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Abstract

The fine-grained localization and classification of various
lung abnormalities is a challenging yet important task for
combating diseases and, also, pandemics. In this paper,
we present one way to detect and classify abnormalities
within chest X-ray scans. In particular, we investigate the
use of binary image classification (to distinguish between
healthy and infected chests) and the weighted box fusion
(which constructs a detection box using the proposed boxes
within range). We observe that both methods increase the
performance of a base model significantly.

Furthermore, we improve state of the art on lung seg-
mentation, even in the presence of abnormalities. We do
so using transfer learning to fine-tune a UNet model on the
Montgomery and Shenzhen datasets. In our experiments,
we compare standard augmentations (like crop, pad, rotate,
warp, zoom, brightness, and contrast variations) to more
complex ones (for example, block masking and diffused noise
augmentations). This way, we obtain a state-of-the-art model
with a dice score of 97.9%. In particular, we show that sim-
ple augmentations outperform complex ones in our setting.

1. Introduction
Preface Investigating chest X-rays (CXR) is an important
and challenging task. Both the check for the presence of
abnormalities and the classification thereof are crucial. Au-
tomating this fine-grained localization and classification task
with the help of deep learning would result in better patient
outcomes, lift up health care quality worldwide, and save
many lives by making leading expert-level diagnoses scal-
able and thus widely accessible. Since most datasets provide
no or only partial information on the location and annota-
tions of the abnormalities, many existing approaches focus

on classification without detection or implicit localization
[32, 4, 13, 15]. The novel VinDr-CXR dataset [22] provides
the much-needed locations of the abnormalities, making a
fine-grained classification and localization possible.

In order to facilitate the recognition of abnormalities,
medical images usually have to be segmented first. The seg-
mented areas can then be used to calculate more complicated
metrics. Thus, the classification and localization of lung
abnormalities are tightly bound with the segmentation. We
focus on the segmentation of lungs in standard posteroante-
rior chest X-ray (CXR) scans, which can be used to diagnose
many diseases and abnormalities.

Related Work Many studies aim to classify and detect var-
ious abnormalities such as pneumonia and cancer in CXRs
for clinical use in computer-aided detection (CAD) systems.
Several methods have been developed in the last years to
generate localized predictions for CXRs without available
localized training data due to the lack of sufficiently large
datasets. Class activation maps (CAM) are used to obtain a
localization of abnormalities from a classification task [33].
Similarly, in the Unified DCNN framework, the weights and
activations extracted from the network can be used to de-
tect if abnormalities are present and then locate them [18].
Another approach exploits the structured property of CXR
images and locates abnormalities via contrastive learning
with a learnable alignment module to align input images geo-
metrically [19]. Besides using standard image classification
techniques and verifying them against activation heatmaps
[2] or predicting regions without having them in the training
data, few studies approach the CXR diagnosis using object
detection architecture due to the lack of respective datasets.
Most recently, the feasibility of a two-stage classification
and detection using YOLOv2 with DenseNet on a small
proprietary dataset with 3 500 images and 5 class labels is
investigated [6]. At the time of writing, the VinDr-CXR
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dataset is only used as one of five CXR datasets to evaluate
Federated Learning [36].

Also, the segmentation of lungs in chest X-rays is still
a pending problem in computer science, especially in the
presence of abnormalities. Transfer learning approaches for
medical tasks have been investigated in the literature, for ex-
ample, by pre-training a model on a large dataset containing
one disease and applying this knowledge to a small dataset
with a different disease [16] or by using a model pre-trained
on ImageNet [25]. Another approach is to add an attention
mechanism to the UNet architecture [26] in order to achieve
improved results in lung segmentation [8]. Another way uses
the same approach to determine the usefulness of fine-tuning
[21] and manages to achieve nearly state-of-the-art results
with only a few image samples for training. Also, focusing
specifically on biological abnormalities that result in highly
obfuscated X-ray images, one can train a model on an X-ray
dataset for lung segmentation that does not include these
abnormalities and transfer it to one that did [27].

Our Contribution We suggest improvements for the fine-
grained localization, classification, and segmentation tasks.
We use the weighted boxes fusion (WBF) method to improve
the non-maximum suppression (NMS) for the fine-grained lo-
calization task. On top of that, we use a 2-class-classification
(2CC) for the fine-grained localization and classification task
to distinguish between healthy chests and those which are
not. This helps remove false positives when the chest X-ray
does not contain any abnormality. We observe that the pro-
posed approaches (WBF + 2CC) significantly improve the
base model’s performance, leading to a mAP-score of 0.242.

We advance the state of the art for lung segmentation,
even in the presence of diseases, using a transfer learning
approach with a UNet [26]. We compare both complex
and straightforward augmentations and evaluate their im-
pact on the model. This way, we reduce the margin of error
of the state-of-the-art model by over 40% with a resulting
dice score of 97.9%. Most notably, we observe that simple
augmentations increase the model’s performance more than
complex ones in our setting (compare Section 3.1), rein-
forcing prior findings in the literature [8]. Contrary to the
previous literature [8], we observe that the Adam optimizer
[17] does converge as expected.

2. Data Set
For the disease classification and localization, we use

the VinDr-CXR dataset [22]. It is provided as part of the
VinBigDa Chest X-Ray Abnormalities Detection Kaggle chal-
lenge [23] by the Vingroup Big Data Institute and includes
18 000 labeled images. There are 14 different lung condition
classes and a “No Finding” label, indicating the absence of
an abnormality. The images are split up into 15 000 images
belonging to the training set and 3 000 unlabeled images (of

which 2 700 (90%) are available as the test set). To monitor
our training, we use 750 images (5% of the training set) as a
validation set. Out of the 15 000 images in the training set,
10 606 do not contain any abnormalities. We remark that the
class distribution for the local labels is heavily imbalanced.

For the lung segmentation task, we use the Pulmonary
Chest X-Ray Abnormalities dataset [14, 5], a copy of which
can be found on Kaggle [20] for example. This dataset
consists of X-ray images of patients with and without tu-
berculosis. It was created by the Shenzhen No.3 People’s
Hospital, Guangdong Medical College, Shenzhen, China,
and the National Library of Medicine, National Institutes of
Health, Bethesda, MD, USA. Furthermore, the X-ray images
from the Montgomery hospital contain lung segmentations.
The missing lung segmentations for the X-rays obtained
from the Shenzen hospital can be found as separate dataset
[14, 5, 31]. It was manually annotated by the students and
teachers of the Computer Engineering Department, Faculty
of Informatics and Computer Engineering, National Techni-
cal University of Ukraine ”Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv, Ukraine. It can be downloaded from Kaggle
[1] as well. The Shenzhen dataset contains 336 images of
patients with tuberculosis and 326 images of patients without
tuberculosis, while the Montgomery set contains 80 images
of patients with tuberculosis and 58 of patients without tuber-
culosis. The set contains images of different abnormalities,
such as effusions and miliary patterns, but misses other pos-
sible abnormalities, such as severe opacification. We split it
into training (80%), validation (10%) and test (10%) set.

3. Architectures
Next we discuss the models we use for the fine-grained

classification and localization task (Section 3.1) and for the
segmentation task (Section 3.3). In Section 3.2, we discuss
possible improvements of the base model from Section 3.1.

3.1. Fine-Grained Classification and Localization

We use the Detectron2 framework [34], which provides
a variety of easy-to-use, pre-trained models for object de-
tection. The models were pre-trained on the COCO dataset.
For object detection, Detectron2 provides three main model
architectures in a variety of nuances: Faster R-CNN, Reti-
naNet, and RPN & Fast-RCNN. The model we choose is
the faster rcnn R 101 FPN 3x from the Detectron2
model zoo [35]. This model has the second-highest baseline
score for object detection among the models available in
the library while using significantly less memory than better
models [34]. We train it with a batch size of 4, a cosine
learning rate scheduler with a base learning rate of 0.001,
and a Non-Maximum Suppression (NMS) threshold of 0.8.
To evaluate our models during training, we use Detectron2’s
COCOEvaluator to compute the mean average precision
(mAP) scores on the validation set as this is an established
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metric for evaluating object detection performance [24]. The
evaluation of the test set is done on the Kaggle server us-
ing the standard PASCAL VOC 2010 mAP [7] with an IoU
threshold of 0.4. Since Detectron2 does not have this spe-
cific metric built-in, we use its existing, more general mAP
implementation. To distinguish between the two metrics, we
refer to the first as the test mAP (implementation in Kaggle)
and the validation mAP (implementation in Detectron2 side).

To improve our model’s generalization capabilities, we
use several types of image augmentation. We start by ap-
plying augmentations built into Detectron2, such as random
saturation (0.7-1.3), contrast (0.7-1.3), brightness (0.7-1.3),
rotation (−10°-10°), horizontal flips and cropping (0.8 rel-
ative range). Each augmentation has a probability of 0.2
except the horizontal flips, which have a probability of 0.5.
The results of 10 000 iterations with evaluation every 1 000
steps on a faster rcnn R 101 FPN 3x model shows no
improvement, the AP score even decreases. Additionally we
use Gaussian blur with a kernel size of 5. We experiment
with diffused noise augmentation [27], wherea random disk
sets of varying radii, smoothed with a Gaussian kernel, is
appended and is used to scan for Pulmonary Opacification in
X-ray images [27], which can also be caused by COVID-19.

The results of our augmentation experiments are dis-
played in Figure 1. Overall using only the built-in aug-
mentations worsened the mAP on the validation set. Using
diffused noise instead improved the validation mAP slightly.
Adding all built-in augmentations except the rotation in-
creased the score further. One phenomenon attracted our
attention, as it seemed that certain augmentations improved
the score for certain types of diseases. For example, the
diffused noise augmentation improved the detection of the
lung infiltration condition, while training without the rota-
tion augmentation improved the detection of Pneumothorax.
In future experiments, it might be advantageous to explore
selective augmentations further.

3.2. Improvements on Top of the Base Model

To further improve our fine-tuned model from Section 3.1,
we apply weighted box fusion (WBF) [29]. It constructs av-
erage boxes by utilizing the confidence scores of all proposed
boxes. The method shows promising results on different
datasets. Apart from functioning in place of non-maximum
suppression (NMS), it can also fuse the boxes of multiple
trained models. This effectively results in creating a model
ensemble. We use an implementation available on GitHub
[28]. Our models (that is, the base model with various pa-
rameter and augmentation settings) make 100 predictions per
image and 300 000 predictions for all images. Using only
the boxes of a single model, employing WBF lowers the test
mAP compared to our baseline mAP of 0.165. For differ-
ent IoU thresholds, the test mAP varies between 0.087 and
0.165. The IoU threshold and the resulting accuracy seem

Figure 1: The validation mAP on the validation set with
built-in augmentations.

to be correlated: the lower the IoU threshold, the worse the
accuracy. When using the boxes of our second-best model
(0.163 test mAP), the results were only slightly worse. The
mAP varied between 0.127 and 0.163 depending on differ-
ent IoUs and model weights. Using the best six models (all
> 0.150 mAP), weighting the best model by factor five, the
second-best by factor two, and using an IoU threshold of 0.4,
we were able to improve the initial mAP of 0.165 to 0.186.
The initial number of 1 800 000 boxes decreased to 613 000
boxes due to applying WBF.

Our base model from Section 3.1 is only trained with ab-
normal chests to ensure good disambiguation of the different
diseases because healthy chests dominate the training set.
Hence the model cannot distinguish between healthy and
abnormal chests. This leads to many false positives if it is
shown healthy chests. Since over 70 percent of the training
set are healthy chests, it is crucial to reduce the number of
false positives returned by the model. Therefore, we apply a
2CC model on top of our base model’s output. Here, healthy
chests are identified by a “healthy chest” 1-pixel bounding
box and contain no other bounding boxes. Now, the 2CC
replaces our base model’s prediction with the “healthy chest”
1-pixel box if its confidence for a healthy chest exceeds a
certain threshold α. Additionally, we use a second, lower
threshold β at which the “healthy chest” coding is added to
but does not replace the other predicted boxes to account for
cases where the 2CC is not as confident that it has found a
completely healthy chest. We train a resnet18 backbone
model with 5-StratifiedKFold cross-validation (CV) for 15
epochs on a downscaled 256x256 pixel version of the dataset.
Its validation accuracy is around 0.93. Deeper models and
higher resolution images are tested but resulted in overfitting.
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We find that an α of 0.997 and β of 0.3 yielded the best
results. 919 images are above the upper threshold, and 2 314
images are above the lower threshold. Using 2CC, we can
improve the test mAP significantly to 0.242. An ensemble
of the three best 2CC models (all > 0.9 validation accu-
racy) results in a test mAP of 0.237, and we see room for
improvement with better models.

3.3. Segmentation

We use the ResNet-34 architecture [10] organized in the
way of a UNet [26]. We choose fastai [12] as our deep
learning library. It already provides pretrained weights (on
ImageNet) for our ResNet-34 UNet architecture, and it en-
ables us to fine-tune the parameters. Given the dataset’s
manageable size, using pretrained models instead of training
from scratch is essential to obtain good performance.

In our training runs, we use the following hyper-
parameters. The batch size is set to 4. Moreover, we apply
a weight decay of 0.01. Since the raw images are pretty
large, we downsample every image to be one-tenth of its
original size to fit our model with the given images onto
one GPU. As for the learning rate, we use a learning rate
finder to determine a reasonable learning rate. Next, we train
the model in two-phase fine-tuning. First, we fit the last
layers of the pretrained model with higher learning rates for
about 5 epochs. Then, we unfreeze all layers and train for
another 5 epochs with a lower learning rate. We evaluate our
model’s performance using various standard metrics for eval-
uating the segmentation task. This way, we can observe the
model’s strengths and weaknesses. We use the dice metric
[30], which captures the ratio of how many pixels were cor-
rectly classified with respect to the size of both the ground
truth and the predicted segmentation masks. Furthermore,
we use the accuracy metric, which intuitively and classically
describes the ratio of how many pixels were classified cor-
rectly overall. Lastly, as both the dice and accuracy score
do not reveal any information about the error types and their
relation to one another, we also consider the standard metrics
precision and recall which are usually used in classification
tasks. The model is trained until convergence with a learning
rate of 0.001 and then fine-tuned for five epochs with a lower
learning rate. We are using the Adam optimizer [17] which
converged as expected. This differs from the observation
that Adam does not converge as well as plain SDG [8].

4. Results
We compare three different approaches for the fine-

grained localization task, as displayed in Table 1. We ob-
serve that WBF and 2CC together significantly improve our
model’s performance, leading to a test mAP of 0.242.

For the classification and detection tasks, we use vari-
ous augmentations during the training process. We compare
the influence of standard augmentations (transformations,

Approach Test mAP

Basic Training 0.165
Basic Training + WBF 0.186
Basic Training + WBF + 2CC 0.242

Table 1: The resulting scores of the approaches discussed in
Sections 3.1 and 3.2.

Model dice precision recall accuracy

Our Model (OM) 97.9% 97.0% 97.0% 98.4%
OM+ExAugm 96.2% 96.7% 95.6% 98.0%
Adv. ATTN [8] 96.2% - - -
ATTN [8] 95.8% - - -

Table 2: We compare our model (OM) and our model with
complex augmentations (OM+ExAugm) from Section 3.3
to the state of the art [8].

brightness, contrast variations, etc.) to more complex ones,
such as block masking [27], where half of the image, horizon-
tally or vertically, gets replaced by gray pixels and diffused
noise [27], where the brightness of circular areas is increased.
Interestingly, the more complex augmentations ultimately
result in slightly inferior performance in our setting, see
Table 2, endorsing similar observations [8].

5. Future Work

In order to obtain even better results, we propose to merge
the tasks of localization and classification of lung abnormali-
ties with the segmentation of lungs containing abnormalities
in the following ways. First, one can use the localization
of diseases to improve the segmentation by, for example,
removing the diseased tissue before training or by providing
the location of the diseases as additional input to the neural
network. Another way is to use the lungs’ segmentation
to improve the localization of the diseases by, for example,
providing the lung mask as additional information.

Due to time and space constraints, we leave a compari-
son to a randomly initialized neural network which would
demonstrate the benefits of the ImageNet pretraining [9], a
comparison to other possible benchmarks, the consideration
of various other metrics, detailed experiments on the impact
of the augmentations, and a hyperparameter optimization to
future work. Furthermore, studying how 2CC helps elimi-
nating false positives [3, 11] and the effects of applying 2CC
before the detection, is left to future work.
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