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ABSTRACT: We give an algorithm that computes the final state of certain growth models without
computing all intermediate states. Our technique is based on a “least action principle" which charac-
terizes the odometer function of the growth process. Starting from an approximation for the odometer,
we successively correct under- and overestimates and provably arrive at the correct final state.

Internal diffusion-limited aggregation (IDLA) is one of the models amenable to our technique.
The boundary fluctuations in IDLA were recently proved to be at most logarithmic in the size of
the growth cluster, but the constant in front of the logarithm is still not known. As an application
of our method, we calculate the size of fluctuations over two orders of magnitude beyond previous
simulations, and use the results to estimate this constant. © 2012 Wiley Periodicals, Inc. Random Struct.
Alg., 42, 185–213, 2013

Keywords: cycle popping; internal diffusion limited aggregation; least action principle; low
discrepancy random stack; odometer function; potential kernal; rotor-router model

1. INTRODUCTION

In this paper we study the abelian stack model, a type of growth process on graphs. Special
cases include internal diffusion limited aggregation (IDLA) and rotor-router aggrega-
tion. We describe a method for computing the final state of the process, given an initial
approximation. The more accurate the approximation, the faster the computation.
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186 FRIEDRICH AND LEVINE

Fig. 1. IDLA cluster (left) and rotor-router cluster with counterclockwise rotor sequence (right) of
N = 106 chips. Half of each circular cluster is shown. Each site is colored according to the final
direction of the rotor on top of its stack (yellow = W, red = S, blue = E, green = N). Note that the
boundary of the rotor-router cluster is much smoother than the boundary of the IDLA cluster. Larger
rotor-router clusters of size up to N = 1010 can be found at [1]. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

1.1. IDLA

Starting with N chips at the origin of the two-dimensional square grid Z
2, each chip in turn

performs a simple random walk until reaching an unoccupied site. Introduced by Meakin
and Deutch [32] and independently by Diaconis and Fulton [13], IDLA models physical
phenomena such as a solid melting around a heat source, electrochemical polishing, and
fluid flow in a Hele-Shaw cell. Lawler, Bramson, and Griffeath [27] showed that as N → ∞,
the asymptotic shape of the resulting cluster of N occupied sites is a disk (and in higher
dimensions, a Euclidean ball).

The boundary of an IDLA cluster is a natural model of a random propagating front (Fig.
1, left). From this perspective, the most basic question one could ask is, what is the scale of
the fluctuations around the limiting circular shape? Until recently this was a long-standing
open problem in statistical physics. It is now known that the fluctuations in dimension 2
are of order at most log N [3, 24]; however, it is still an open problem to show that the
fluctuations are at least this large. We give numerical evidence that log N is in fact the
correct order, and estimate the constant in front of the log.

1.2. Rotor-Router Aggregation

James Propp [25] proposed the following way of derandomizing IDLA. At each lattice site
in Z

2 is a rotor that can point north, east, south or west. Instead of stepping in a random
direction, a chip rotates the rotor at its current location counterclockwise, and then steps
in the direction of this rotor. Each of N chips starting at the origin walks in this manner
until reaching an unoccupied site. Given the initial configuration of the rotors (which can be
taken, for example, to be all north), the resulting growth process is entirely deterministic.
Regardless of the initial rotor configurations, the asymptotic shape is a disk (and in higher
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dimensions, a Euclidean ball) and the inner fluctuations are proved to be O(log N) [29]. The
true fluctuations appear to grow even more slowly, and may even be bounded independent
of N .

Rotor-router aggregation is remarkable in that it generates a nearly perfect disk in the
square lattice without any reference to the Euclidean norm (x2 + y2)1/2. Perhaps even more
remarkable are the patterns formed by the final directions of the rotors (Fig. 1, right).

1.3. Low-Discrepancy Random Stack

To better understand whether it is the regularity or the determinism which makes rotor-
router aggregation so round, we follow a suggestion of James Propp and simulate a third
model, low-discrepancy random stack, which combines the randomness of IDLA and the
regularity of the rotor-router model.

1.4. Computing the Odometer Function

The central tool in our analysis of all three models is the odometer function, which measures
the number of chips emitted from each site. The odometer function determines the shape
of the final occupied cluster via a nonlinear operator that we call the stack Laplacian. Our
main technical contribution is that even for highly non-deterministic models such as IDLA,
one can achieve fast exact calculation via intermediate approximation. Approximating our
three growth processes by an idealized model called the divisible sandpile, we can use the
known asymptotic expansion of the potential kernel of random walk on Z

2 to obtain an initial
approximation of the odometer function. We present a method for carrying out subsequent
local corrections to provably transform this approximation into the exact odometer function,
and hence compute the shape of the occupied cluster. Our runtime depends strongly on the
accuracy of the initial approximation.

1.5. Applications

Traditional step-by-step simulation of all aforementioned models in Z
2 requires a runtime of

order N2 to compute the occupied cluster. Using our new algorithm, we are able to generate
large clusters faster: our observed runtimes are about N log N for the rotor-router model and
about N1.5 for IDLA. By generating many independent IDLA clusters, we estimate the order
of fluctuations from circularity over two orders of magnitude beyond previous simulations.
Our data strongly support the findings of [33] that the order of the maximum fluctuation for
IDLA in Z

2 is logarithmic in N . Two proofs of an upper bound C log N on the maximum
fluctuation for IDLA in Z

2 have recently been announced: see [2,3,24]. While the implied
constant C in these bounds is large, our simulations suggest that the maximum fluctuation
is only about 0.528 ln N .

For rotor-router aggregation we achieve four orders of magnitude beyond previous sim-
ulations, which has enabled us to generate fine-scaled examples of the intricate patterns that
form in the rotors on the tops of the stacks at the end of the aggregation process (Fig. 1,
right). These patterns remain poorly understood even on a heuristic level. We have used our
algorithm to generate a four-color 10-gigapixel image [1] of the final rotors for N = 1010

chips. This file is so large that we had to use a Google maps overlay to allow the user to
zoom and scroll through the image. Indeed, the degree of speedup in our method was so
dramatic that memory, rather than time, became the limiting factor.

Random Structures and Algorithms DOI 10.1002/rsa



188 FRIEDRICH AND LEVINE

1.6. Related Work

Unlike in a random walk, in a rotor-router walk each vertex serves its neighbors in a fixed
order. The resulting walk, which is completely deterministic, nevertheless closely resembles
a random walk in several respects [8–10, 14, 18, 22]. The rotor-router mechanism also
leads to improvements in algorithmic applications. Examples include autonomous agents
patrolling a territory [35], external mergesort [5], broadcasting information in networks
[15, 16], and iterative load-balancing [19].

Abelian stacks (defined in the next section) are a way of indexing the steps of a walk by
location and time rather than by time alone. This fruitful idea goes back at least to Diaconis
and Fulton [13], §4. Wilson [36] (see also [34]) used this stack-based view of random
walk in his algorithm for sampling a random spanning tree of a directed graph. The final
cycle-popping phase of our algorithm is directly inspired by Wilson’s algorithm. Our serial
algorithm for IDLA also draws on ideas from the parallel algorithm of Moore and Machta
[33].

Abelian stacks are a special case of abelian networks [6,11], also called “abelian distrib-
uted processors.” In this viewpoint, each vertex is a finite automaton, or “processor.” The
chips are called “messages.” When a processor receives a message, it can change internal
state and also send one or more messages to neighboring processors according to its current
internal state. We believe that it might be possible to extend our method to other types of
abelian networks, such as the Bak-Tang-Wiesenfeld sandpile model [4]. Indeed, the initial
inspiration for our work was the “least action principle” for sandpiles described in [17].

1.7. Organization of the paper

After formally defining the abelian stack model in §2, we describe the mathematics under-
lying our algorithm in §3. The main result of §3 is Theorem 1, which uniquely characterizes
the odometer function by a few simple properties. In §4 we describe the algorithm itself,
and use Theorem 1 to prove its correctness. §5 discusses how to find a good approximation
function to use as input to the algorithm. Finally, §6 describes our implementation and
experimental results.

2. FORMAL MODEL

The underlying graph for the abelian stack model can be any finite or infinite directed
graph G = (V , E). Each edge e ∈ E is oriented from its source vertex s(e) to its target
vertex t(e). Self-loops (edges e such that s(e) = t(e)) and multiple edges (distinct edges
e, e′ such that s(e) = s(e′) and t(e) = t(e′)) are permitted. We assume that G is locally
finite—each vertex is incident to finitely many edges—and strongly connected: for any two
vertices x, y ∈ V there are directed paths from x to y and from y to x. At each vertex x ∈ V
is an infinite stack of rotors (ρn(x))n≥0. Each rotor ρn(x) is an edge of G emanating from x,
that is, s(ρn(x)) = x. We say that rotor ρ0(x) is “on top” of the stack.

A finite number of indistinguishable chips are dispersed on the vertices of G according to
some prescribed initial configuration. For each vertex x, the first chip to visit x is absorbed
there and never moves again. Each subsequent chip arriving at x first shifts the stack at x
so that the new stack is (ρn+1(x))n≥0. After shifting the stack, the chip moves from x to
the other endpoint y = t(ρ1(x)) of the rotor now on top. We call this two-step procedure
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(shifting the stack and moving a chip) firing the site x. The effect of this rule is that the nth
time a chip is emitted from x, it travels along the edge ρn(x).

We will generally assume that the stacks are infinitive: for each edge e, infinitely many
rotors ρn(s(e)) are equal to e. If G is infinite, or if the total number of chips is at most the
number of vertices, then this condition ensures that firing eventually stops, and all chips are
absorbed.

We are interested in the set of occupied sites, that is, sites that absorb a chip. The abelian
property [13, Theorem 4.1] asserts that this set does not depend on the order in which
vertices are fired. This property plays a key role in our method; we discuss it further in §3.

If the rotors ρn(x) are independent and identically distributed random edges e such that
s(e) = x, then we obtain IDLA. For instance, in the case G = Z

2, we can take the rotors
ρn(x) to be independent with the uniform distribution on the set of 4 edges joining x to its
nearest neighbors x ± e1, x ± e2. The special case of IDLA in which all chips start at a fixed
vertex o is more commonly described as follows. Let A1 = {o}, and for N ≥ 2 define a
random set AN of N vertices of G according to the recursive rule

AN+1 = AN ∪ {xN} (1)

where xN is the endpoint of a random walk started at o and stopped when it first visits a
site not in AN . These random walks describe one particular sequence in which the vertices
can be fired, for the initial configuration of N chips at o. The first chip is absorbed at o,
and subsequent chips are absorbed in turn at sites x1, . . . , xN−1. When firing stops, the set
of occupied sites is AN .

A second interesting case is deterministic: the sequence ρn(x) is periodic in n, for every
vertex x. For example, on Z

2, we could take the top rotor in each stack to point to the
northward neighbor, the next to the eastward neighbor, and so on. This choice yields the
model of rotor-router aggregation defined by Propp [25] and analyzed in [28, 29]. It is
described by the growth rule (1), where xN is the endpoint of a rotor-router walk started at
the origin and stopped on first exiting AN .

3. LEAST ACTION PRINCIPLE

A rotor configuration on G is a function

r : V → E

such that s(r(v)) = v for all v ∈ V . A chip configuration on G is a function

σ : V → Z

with finite support. Note we do not require σ ≥ 0. If σ(x) = m > 0, we say there are m
chips at vertex x; if σ(x) = −m < 0, we say there is a hole of depth m at vertex x.

For an edge e and a nonnegative integer n, let

Rρ(e, n) = #{1 ≤ k ≤ n | ρk(s(e)) = e} (2)

be the number of times e occurs among the first n rotors in the stack at the vertex s(e)
(excluding the top rotor ρ0(s(e))). When no ambiguity would result, we drop the subscript ρ.
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Write N for the set of nonnegative integers. Given a function u : V → N, we would like to
describe the net effect on chips resulting from firing each vertex x ∈ V a total of u(x) times.
In the course of these firings, each vertex x emits u(x) chips, and receives Rρ(e, u(s(e)))
chips along each incoming edge e with t(e) = x. This motivates the following definition.

Definition. The stack Laplacian of a function u : V → N is the function

�ρu : V → Z

given by

�ρu(x) =
∑
t(e)=x

Rρ(e, u(s(e))) − u(x). (3)

The sum is over all edges e with target vertext(e) = x. We use the notation �ρ to emphasize
the dependence (via Rρ) on the rotor stacks (ρk(x))k≥0.

Given an initial chip configuration σ0, the configuration σ resulting from performing
u(x) firings at each site x ∈ V is given by

σ = σ0 + �ρu. (4)

The rotor configuration on the tops of the stacks after these firings is also easy to describe.
We denote this configuration by Topρ(u), and it is given by

Topρ(u)(x) = ρu(x)(x).

We also write Euρ for the collection of shifted stacks:

(Euρ)k(x) = ρu(x)+k(x).

The stack Laplacian is not a linear operator, but it satisfies the relation

�ρ(u + v) = �ρu + �Euρv. (5)

Vertices x1, . . . , xm form a legal firing sequence for σ0 if

σj(xj+1) > 1, j = 0, . . . , m − 1

where

σj = σ0 + �ρuj

and

uj(x) = #{i ≤ j : xi = x}.
Figure 2 shows an example of rotor stacks and the stack Laplacian.

In words, the condition σj(xj+1) > 1 says that after firing x1, . . . , xj, the vertex xj+1 has at
least two chips. We require at least two because in our growth model, the first chip to visit
each vertex gets absorbed.

The firing sequence is complete if no further legal firings are possible; that is, σm(x) ≤ 1
for all x ∈ V . If x1, . . . , xm is a complete legal firing sequence for the chip configuration σ0,
then we call the function u := um the odometer of σ0. The odometer tells us how many
times each site fires.
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Fig. 2. An example of rotor stacks ρ and the stack Laplacian �ρu. Here, the underlying graph is a
path of length 5. For instance, the middle vertex v3 has u(v3) = 2 and �ρu(v3) = 1 + 1 − 2 = 0,
since each of its neighbors v2 and v4 has one rotor between the red lines pointing to v3. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

3.1. Abelian Property

Given an initial configuration σ0 and stacks ρ, every complete legal firing sequence for σ0

has the same odometer function u [13, Theorem 4.1].
It follows that the final chip configuration σm = σ0 + �ρu and the final rotor

configuration Topρ(u) do not depend on the choice of complete legal firing sequence.

Remark. To ensure that u is well-defined (i.e., that there exists a finite complete legal firing
sequence) it is common to place some minimal assumptions on ρ and σ0. For example, if G
is infinite and strongly connected, then it suffices to assume that the stacks ρ are infinitive.

Fig. 3. Classic rotor router aggregation of N = 100, 000 chips with counterclockwise rotor sequence.
The pictures show the direction of the rotors on top of the stacks after each step of the computation
(yellow = W, red = S, blue = E, green = N). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 4. Classic rotor router aggregation of N = 100, 000 chips with counterclockwise rotor sequence.
The pictures show the number of chips after each step of the algorithm. (Location x is colored red
if σ ′(x) = −1, white if σ ′(x) = 0, black if σ ′(x) = 1, blue if σ ′(x) = 2, green if σ ′(x) = 3.)
Note that there are no locations with σ ′(x) < −1 or σ ′(x) > 3, and that no chips move during
the final cycle-popping phase. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Given a chip configuration σ0 and rotor stacks (ρk(x))k≥0, our goal is to compute the final
chip configuration σm without performing individual firings one at a time. A fundamental
observation is that by Eq. 4, it suffices to compute the odometer function u of σ0. Indeed,
once we know that each site x fires u(x) times, we can add up the number of chips x receives
from each of its neighbors and subtract the u(x) chips it emits to figure out the final number
of chips at x. This arithmetic is accomplished by the term �ρu in Eq. 4; see Fig. 2 for an
example. In practice, it is usually easy to compute �ρu given u, an issue we address in §4.

Our approach will be to start from an approximation of u and correct errors. In order to
know when our algorithm is finished, the key mathematical point is to find a list of properties
of u that characterize it uniquely. Our main result in this section, Theorem 1, gives such a list.
As we now explain, the hypotheses of this theorem can all be guessed from certain necessary
features of the final chip configuration σm and the final rotor configuration Topρ(u). What
is perhaps surprising is that these few properties suffice to characterize u.

Let x1, . . . , xm be a complete legal firing sequence for the chip configuration σ0. We start
with the observation that since no further legal firings are possible,

• σm(x) ≤ 1 for all x ∈ V .

Next, consider the set A of sites that fire, which is the support of u:

A = supp(u) := {x ∈ V : u(x) > 0}.
Since each site that fires must first absorb a chip, we have

• σm(x) = 1 for all x ∈ A.

Random Structures and Algorithms DOI 10.1002/rsa
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Finally, observe that for any vertex x ∈ A, the rotor r(x) = Topρ(u)(x) at the top of the
stack at x is the edge traversed by the last chip fired from x. The last chip fired from a given
finite subset A′ of A must be to a vertex outside of A′, so A′ must have a vertex whose top
rotor points outside of A′.

• For any finite set A′ ⊂ A, there exists x ∈ A′ with t(r(x)) /∈ A′.

We can state this last condition more succinctly by saying that the rotor configuration
r = Topρ(u) is acyclic on A; that is, the spanning subgraph (V , r(A)) has no directed
cycles. Here r(A) = {r(x) | x ∈ A}.

Theorem 1. Let G be a finite or infinite directed graph, ρ a collection of rotor stacks
on G, and σ0 a chip configuration on G. Fix u∗ : V → N, and let A∗ = supp(u∗). Let
σ∗ = σ0 + �ρu∗, and suppose that

• σ∗ ≤ 1;
• A∗ is finite;
• σ∗(x) = 1 for all x ∈ A∗; and
• Topρ(u∗) is acyclic on A∗.

Then there exists a finite complete legal firing sequence for σ0, and its odometer function
is u∗.

A useful mnemonic for Theorem 1 is “no hills, no holes, no cycles.” A hill is a site x
with σ∗(x) > 1, and a hole is a site x with σ∗(x) < 1x∈A∗ . Hills are forbidden everywhere
(σ∗(x) ≤ 1 for all x), but it suffices to forbid holes and cycles only on A∗.

We break the proof of Theorem 1 into two inequalities. The first inequality can be
seen as an analogue for the abelian stack model of the least action principle for sandpiles
[17, Lemma 2.3].

Lemma 2 (Least Action Principle). If σ∗ ≤ 1 and A∗ is finite, then there exists a finite
complete legal firing sequence for σ0; and u∗ ≥ u, where u is the odometer function of σ0.

Proof. Perform legal firings in any order, without allowing any site x to fire more than
u∗(x) times, until no such firing is possible. Since A∗ is finite, this procedure involves only
finitely many firings. Write u′(x) for the number of times x fires during this procedure. We
will show that this procedure gives a complete legal firing sequence, so that u′ = u.

Write σ ′ = σ0+�ρu′. If σ ′ ≤ 1, then u′ = u by the abelian property. Otherwise, choose y
such that σ ′(y) > 1. We must have u′(y) = u∗(y), or else it would have been possible to add
another legal firing to u′. Therefore, if we now perform u∗ − u′ further firings, then since y
does not fire, the number of chips at y cannot decrease. Hence

σ∗(y) ≥ σ ′(y) > 1

contradicting the assumption that σ∗ ≤ 1.

Lemma 3. Suppose that

• A∗ is finite;
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• σ∗(x) ≥ 1 for all x ∈ A∗; and
• Topρ(u∗) is acyclic on A∗.

Then u∗ ≤ u.

Proof. Let

m(x) = min(u(x), u∗(x))
ψ = σ0 + �ρm

σ = σ0 + �ρu.

Then letting ρ̃ = Emρ, we have from (5)

σ = σ0 + �ρm + �ρ̃(u − m)

= ψ + �ρ̃(u − m).

Likewise, σ∗ = ψ + �ρ̃(u∗ − m). Let

A = {x ∈ V | u∗(x) > u(x)}.
Since u ≥ 0, we have A ⊂ A∗, hence A is finite. We must show that A is empty.

We have σ∗(x) ≥ 1 for all x ∈ A by hypothesis, while σ(x) ≤ 1 by the definition of the
odometer function u. So

0 ≤
∑
x∈A

(σ∗(x) − σ(x))

≤
∑
x∈A

(�ρ̃(u∗ − m)(x) − �ρ̃(u − m)(x)).

For x ∈ A we have u(x) = m(x), so �ρ̃(u − m)(x) ≥ 0. Hence

0 ≤
∑
x∈A

�ρ̃(u∗ − m)

=
∑
x∈A

(
−(u∗(x) − m(x)) +

∑
t(e)=x

#{m(s(e)) < k ≤ u∗(s(e)) | ρk(s(e)) = e}
)

.

The terms of the inner sum corresponding to edges e such that s(e) /∈ A vanish, since in
that case m(s(e)) = u∗(s(e)). Hence∑

x∈A

(u∗(x) − m(x)) ≤
∑
x∈A

∑
t(e)=x
s(e)∈A

#{m(s(e)) < k ≤ u∗(s(e)) | ρk(s(e)) = e}

=
∑
x∈A

∑
y∈A

#{m(y) < k ≤ u∗(y) | t(ρk(y)) = x}

=
∑
y∈A

#{m(y) < k ≤ u∗(y) | t(ρk(y)) ∈ A}. (6)

Now suppose for a contradiction that A is nonempty. Since Topρ(u∗) is acyclic on A, there
exists a site z ∈ A with t(ρk(z)) /∈ A, where k = u∗(z). Therefore the sum on the right side
of (6) is strictly less than

∑
y∈A(u∗(y) − m(y)), which gives the desired contradiction.
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We conclude this section by observing a few consequences of Theorem 1. While our
algorithm does not directly use the results below, we anticipate that they may be useful in
further attempts to understand IDLA and rotor-router aggregation.

The stacks ρ and initial configuration σ0 determine an odometer function u = u(ρ, σ0),
which is the unique function satisfying the hypotheses of Theorem 1. In particular,
given σ0, the function u is completely characterized by properties of the chip configu-
ration σ0 + �ρu and the rotor configuration Topρu. Since permuting the stack elements
ρ1(x), . . . , ρu(ρ,σ0)(x)−1(x) does not change �ρu or Topρu, we obtain the following result.

Corollary 4 (Exchangeability). Let σ be a chip configuration on G. Let (ρk(x))x∈V ,k∈N

and (ρ ′
k(x))x∈V ,k∈N be two collections of rotor stacks, with the property that for each vertex

x ∈ V, the rotors

ρ ′
1(x), . . . , ρ ′

u(ρ,σ)(x)−1(x)

are a permutation of

ρ1(x), . . . , ρu(ρ,σ)(x)−1(x).

Suppose moreover that

ρu(ρ,σ)(x)(x) = ρ ′
u(ρ,σ)(x)(x).

Then u(ρ ′, σ) = u(ρ, σ).

Edges e1, . . . , em ∈ E form a directed cycle if s(ei+1) = t(ei) for i = 1, . . . , m − 1
and s(e1) = t(em). The next result allows us to remove directed cycles of rotors from the
stacks, without changing the final chip or rotor configuration.

Corollary 5 (Cycle removal). Let (ρk(x))x∈V ,k∈N be a collection of rotor stacks on G, and
let (xi, ki) for i = 1, . . . , m be distinct pairs such that the edges {ρki(xi)}m

i=1 form a directed
cycle in G. Let σ be a chip configuration on G, and suppose that ki ≤ u(ρ, σ)(xi) − 1 for
all i = 1, . . . , m. Let ρ ′ be the rotor stacks obtained from ρ by removing the rotors ρki(xi)

for all i = 1, . . . , m and re-indexing the remaining rotors in each stack by N. Then

u(ρ, σ) = u(ρ ′, σ) + χ

where χ(x) = #{1 ≤ i ≤ m | xi = x}. Moreover, the final chip and rotor configurations
agree:

σ + �ρ[u(ρ, σ)] = σ + �ρ′ [u(ρ ′, σ)]
Topρ[u(ρ, σ)] = Topρ′ [u(ρ ′, σ)].

Proof. Let f = u(ρ, σ). The bound on ki implies thatTopρ f = Topρ′(f −χ). By Theorem
1, to complete the proof it suffices to check that �ρ f = �ρ′(f − χ). For any vertex x and
edge e with s(e) = x, we have

Rρ(e, f (x)) = #{1 ≤ k ≤ f (x) | ρk(x) = e}
= Rρ′(e, f (x) − χ(x)) + c(e)
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where c(e) = #{1 ≤ i ≤ m | ρki(xi) = e}. Here we have used the fact that the pairs (xi, ki)

are distinct. Hence

�ρ f (x) = −f (x) +
∑
t(e)=x

Rρ(e, f (x))

= −f (x) +
∑
t(e)=x

Rρ′(e, f (x) − χ(x)) +
∑
t(e)=x

c(e). (7)

Since the edges {ρki(xi)}m
i=1 form a directed cycle, we have

∑
t(e)=x c(e) = ∑

s(e)=x c(e) =
χ(x). So (7) simplifies to �ρ′(f − χ)(x), which shows that �ρ f = �ρ′(f − χ).

4. THE ALGORITHM: FROM APPROXIMATION TO EXACT CALCULATION

In this section we describe how to compute the odometer function u exactly, given as input
an approximation u1. The running time depends on the accuracy of the approximation, but
the correctness of the output does not. In the next section we explain how to find a good
approximation u1 for the example of N chips started at the origin in Z

2.
Recall that G may be finite or infinite, and we assume that G is strongly connected. We

assume that the initial configuration σ0 satisfies σ0(x) ≥ 0 for all x, and
∑

x σ0(x) < ∞.
If G is finite, we assume that

∑
x σ0(x) is at most the number of vertices of G (otherwise,

some chips would never get absorbed). The only assumption on the approximation u1

is that it is nonnegative with finite support. Finally, we assume that the rotor stacks are
infinitive, which ensures that the growth process terminates after finitely many firings: that
is,

∑
x∈V u(x) < ∞.

For x ∈ V , write

dout(x) = #{e ∈ E | s(e) = x}
din(x) = #{e ∈ E | t(e) = x}

for the out-degree and in-degree of x.
The odometer function u depends on the initial chip configuration σ0 and on the rotor

stacks (ρk(x))k≥0. The latter are completely specified by the function R(e, n) defined in §3.
Note that for rotor-router aggregation, since the stacks are periodic, R(e, n) has the simple
explicit form

R(e, n) =
⌊

n + dout(x) − j

dout(x)

⌋
(8)

where j is the least positive integer such that ρj(x) = e. For IDLA, R(e, n) is a random
variable with the Binomial(n, p) distribution, where p is the transition probability associated
to the edge e.

In this section we take R(e, n) as known. From a computational standpoint, if the stacks
are random, then determining R(e, n) involves calls to a pseudorandom number generator.
We address the issue of minimizing the number of such calls in §6.3.

Our algorithm consists of an approximation step followed by two error-correction steps:
an annihilation step that corrects the chip locations, and a reverse cycle-popping step that
corrects the rotors. See Figures 3 and 4 for a visualization of the three steps.
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1. Approximation: Perform firings according to the approximate odometer, by comput-
ing the chip configuration σ1 = σ0 +�ρu1. Using Eq. (3), this takes time O(din(x)+1)

for each vertex x, for a total time of O(#E + #V). This step is where the speedup
occurs, because we are performing many firings at once:

∑
x u1(x) is typically much

larger than #E + #V . Return σ1.
2. Annihilation: Start with u2 = u1 and σ2 = σ1. If x ∈ V satisfies σ2(x) > 1, then we

call x a hill. If σ2(x) < 0, or if σ2(x) = 0 and u2(x) > 0, then we call x a hole. For
each x ∈ Z

2,
(a) If x is a hill, fire it by incrementing u2(x) by 1 and then moving one chip from x

to t(Top(u2)(x)).
(b) If x is a hole, unfire it by moving one chip from t(Top(u2)(x)) to x and then

decrementing u2(x) by one.
A hill can disappear in one of two ways: by reaching an unoccupied site on the
boundary, or by reaching a hole and canceling it out. When there are no more hills
and holes, return u2.

3. Reverse cycle-popping: Start with u3 = u2 and

A3 = {x ∈ V : u3(x) > 0}.
If Top(u3) is not acyclic on A3, then pick a cycle and unfire each of its vertices once.
This may create additional cycles. Update A3 (it may shrink, since u3 has decreased)
and repeat until Top(u3) is acyclic on A3. Output u3.

Next we argue that the algorithm terminates, and that its final output u3 equals the
odometer function u. Step 2 is simplest to analyze if we first fire all hills, and only after
there are no more hills begin unfiring holes. In practice, however, we found that it is much
faster to fire hills and unfire holes in tandem; see §6.1 for the details of our implementation.

At the beginning of step 2, all hills are contained in the set

S = {x ∈ V : σ1(x) > 0}.
Since σ0 and u1 have finite support, σ1 = σ0 + �ρu1 has finite support, so S is finite. Since
the total number of chips is conserved, we have∑

x∈V

σ1(x) =
∑
x∈V

σ0(x).

The right side is ≤ #V by assumption. Therefore if S = V , we must have σ1(x) = 1 for all
x ∈ V ; in this case there are no hills or holes, and we move on to step 3.

Suppose now that S is a proper subset of V . Let

h =
∑
x∈S

(σ1(x) − 1)

be the total height of the hills. Note that firing a hill cannot increase h. If a given vertex
fires infinitely often, then since the rotor stacks are infinitive, each of its out-neighbors
also fires infinitely often; since G is strongly connected, it would follow that every vertex
fires infinitely often. Thus after firing finitely many hills, a chip must leave S. When this
happens, h decreases. Thus after finitely many firings we reach h = 0 and there are no more
hills.
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Next we begin unfiring the holes. After all hills have been settled, we have u2(x) ≥ 0
for all x ∈ V . The sum

∑
x∈V u2(x) is finite, and each unfiring decreases it by one. To show

that the unfiring step terminates, it suffices to show that for all x ∈ V the unfiring of holes
never causes u2(x) to become negative. Indeed, suppose that u2(x) = 0 and u2(y) ≥ 0 for
all neighbors y of x. Then the number of chips at x is σ0(x) + �ρu2(x) ≥ 0, so x is not a
hole. Therefore the unfiring step terminates and its output u2 is nonnegative.

After step 2 there are no hills or holes, i.e., 0 ≤ σ2(x) ≤ 1 for all x, and if σ2(x) = 0
then u2(x) = 0.

During step 3, we unfire sites only within A3. Since
∑

x∈V u3(x) is finite and decreases
with each unfiring, this step terminates and its output u3 is nonnegative. When a cycle
is unfired, each vertex in the cycle sends a chip to the previous vertex, so there is no net
movement of chips: σ3 = σ2. In particular, there are no hills at the end of step 3. If σ3(x) = 0,
then σ2(x) = 0; since there were no holes at the end of step 2, this means that u2(x) = 0, and
hence u3(x) = 0. So there are still no holes at the end of step 3. By construction, Top(u3) is
acyclic on A3. Therefore all conditions of Theorem 1 are satisfied, which shows that u3 = u
as desired.

5. APPROXIMATING THE ODOMETER FUNCTION

Next we describe how to find a good approximation to the odometer to use as input to the
algorithm described in §4. Our main assumption will be that the rotor stacks are balanced
in the sense that

R(e, n) ≈ R(e′, n)

for all n ∈ N and all edges e, e′ with s(e) = s(e′). By definition, rotor-router aggregation
obeys the strong balance condition

|R(e, n) − R(e′, n)| ≤ 1.

IDLA is somewhat less balanced: |R(e, n)−R(e′, n)| is typically on the order of
√

n. It turns
out that this level of balance is still enough to get a fairly good approximation and hence a
significant speedup in our algorithm.

If the rotor stacks are balanced, then the stack Laplacian �ρ is well-approximated by
the operator � on functions u : V → Z defined by

�u(z) =
∑
t(e)=z

u(s(e))

dout(s(e))
− u(z).

In this setting we can approximate the behavior of our stack-based aggregation with an
idealized model called the divisible sandpile [29]. Instead of discrete chips, each vertex z
has a real-valued “mass” σ0(z). Any site with mass greater than 1 can fire by keeping mass 1
for itself, and distributing the excess mass to its out-neighbors by sending an equal amount
of mass along each outgoing edge. The resulting odometer function

v(z) = total mass emitted from z
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satisfies the discrete variational problem

v ≥ 0

�v ≤ 1 − σ0

v(�v − 1 + σ0) = 0. (9)

In words, these conditions say that each site emits a nonnegative amount of mass, each
site ends with mass at most 1, and each site that emits a positive amount of mass ends
with mass exactly 1. The conditions (9) can be reformulated as an obstacle problem, that
of finding the smallest superharmonic function lying above a given function; see [30]. That
formulation shows existence and uniqueness of the solution v.

If the rotor stacks are sufficiently balanced, we expect the divisible sandpile odometer
function v to approximate closely our abelian stack odometer u. The next question is how to
compute or approximate v. The obstacle problem formulation shows that v can be computed
exactly by linear programming. Such an approach works well for small to moderate system
sizes, but for the sizes we are interested in, the number of variables v(z) is prohibitively
large.

Fortunately, for specific examples it is sometimes possible to guess a near solution w ≈ v.
We briefly indicate how to do this for the specific example of interest to us, the initial
configuration

σ0 = Nδo

consisting of N chips at the origin o ∈ Z
2. In that case, the set of sites that are fully occupied

in the final divisible sandpile configuration σ0 + �v is very close to the disk

Br = {z ∈ Z
2 : |z| < r}

of radius r = √
N/π ; see [29, Theorem 3.3]. Here |z| = (z2

1 + z2
2)

1/2 is the Euclidean norm.
Thus we are seeking a function w : Z

2 → R satisfying

�w = 1 − Nδo in Br

w ≈ 0 on ∂Br .

An example of such a function is

w(z) = |z|2 − Na(z) − r2 + Na((r, 0)) (10)

where a(z) is the potential kernel for simple random walk (Xn)n≥0 started at the origin in Z
2,

defined as

a(z) =
∞∑

n=1

(P(Xn = o) − P(Xn = z)).

Its discrete Laplacian is �a = δo.
As input to our algorithm we will use the function

w(z)+ := max(0, w(z))
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where w(z) is given by (10). One computational issue remains, which is how to compute
the potential kernel a(z). The potential kernel has the asymptotic expansion [20, Remark 2]

a(z) = 2

π
ln |z| + κ + 1

6π

8ω2
1ω

2
2 − 1

|z|2 + O(|z|−4) (11)

where ω = z/|z| and κ = ln 8+2γ

π
; here γ ≈ 0.577216 is Euler’s constant lim(

∑n
k=1

1
k −ln n).

Note that if θ is the argument of z, then

8ω2
1ω

2
2 − 1 = 8 sin2 θ cos2 θ − 1

= 2 sin2 2θ − 1

= sin2 2θ − cos2 2θ

= − cos 4θ .

Thus, identifying Z
2 with Z + iZ ⊂ C, we can write

a(z) = 2

π
ln |z| + κ − 1

6π

Re(z4)

|z|6 + O(|z|−4).

For z close to the origin the error term O(|z|−4) becomes significant. Therefore, we use
the McCrea-Whipple algorithm [31] (see also [26]) to determine a(z) exactly for |z| < 100.
This algorithm uses the exact identity

a(n + in) = 4

π

n∑
k=1

1

2k − 1

for n ≥ 0, together with the relation �a = δo and reflection symmetry across the real and
imaginary axes to compute a(z) recursively. The values of a(z) for z ∈ Z + iZ are rational
linear combinations of 1 and 1

π
.

Now we can describe the function u1 that we used as input to the first step of our algorithm.
Let r = √

N/π . Approximating the term a((r, 0)) in (10) by 2
π

log r + κ , we set

u1(z) = |z|2 + r2 (2 ln r − 1 + πκ − πa(z))�, |z| < 100.

Here t� = t + 1
2� denotes the closest integer to t ∈ R. For |z| ≥ 100 we use the asymptotic

expansion for a(z) in (10), which gives

u1(z) =
⌊
|z|2 + r2

(
2 ln

r

|z| − 1 + Re(z4)

6 |z|6
)⌉+

, |z| ≥ 100, (12)

where t+ := max(t, 0). Including more terms of the asymptotic expansion of a(z) from [26]
improves the approximation very slightly, but increases the overall runtime.

6. EXPERIMENTAL RESULTS

We implemented our algorithm for three different growth models in Z
2: rotor-router aggre-

gation, IDLA, and a hybrid of the two which we call “low-discrepancy random stack.”
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TABLE 1. Simulation Results for Classic Rotor-Router Aggregation With Counterclockwise
Rotor Sequence.

Number of
Radius Difference

Highest Deepest
Chips N Runtime Absolute Recentered ‖u1 − u‖1/N max |u1 − u| Hill Hole

210 = 1024 1.60 ms 1.324 0.278 1.800 6 3 −1
212 = 4096 2.58 ms 1.523 0.138 3.370 10 3 −1
214 = 16,384 5.71 ms 1.579 0.166 2.417 12 3 −1
216 = 65,536 21.5 ms 1.611 0.429 4.461 17 3 −1
218 = 262,144 67.1 ms 1.565 0.346 2.919 16 3 −1
220 = 1,048,576 0.26 s 1.642 0.362 4.323 23 3 −1
222 = 4,194,304 1.04 s 1.596 0.316 4.220 29 3 −1
224 = 16,777,216 3.53 s 1.614 0.396 3.974 45 3 −1
226 = 67,108,864 0.24 min 1.658 0.368 4.695 62 3 −1
228 = 268,435,456 0.98 min 1.639 0.340 4.463 83 3 −1
230 = 1,073,741,824 4.04 min 1.635 0.414 4.309 91 3 −1
232 = 4,294,967,296 0.28 h 1.650 0.366 4.383 172 4 −2
234 = 17,179,869,184 1.10 h 1.688 0.439 4.734 252 11 −8
236 = 68,719,476,736 3.80 h 1.587 0.385 5.408 353 38 −35

The given runtime is the total runtime of the calculation of one rotor-router aggregation of the given size on a Fujitsu
RX600S5 server. The next two columns show the difference between the outradius and inradius of the occupied
cluster AN , measured with respect to the origin (“absolute”) and with respect to the putative center of mass ( 1

2 , 1
2 )

(“recentered”). The next two columns give two measurements of the error of our odometer approximation u1, the
total absolute error and maximum pointwise error. In the last two columns, “highest hill” and “deepest hole” refer
respectively to maxx σ1(x) and minx σ1(x).

In this section we discuss some details of the implementation, comment on the observed
runtime, and present our findings on the fluctuations of the cluster AN from circularity for
large N .

As a basis for comparison to our algorithm, consider the time it takes to compute the
occupied cluster AN for rotor-router aggregation by the traditional method of firing one
vertex at a time. If z1, . . . , zN ∈ Z

2 are the locations of the N chips, define the quadratic
weight Q(z) = ∑N

i=1 |zi|2, where |(x, y)| = (x2 + y2)1/2 is the Euclidean norm. Firing a
given vertex z four times results in exactly one chip being sent to each of the four neighbors
z ± e1, z ± e2. The net effect of these four firings on the quadratic weight is to increase Q by

|z + e1|2 + |z − e1|2 + |z + e2|2 + |z − e2|2 − 4|z|2 = 4.

Thus, the total number of firings needed to produce the final occupied cluster AN is
approximately

∑
z∈AN

|z|2. Since AN is close to a disk of area N , this sum is about N2/2π .
Traditional step-by-step simulation therefore requires quadratic time to compute the

occupied cluster. Step-by-step simulation of IDLA also requires quadratic time, as observed
in [27, 33]. We found experimentally that our algorithm ran in significantly shorter time:
about N log N for the rotor-router model (Table 1), and about N1.5 for IDLA (Table 2).

6.1. Implementation Details

We implemented the described algorithm in C++. The source code is available from [1].
It is easy to compute the odometer approximation for z with |z| ≥ 100 according to Eq. 12.
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However, the odometer approximation for z with |z| < 100 is less straightforward as
the McCrea-Whipple algorithm [31] is numerically very ill-conditioned. In order to avoid
escalating errors with fixed precision floating point numbers, we used the computer algebra
system Maple to precompute a(z) as a rational linear combination of 1 and 1

π
for |z| < 100.

For the annihilation step described in §4, we used a multiscale approach to cancel out
hills and holes efficiently. More specifically, let L1, L2, . . . be an exponentially growing
sequence of integers. For each i ≥ 1 do

• Substep i: fire each hill / unfire each hole until it either cancels out or reaches a site in
Gi := (LiZ × Z) ∪ (Z × LiZ).

We used L1 = 1 and Li+1 = �1.9 Li� for i ≥ 1. Experimentally, the choice of 1.9 resulted
in the fastest run time. During each substep i, we scan the grid and for each site z /∈ Gi, if z
is a hill, fire it until it is no longer a hill; if z is a hole, unfire it until it is no longer a hole.
We repeat this scanning procedure until no hills or holes remain outside of Gi. The result is
that a large number of hills and holes meet and cancel each other out, while the remainder
are swept into the much sparser set Gi. We then proceed to substep i + 1, stopping when Li

exceeds the diameter of the set of sites that absorb a chip. At this stage we perform a final
substep with Gi = ∅: in other words, repeatedly scan the grid, firing hills and unfiring holes
with no restrictions on their location. When no more hills or holes remain, we proceed to
the reverse cycle-popping phase described in §4.

Our rotor-router calculation (§6.2) was performed on a Fujitsu RX600S5 server with
four Xeon X7550 processors and 2048 GB main memory. Our IDLA calculations (§6.3)
were performed on a cluster of 96 Sun Fire V20z with AMD Opteron 250 processors. For
IDLA, our method depends strongly on the availability of a high-quality pseudorandom
number generator. We used the cryptographically secure generator Advanced Encryption
Standard (AES) [21], which is the official successor of the well-known Data.

6.1.1. Encryption Standard (DES). We used a key size of 256 bits with the Rijndael
cipher implementation by Rijmen, Bosselaers and Barreto, which is also part of OpenSSH.

We observed that C’s built-in rand(·) function, which has a small period, produces
a noticeably smaller difference between inradius and outradius (about 13% smaller for
N = 210). We did not pursue this further to study whether this difference persists for larger
values of N .

6.2. Rotor-Router Aggregation

In the classic rotor-router model, the rotor stack is the cyclic sequence of the four cardinal
directions in counterclockwise order. Table 1 shows some statistical data of our computation.
The absolute error in our odometer approximation

‖u1 − u‖1 =
∑

x

|u1(x) − u(x)|

appears to scale linearly with N . This quantity is certainly a lower bound for the running
time of our algorithm. The measured runtimes indicate close-to-linear runtime behavior,
which suggests that our multiscale approach to canceling out hills and holes is relatively
efficient.
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Fig. 5. Classic rotor router aggregation with counterclockwise rotor sequence. The pictures show
the quality of the odometer approximation for different values of N , as measured by the difference
u1 − u. The site x is colored blue if u1(x) > u(x), red if u1(x) < u(x), and white if u1(x) = u(x).
The dramatic dependence on N suggests that our approximation u1 captures substantially all of the
large-scale regular structure in u. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 5 depicts the odometer difference u1(x) − u(x) for three different values of N .
Figure 6 depicts the odometer difference u2(x) − u(x) after the annihilation step of the
algorithm.

Fig. 6. Classic rotor router aggregation with counterclockwise rotor sequence. The pictures show
the quality of the odometer approximation after the annihilation phase, for different values of N , as
measured by the difference u2 − u. The site x is colored blue if u2(x) > u(x), white if u2(x) = u(x).
Note that after annihilation, there are no longer any sites satisfying u2(x) < u(x). The remaining
odometer difference also shows how many cycles are then popped in the last phase of our algorithm.
The darker the color, the more cycles run through this location. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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Fig. 7. Difference between the inradius and outradius of the rotor-router aggregate, for different
numbers of chips N . The single dots are individual values of diff(N) (left) and diff′(N) (right). The
darker curves show the averages diff(N) and diff

′
(N) as defined in Eqs. (13) and (14). (Color scheme:

WNES = blue, WNSE = green, WENS = red.) [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

The asymptotic shape of rotor-router aggregation is a disk [28, 29]. To measure how
close AN is to a disk, we define the inradius and outradius of a set A ⊂ Z

2 by

rin(A) = min{|x| : x /∈ A}
and

rout(A) = max{|x| : x ∈ A}.
We then define

diff(N) = rout(AN) − rin(AN).

A natural question is whether this difference is bounded independent of N . We certainly
expect it to increase much more slowly than the order log N observed for IDLA.

Kleber [25] calculated that diff(3 · 106) ≈ 1.6106. We can now extend the measurement
of diff(N) up to N = 236 ≈ 6.8 · 1010 (Table 1, third column). Our algorithm runs in less
than four hours for this value of N ; by comparison, a step-by-step simulation of this size
would take about 23,000 years on a computer with one billion operations per second. In our
implementation, the limiting factor is memory rather than time.

Up to dihedral symmetry, there are three different balanced period-4 rotor sequences
for Z

2: WENS, WNSE, and WNES. The notation WENS means that the first four rotors in each
stack point respectively west, east, north and south.

Figure 7 shows the radius difference diff(N) for various N for the three different rotor
sequences. As these values are rather noisy, we have also calculated and plotted the averages

diff(N) := 1

|I(N)|
∑

N ′∈I(N)

diff(N ′) (13)
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with

I(N) =

⎧⎪⎨⎪⎩
[

N

2
,

3N

2

]
for N ≤ 106,

[N − 5 · 105, N + 5 · 105] for N > 106.

Note that in Fig. 7a, the radius difference diff(N) grows extremely slowly in N . In particular,
it appears to be sublogarithmic.

We observe a systematic difference in behavior for the three different rotor sequences.
The observed radius differences are lowest for WNSE, intermediate for WNES, and highest
for WENS. For example,

diff(108) ≈

⎧⎪⎨⎪⎩
1.034 for WNSE,

1.623 for WNES,

1.837 for WENS.

This difference can be partially explained by considering the center of mass of the aggregate.
Recall that our convention is “retrospective” (as opposed to “prospective”) rotor notation:
that is, the rotor currently on top of the stack indicates where the last chip has gone rather
than where the next chip will go. Hence for WNES rotors, the first time each site fires it
sends a chip north, the next time east, then south, then west. As about 1/4 of the sites end
up in each of the four rotor states, for WNES rotors about half of the sites send one more
chip N than S, and (a different but overlapping) half send one more chip E than W. As a
result, the center of mass of the set of occupied sites is close to (1/2, 1/2). For WENS the
center of mass is close to (3/4, 1/4), and for WNSE it’s close to (1/4, 1/4).

In some sense, a better measure of circularity than diff(N) is the radius difference relative
to the center of mass. Thus we define

diff′(N) = rout(AN − c) − rin(AN − c)

where c is one of (1/2, 1/2), (3/4, 1/4), or (1/4, 1/4) chosen according to the rotor sequence
used. Let

diff
′
(N) := 1

|I(N)|
∑

N ′∈I(N)

diff′(N). (14)

These values are plotted for various N in Fig. 7. We find

diff
′
(108) ≈

{
0.499 for WNSE and WENS,

0.338 for WNES.

The differences are now significantly smaller, and the two non-cyclic rotor sequences WNSE
and WENS have nearly the same radius difference for large N . To see why, note that WENS
is obtained from WNSE by a shift in the stacks (to EWNS) followed by interchanging the
directions east and west. Thus the observed difference in diff(N) between these two rotor
sequences is entirely due to the effect of the initial condition of rotors primed to send chips
west. By adjusting for the center of mass, we have largely removed this effect in diff′(N).
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6.3. Internal Diffusion Limited Aggregation (IDLA)

In IDLA, the rotor directions ρk(x) for x ∈ Z
2 and k ∈ Z are chosen independently and

uniformly at random from among the four cardinal directions. In the course of firing and
unfiring during steps 2 and 3 of our algorithm, the same rotor ρk(x) may be requested several
times. Therefore, we need to be able to generate the same pseudorandom value for ρk(x)
each time it is used. Generating and storing all rotors ρk(x) for all x and all 1 ≤ k ≤ u1(x)
is out of the question, however, since it would cost �(N2) time and space.

Moore and Machta [33] encountered the same issue in developing a fast parallel algorithm
for IDLA. Rather than store all of the random choices, they chose to store only certain seed
values for the random number generator and generate random walk steps online as needed.
Next we describe how to adapt this idea to our setting for fast serial computation of IDLA.

The AES pseudorandom number generator takes as input a block of 128 bits and
“encrypts” it, outputting a block of 128 pseudorandom bits. We interpret the output block
as the binary expansion of a number in the interval [0, 1). Let rnd(b) be the pseudorandom
number generated from input block b. Let

Uk(x) = rnd(block(x, k, a)),

where block(x, k, a) is a simple deterministic function that assumes distinct values for each
triple (x, k, a) of site x, odometer value 1 ≤ k ≤ K , and integer 1 ≤ a ≤ A. The integer a is
fixed for each run of the algorithm, and A is the total number of runs of the algorithm; this
way, each run generates an independent IDLA cluster. The bound K is chosen to be safely
larger than the maximal odometer value u1(o) ≈ 2r2 ln r.

Writing ↑, →, ↓, ← for the four outgoing edges from site x, we set

ρk(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
↑ if 0 ≤ Uk(x) < 1/4,

→ if 1/4 ≤ Uk(x) < 1/2,

↓ if 1/2 ≤ Uk(x) < 3/4,

← if 3/4 ≤ Uk(x) < 1.

(15)

The first step of the algorithm described in §4 is to calculate σ1 from the odometer
approximation u1. In this calculation, the definition of R(e, n) given in Eq. (2) involves
evaluating ρk(x) for all 1 ≤ k ≤ n. As this is much too expensive, we instead use the fact
that R(e, n) is a random variable with the Binomial(n, 1/4) distribution. In steps 2 and 3
of the algorithm, we need to sample some individual rotors ρk(x), but typically not too
many: on the order of

√
u1(x). The distribution of these rotors depends on the binomials

already drawn. We think of first populating an urn with balls of 4 colors corresponding to
the directions ↑, →, ↓, ←. When the algorithm asks for an individual rotor, we draw a ball
at random from the urn using our knowledge of how many balls of each color remain.

This approach works well for small and moderate system sizes, but for large N it is too
memory-intensive. The memory usage comes from the need to store the rotors previously
drawn in order to keep track of how many balls of each color remain in the urn. Note that
keeping a count does not suffice, because the algorithm may request a single rotor multiple
times.

Fix a parameter λ ≥ 0 representing the tradeoff between time and memory. A larger
value of λ will result in saving memory at the cost of additional time. Let

f (x) =
(

u1(x) − λ
√

u1(x)
)+

.
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For each site x with f (x) > 0, we sample three binomial random variables

B ∼ Binomial
(
f (x), 1

4

)
,

B′ ∼ Binomial
(
f (x) − B, 1

3

)
,

B′′ ∼ Binomial
(
f (x) − B − B′, 1

2

)
.

We then set

R(↑, f (x)) = B

R(→, f (x)) = B′

R(↓, f (x)) = B′′

R(←, f (x)) = f (x) − B − B′ − B′′.

Next, to implement step 1 of the algorithm described in §4, we need to know R(e, u1(x)).
So we compute

R(e, u1(x)) = R(e, f (x)) + #{f (x) < k ≤ u1(x) | ρk(x) = e}.
Note that if λ is large, then this calculation is expensive in time, since it involves calling the
pseudorandom number generator to draw as many as λ

√
u1(x) rotors

ρk(x), f (x) < k ≤ u1(x)

using Eq. (15). But, crucially, these rotors do not need to be stored.
During steps 2 and 3 of the algorithm, we sample any rotors ρk(x) for k > f (x) as needed

using (15). Rotors ρk(x) for k ≤ f (x) can be sampled online as needed according to the
distribution

ρk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

↑ if Uk(x) ∈
[

0,
R(↑, k)

k

)
,

→ if Uk(x) ∈
[

R(↑, k)

k
,

R(↑, k) + R(→, k)

k

)
,

↓ if Uk(x) ∈
[

R(↑, k) + R(→, k)

k
,

R(↑, k) + R(→, k) + R(↓, k)

k

)
,

← if Uk(x) ∈
[

R(↑, k) + R(→, k) + R(↓, k)

k
, 1

)
.

Initially, the values R(e, k) are known only for k = f (x). We generate the rotors ρk(x) as
needed in order of decreasing index k, starting with k = f (x). Upon generating a new rotor
ρk(x) = e, we inductively set

R(e, k − 1) = R(e, k) − 1

and R(e′, k−1) = R(e′, k) for e′ ∈ {↑, →, ↓, ←}−{e}. These values specify the distribution
for the next rotor ρk−1(x) in case it is needed later.

The results of our large-scale simulations of IDLA are summarized in Table 2, extending
the experiments of Moore and Machta [33] (N ≤ 105.25 with 100 trials) to over 106 trials
for N ≤ 216 and over 300 trials for N ≤ 225 ≈ 107.5. The observed runtime of our algorithm
for IDLA is about N1.5; in contrast, building an IDLA cluster of size N by serial simulation
of N random walks takes expected time order N2 (cf. [33, Fig. 3]).
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TABLE 2. Simulation Results for IDLA.

Number of Average Radius Number
Chips N Runtime Difference ‖u1 − u‖1/N3/2 max |u1 − u| of Runs

210 = 1024 9.80 ms 3.198 ± 0.569 0.490 ± 0.057 134 ± 27 106

211 = 2048 26.9 ms 3.569 ± 0.547 0.516 ± 0.054 220 ± 41 106

212 = 4096 73.9 ms 3.948 ± 0.553 0.541 ± 0.051 355 ± 62 106

213 = 8192 0.21 s 4.307 ± 0.556 0.565 ± 0.049 568 ± 93 106

214 = 16,384 0.62 s 4.664 ± 0.566 0.588 ± 0.047 901 ± 139 106

215 = 32,768 1.81 s 5.027 ± 0.578 0.610 ± 0.045 1418 ± 207 106

216 = 65,536 5.29 s 5.393 ± 0.578 0.631 ± 0.043 2216 ± 307 106

217 = 131,072 0.26 min 5.763 ± 0.584 0.652 ± 0.042 3443 ± 456 105

218 = 262,144 0.76 min 6.125 ± 0.588 0.673 ± 0.041 5317 ± 672 105

219 = 524,288 2.26 min 6.493 ± 0.593 0.692 ± 0.039 8179 ± 985 105

220 = 1,048,576 6.74 min 6.858 ± 0.594 0.711 ± 0.038 12,522 ± 1455 105

221 = 2,097,152 0.34 h 7.222 ± 0.600 0.730 ± 0.038 19,085 ± 2131 6 × 104

222 = 4,194,304 1.01 h 7.596 ± 0.600 0.748 ± 0.036 29,007 ± 3109 6 × 104

223 = 8,388,608 3.95 h 7.968 ± 0.601 0.767 ± 0.036 44,007 ± 4471 3 × 103

224 = 16,777,216 14.9 h 8.319 ± 0.605 0.783 ± 0.035 66,418 ± 6763 3 × 103

225 = 33,554,432 44.3 h 8.699 ± 0.575 0.801 ± 0.033 99,667 ± 10,192 4 × 102

The given runtime is the total time taken for the calculation of one IDLA cluster of the given size on a single core.
To fit within 4 GB (8 GB for N = 225) main memory, we used λ = 0 for N ≤ 222, λ = 2 for N = 223, λ = 5
for N ≥ 224. The next column shows the difference between the outradius and inradius of the occupied cluster
AN . The fourth and fifth columns give two measurements of the error of our odometer approximation u1, the total
absolute error and maximum pointwise error. The values shown are averages and standard deviations over many
independent trials; the last column shows the number of trials.

An interesting question is whether the runtime could be reduced further by starting from
a random odometer approximation ũ1 instead of the deterministic approximation u1. One
approach is to draw binomials as above (taking λ = 0), and use them to define a “warped”
Laplacian operator �̃, given by

�̃f (x) =
∑
y∼x

Byx

By
f (y) − f (x).

Here By = u1(y), and Byx = R((y, x), u1(y)) is the binomial associated to the directed edge
(y, x). We then take ũ1 to be the solution to the variational problem (9), with � replaced
by �̃. This problem can be formulated as a linear program: minimize

∑
x ũ1(x) subject

to the constraints ũ1 ≥ 0 and �̃ũ1 ≤ 1 − Nδo. One could even iterate this construction,
using ũ1 to draw new binomials and get a new warping ˜̃� and a new approximation ˜̃u1. A
small number of iterations should suffice to bring the approximation very close to the true
odometer. The main computational issue is how to quickly solve (or even approximately
solve) these linear programs, which are sparse but quite large: the number of variables is
about N . We achieved some modest speedup with this kind of approach, but not enough to
justify the additional complexity.

To measure the circularity of the IDLA cluster, we computed the complex moments

Mm(AN) =
∑
z∈AN

( z

r

)m
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Fig. 8. Complex moments of the IDLA cluster. Left: The sample variance V(m) =
E Re(Mm(AN )/

√
N)2 of the real parts of the first 100 moments, for N = 210, . . . , 220. As N increases,

the variance of the real part of the m-th moment approaches 1/(2m +2), in agreement with the results
of [23]. Right: Histogram of the real part of the first three moments for N = 216. The histogram shows
1,000,000 independent runs in bins of size 0.05. Data for the imaginary parts is similar. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

for m = 1, . . . , 100. Here r = √
N/π , and we view z ∈ AN as a point in the complex

plane by identifying Z
2 with Z + iZ. These moments obey a central limit theorem [23]:

Mm(AN)/
√

N converges in distribution as N → ∞ to a complex Gaussian with variance
1/(m + 1). The distribution of the real part of Mm(AN)/

√
N is shown in Fig. 8.

The expected value of the difference diff(N) between outradius and inradius grows
logarithmically in N : the data in the third column of Table 2, graphed in Fig. 9(a), fit to

E diff(N) = 0.528 ln(N) − 0.457

with a coefficient of determination of R2 = 0.99994. Error bars in figure Fig. 9a show
standard deviations of the random variable diff(N).

Since more than one reader has remarked to us that the straight line fit in Fig. 9a looks “too
good to be true,” we comment briefly on why we believe it comes out this way. The random
variable diff(N) measures the largest fluctuation of AN from circularity (over all directions).
Very roughly speaking, since we believe the fluctuations in different directions are close to
independent, diff(N) behaves like the maximum of many independent random variables,
which is highly concentrated. Note that the size of the standard deviation, represented by
the error bars in Fig. 9a, is approximately constant: it does not grow with N . This finding
is consistent with the connection with Gaussian free field revealed in [23]. Indeed, if MN is
the maximum of the discrete two-dimensional Gaussian free field in an N ×N box, then the
mean EMN has order log N , and the sequence of random variables {MN − EMN}N≥1 is tight
[7]. Therefore it is natural to believe (although still unproved) that the variance of MN has
order 1, and that it remains order 1 if the maximum is taken over the boundary of a discrete
ball instead of a box.
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Fig. 9. Difference between inradius and outradius for different numbers of chips N for IDLA (§6.3)
and the low discrepancy random stack model (§6.4). Dots indicate means and error bars indicate
standard deviations of the random variable diff(N) over many independent trials. The respective data
can be found in Tables 2 and 3. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

6.4. Low-Discrepancy Random Stack

In the rotor-router model (§6.2), the neighbors are served in a maximally balanced manner,
while in IDLA (§6.3), the rotor stack is completely random. Following a suggestion of
James Propp, we examine a model which combines both features by using low-discrepancy
random stacks. In this model the neighbors are served in a similarly balanced manner as in
the rotor-router model. The rotor stacks consist of blocks of length 4, chosen independently
and uniformly at random from among the 24 permutations of NESW. Hence the rotor stack
is random, but still satisfies |R(e, n) − R(e′, n)| ≤ 1 for all n and all edges e and e′ such that
s(e) = s(e′).

This model can be implemented with our method in the same way as IDLA. Fig. 9b
gives averages and standard deviations for the radius difference diff(N) up to N = 228 =
268, 435, 456. In contrast to IDLA, the difference between inradius and outradius now grows
slower than logarithmically in N , and is not much larger than the corresponding difference
for the rotor-router model. In fact, the data points E diff(N) of Table 3 fit to

E diff(N) = 1.018 ln ln(N) − 0.919

with a coefficient of determination of R2 = 0.998. Of course, it is very hard to distinguish
empirically between slowly growing functions such as ln ln(N) and

√
ln(N), so we cannot

be sure of the exact growth rate; among several functions we tried, ln ln(N) had the best fit.
The very slow growth of diff(N) for the low-discrepancy random stack suggests that the
extremely good circularity of the rotor-router model is mainly due to its low discrepancy
rather than its deterministic nature.

7. FURTHER DIRECTIONS

We have proved that the abelian stack model can be predicted exactly by correcting an
initial approximation. In experiments, we found that the correction step is quite fast if a
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TABLE 3. Simulation Results for Low-Discrepancy Random Stack.

Number of Average Radius Number of
Chips N Runtime Difference ‖u1 − u‖1/N max |u1 − u| Runs

210 = 1024 3.16 ms 1.026 ± 0.209 1.34 ± 0.16 6.00 ± 0.90 5 × 105

211 = 2048 6.21 ms 1.183 ± 0.180 1.47 ± 0.17 6.83 ± 0.94 5 × 105

212 = 4096 12.0 ms 1.256 ± 0.188 1.60 ± 0.18 7.65 ± 1.00 5 × 105

213 = 8192 23.9 ms 1.314 ± 0.176 1.73 ± 0.19 8.52 ± 1.04 5 × 105

214 = 16,384 49.7 ms 1.405 ± 0.154 1.86 ± 0.20 9.40 ± 1.07 5 × 105

215 = 32,768 0.10 s 1.444 ± 0.154 1.99 ± 0.21 10.3 ± 1.1 5 × 105

216 = 65,536 0.21 s 1.522 ± 0.160 2.11 ± 0.22 11.2 ± 1.2 5 × 105

217 = 131,072 0.45 s 1.583 ± 0.144 2.23 ± 0.23 12.2 ± 1.2 5 × 105

218 = 262,144 0.93 s 1.646 ± 0.142 2.35 ± 0.24 13.2 ± 1.2 5 × 105

219 = 524,288 1.90 s 1.694 ± 0.135 2.46 ± 0.24 14.1 ± 1.3 5 × 105

220 = 1,048,576 3.88 s 1.753 ± 0.124 2.59 ± 0.26 15.1 ± 1.3 5 × 105

221 = 2,097,152 7.96 s 1.808 ± 0.124 2.73 ± 0.28 16.2 ± 1.4 5 × 104

222 = 4,194,304 0.27 min 1.850 ± 0.117 2.86 ± 0.29 17.3 ± 1.4 5 × 104

223 = 8,388,608 0.55 min 1.893 ± 0.114 2.98 ± 0.30 18.4 ± 1.4 5 × 104

224 = 16,777,216 1.13 min 1.942 ± 0.109 3.11 ± 0.31 19.4 ± 1.5 5 × 103

225 = 33,554,432 2.32 min 1.983 ± 0.109 3.25 ± 0.33 20.6 ± 1.5 5 × 103

226 = 67,108,864 4.74 min 2.030 ± 0.106 3.35 ± 0.32 21.6 ± 1.5 5 × 103

227 = 134,217,728 9.72 min 2.070 ± 0.093 3.51 ± 0.35 22.9 ± 1.5 5 × 102

228 = 268,435,456 0.33 h 2.108 ± 0.091 3.61 ± 0.36 24.1 ± 1.6 5 × 102

The given runtime is the total runtime of the calculation of one cluster of the given size on one core of an AMD
Opteron processor 8222. The next column shows the difference between the outradius and inradius of the occupied
cluster AN . The fourth and fifth columns give two measurements of the error of our odometer approximation u1,
the total absolute error and maximum pointwise error. The values shown are averages and standard deviations over
many independent trials; the last column shows the number of trials.

good initial approximation is available. It would be interesting to investigate what other
classes of cellular automata can be predicted quickly and exactly by correcting an initial
approximation.

The abelian sandpile model in Z
2 produces beautiful examples of pattern formation

that remain far from understood [12, 17]. Using Lemma 2.3 of [17], it should be possible
to characterize the sandpile odometer function in a manner similar to Theorem 1. In this
characterization, the recurrent sandpile configurations play a role analogous to the acyclic
rotor configuration in Theorem 1. The remaining challenge would then be to find a good
approximation to the sandpile odometer function.
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