs with m = 2 shown in Figure 2 (a). As expected,
we observe a significant improvement between no exclusion (marked with )
and exclusion of one neighbor (marked with – ). In fact, for all graph sizes, one-
item memory leads to nodes becoming informed between 14% and 21% faster
than no memory. Observing the curves for different graph sizes also suggests
that we have a Θ(log n) broadcast time in the no-memory case and an o(log n)
time with memory of any non-zero size. We do observe additional but very small
improvements if we increase the memory to a size larger than the run-time, that
is, when avoiding all previous contactees (marked with ). For the graph sizes
considered, the improvement of unbounded memory compared to memory of only
one item is around 2%. The advantage of memory for preferential attachment
graphs gets smaller for larger m, as shown in Figure 2 (c).

The results on random-attachment graphs are similar, just generally slower.
Figure 2 (b) shows that the difference for m = 2 between no memory and one-
item memory is between 10% and 13%, while the additional improvement of
unbounded memory is again around 2%. Theoretical consideration suggests that
these gains can be at most by constant factors1, and our experiments show that
this can be at most a small constant.
1 It is known that these graphs have a diameter of Θ(log n), so this is a natural lower
bound. On the other hand, with high probability each pair of vertices is connected by
a path such that the sum of the degrees of the vertices on the path is at mostO(log n).
Consequently, with probability 1 − o(n−1), O(log n) rounds suffice to transmit a
rumor along such a path. This yields an upper bound of O(log n) for the broadcast
time on random attachment graphs.
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Fig. 2. Comparison of synchronous rumor spreading without memory (marked with ),
one-item memory (marked with – ), and unbounded memory (marked with ) on dif-
ferent graphs. The x-axis corresponds to the number of vertices n = 25 . . . 223. The
y-axis corresponds to the run-time to inform all vertices, averaged over 10,000 runs.
The benefit of remembering more than one neighbor is very limited for all graphs. The
benefit of one-item memory compared to no memory is the largest for the sparse pref-
erential and random-attachment graphs. The complete graph and hypercube benefit
very little from additional memory.
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Table 1. Comparison of the average time needed to inform a certain fraction of the
vertices on the Orkut network depending on the amount of memory. For each combi-
nation, the average and standard deviation of 100,000 runs is given. With regard to
the time needed to inform all vertices, we observe a large difference between excluding
none and excluding the one most recently contacted. If only a 90% or 99% fraction
should be informed, the gap is significantly smaller.

90% informed 99% informed 100% informed

memory=0 15.74±0.99 16.87±1.00 23.13±2.28

memory=1 15.51±0.98 16.60±1.00 20.97±1.59
memory=2 15.47±0.98 16.55±0.99 20.31±1.30

memory=3 15.45±0.98 16.54±0.99 20.18±1.22

memory=25 15.45±0.97 16.54±0.99 20.11±1.13

In contrast, for other network topologies we see little advantage from using
memory. For complete graphs, we observe in Figure 2 (e) barely any advan-
tage even with unbounded memory. The difference between no memory and
unbounded memory is less than 1% for complete graphs of all sizes. Because of
the large vertex degrees, little benefit was expected; however, this is a notable
difference from the results of using a pure push protocol without pull. Here, [21]
observed at least a small advantage for the quasirandom protocol, which, when
used with random lists, is equivalent to random choices with excluded previous
contactees. The results of Figure 2 (f) for hypercubes show a similarly small im-
pact of memory. For graphs with more than a few thousand nodes, the difference
between no memory and unbounded memory is smaller than 2%.

The benefit of a small amount of memory can also be observed on real-world
graphs. We examined the time needed to spread a rumor on a crawl of the
Orkut network (for details on the network see Section 4). Table 1 shows a large
difference between no memory and one-item memory for the time needed to
inform all vertices. It is clearly visible that (a) more memory is of very little
benefit and (b) this difference vanishes when considering the time needed to
inform only a fraction of the vertices.

In summary, we also observe in experiments that a small amount of memory
helps a lot for preferential and random attachment graphs, but much less for
classical network topologies like complete graphs and hypercubes.

4 Real-World Social Networks

Most previous statistics were based on mathematically-defined graph models. To
support our claim that news spreads very fast on social networks in general, we
have also simulated the rumor spreading process on crawls of the Twitter and
Orkut social networks.

Twitter is a social networking site which allows users to send and read short
messages (so-called “tweets”) of up to 140 characters. It is currently one of the
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Fig. 3. Comparison of synchronous rumor spreading with one-item memory on two
real networks ( ) with preferential attachment graph ( ), random-attachment
graph ( ), and complete graph ( ) of same size and density (where applicable).
The Orkut network in (a) has n = 3, 072, 441 vertices and density parameter m = 38,
the Twitter network in (b) has n = 51, 217, 936 vertices and density parameter m = 32.
The Orkut network behaves very similarly to the corresponding preferential attachment
graph. The Twitter network is even faster than the corresponding preferential attach-
ment graph. The complete and random-attachment graphs are significantly slower.

top ten most visited sites on the Web2. We performed our experiments on a snap-
shot of the Twitter network that was crawled in September 2009 by Cha, Had-
dadi, Benevenuto, and Gummadi [13], available from [4]. It consists of 51,217,936
nodes and 1,963,263,821 directed edges. By making all edges undirected and con-
sidering the largest connected component, we obtained a connected graph with
51,161,011 nodes and 1,613,927,450 undirected edges. The preprocessing step
of making all edges undirected might change the network structure, but the
resulting network is still a typical social power law network.

Orkut is a social networking site operated by Google Inc. It is one of the top ten
most visited websites in India and Brazil2. We used the data crawled in October
and November 2006 by Mislove, Marcon, Gummadi, Druschel, and Bhattacharjee
[35], which can be downloaded from [4]. The crawled graph contains 3,072,441
nodes and 117,185,083 edges. The edges are undirected, since Orkut requires
consent from both users before a link between the two is created. At the time of
the crawl, new users had to be invited by an existing user; therefore, the graph
consists of a single component. The data covers roughly 11% of the total user
population. The technical reason for this is that Orkut limits the rate at which
a single IP address can download information. As a result, it took more than a
month to crawl even this currently available part of the graph.

We chose these online social networks because of the available network data
and because we feel that their structure might be similar to that of other
real-world social networks. We are aware of the fact that interactions in Twitter

2 See “Top 500 Sites on the web” at www.alexa.com.

www.alexa.com
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and Orkut are more complex than in our simple randomized rumor spreading
model.

We ran the protocol with one-item memory on these real-world graphs and,
for comparison, on preferential attachment, random-attachment and complete
graphs with size and density as close as possible to the corresponding values of
the real-world graph, that is, m = 32 for Twitter network and m = 38 for the
Orkut network. The numbers shown in Figure 3 are averages of 500 runs3 for
the Twitter network and 100,000 runs for the Orkut network.

Figure 3 shows that news spreads much faster in the real-world networks ( )
and the preferential attachment graphs ( ) than in the complete ( ) and
random-attachment graphs ( ). Interestingly, rumor spreading in the Orkut
network and the comparable preferential attachment graph proceeds very simi-
larly, whereas the Twitter network leads to much faster rumor propagation.

5 Asynchronous Rumor Spreading

So far, we have considered only the synchronized model where all nodes take
action simultaneously at discrete time steps. Depending on the circumstances,
this assumption may not be plausible. In fact, the assumption of a common
centralized time clock contradicts the idea of a distributed self-organized broad-
casting protocol [10, 21]. Boyd et al. [10] proposed an asynchronous time model
with a continuous time line. There, each node has its own clock that ticks at the
increments of a rate 1 Poisson process independent from all other clocks, which
implies that the time between two ticks is exponentially distributed with pa-
rameter 1. In the asynchronous rumor spreading protocol, every node contacts a
neighbor whenever its own clock ticks, and both exchange their information. Un-
til last year, rumor spreading in the asynchronous model has received much less
attention. Very recently, the authors have studied asynchronous rumor spread-
ing theoretically on preferential attachment graphs [23], while Fountoulakis et al.
[29] studied it on Chung-Lu random graphs [17] with a given expected degree
distribution. Note that Chung-Lu graphs are quite different from preferential
attachment graphs, e.g., their average diameter is Θ(log logn) [17], whereas it is
Θ(log n/ log logn) [24] for preferential attachment graphs.

It is not surprising that asynchronous rumor spreading can be slow to inform
all vertices. Note that it takes Θ(log n) time until every node has performed at
least one action. For this reason, in Figure 4 we consider times needed to inform
99% of the nodes. Note, however, that the times needed to inform 100% were
also lower for the asynchronous model compared to the synchronous one. The
charts clearly show a substantial speedup. Interestingly, for n = 223, the speedup
for preferential ( ) and random-attachment graphs ( ) is slightly smaller

3 The reason for the relatively small number of runs is that the Twitter network has
more than one billion edges and we needed more than 50 GB of main memory to
process it. A single simulation of the process required a run-time of several hours on a
Hewlett Packard DL980 G7 server with eight eight-core Intel Xeon X7560 processors
and 2048 GB of main memory.
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Fig. 4. Comparison of the average number of time steps needed to inform 99% of the
vertices with synchronous (marked with ) and asynchronous (marked with ) rumor
spreading without memory on different graphs. The x-axis corresponds to the number
of vertices n = 25 . . . 223. The y-axis corresponds to the run-time to inform 99% of the
vertices, averaged over 10,000 runs.
The asynchronous protocol spreads information faster than the synchronous protocol
on all graphs. The difference is of the same order of magnitude for all graphs.
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(a) Orkut network (b) Twitter network

Fig. 5. Comparison of synchronous ( ) and asynchronous ( ) rumor spreading
without memory on two real social networks. The x-axis corresponds to the time steps
(in the synchronous setting) or the time (in the asynchronous setting). The y-axis
corresponds to the number of informed vertices after this time, averaged over 1000
runs for the Orkut network and 50 runs for the Twitter network.
In both cases, the asynchronous counterparts spread the rumor significantly faster than
the synchronous models.

(48-50% for m = 2 and 58-59% for m = 10) than for complete graphs ( ) and
hypercubes ( ), which are 59% and 82%, respectively.

These empirical observations for moderately sized graphs are surprising given
the theoretical findings on the expected asymptotic behavior. For the prefer-
ential graph, it has been shown that the time to inform n − o(n) vertices
without memory decreases from Θ(log n) for the synchronous model without
memory to O(

√
logn) for the corresponding asynchronous model [23]. On the

other hand, it has been argued that random-attachment graphs, complete graphs
and hypercubes keep their Θ(log n) times, while our experiments show that the
asynchronous model is faster on all graph classes. An asymptotic advantage for
preferential attachment graphs is not apparent. We expect that the theoretically
proven asymptotic behavior can be observed only for very large graphs. For the
real-world social networks Orkut and Twitter, Figure 5 shows that, especially at
the beginning, the asynchronous protocol ( ) performs much faster than its
synchronous counterpart ( ). (For a comparison between the logarithmically
scaled y-axis of Figure 5 (a) and the second row of Table 1, note that after 15
time steps the synchronous protocol only informed 84% of the nodes and the
asynchronous protocol informed 99.99%.) This matches well with the theoretical
finding that asynchrony speeds up rumor spreading on different models of social
networks [23, 29].
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6 Discussion

We have empirically studied several classical rumor spreading protocols on dif-
ferent artificial and real-world networks. As theoretically predicted, we observed
that in preferential attachment networks rumors spread significantly faster than
in all other examined network models. This confirms that the structure of social
networks apparently allows spreading news very efficiently. This is remarkable
as social networks evolve in a random and decentralized manner and are not
designed with this purpose in mind.

The experiments also gave a much more detailed picture than possible purely
theoretically. It has been demonstrated that in order to design a fast rumor-
propagation algorithm on social networks, modeled by preferential attachment
graphs, one needs small memory that helps to decide which node to contact
next. This again seems to be specific to such networks as memory helps other
network topologies much less. We also observed that a surprisingly small amount
of memory is sufficient.

While theoretical results for models of social networks predicted a large speed-
up when allowing asynchronous communication, we observed that other network
topologies can benefit even more. The difference between synchronous and asyn-
chronous propagation is very apparent for the two real-world networks Orkut and
Twitter. We also observed that the speed of information spreading is very similar
in the Orkut network and a preferential attachment graph of comparable density.
Future work should include other rumor spreading protocols (e.g. [2, 11, 12]),
more artificial graphs (e.g. [17]), and preferably even larger real-world networks
like Facebook, which has close to one billion nodes.
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