
Constraint Satisfaction Problems:
Convexity Makes AllDifferent Constraints Tractable

Michael Fellows1, Tobias Friedrich2, Danny Hermelin2, Nina Narodytska3, Frances Rosamond1

1 Charles Darwin University, Darwin, Northern Territory, Australia. firstname.lastname@cdu.edu.au
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany. firstname.lastname@mpi-inf.mpg.de

3 NICTA and University of New South Wales, Sydney, Australia. ninan@cse.unsw.edu.au

Abstract

We examine the complexity of constraint satis-
faction problems that consist of a set of AllDiff
constraints. Such CSPs naturally model a wide
range of real-world and combinatorial problems,
like scheduling, frequency allocations and graph
coloring problems. As this problem is known to be
NP-complete, we investigate under which further
assumptions it becomes tractable. We observe that
a crucial property seems to be the convexity of the
variable domains and constraints. Our main con-
tribution is an extensive study of the complexity of
Multiple AllDiff CSPs for a set of natural parame-
ters, like maximum domain size and maximum size
of the constraint scopes. We show that, depending
on the parameter, convexity can make the problem
tractable while it is provably intractable in general.

1 Introduction

Constraint satisfaction is a general framework that allows
structure preserving encoding of many real world problems,
including formal verification, vehicle routing and scheduling.
A CONSTRAINT SATISFACTION PROBLEM (CSP) consists of
a set of variables that must be assigned values from their re-
spective domains in such a way that a set of constraints is
satisfied. In general, finding a solution of a CSP is an NP-
complete problem. Hence, much research has been devoted
to finding restricted classes of CSPs that admit polynomial
time algorithms. This area of research includes two main
directions. The first direction exploits structural properties
of relations between variables and constraints of a CSP in-
stance [11, 15]. The second direction investigates limitations
on the types of constraints in the CSP constraint language, so
called tractable constraint languages [20, 34].

In this work we continue this line of research and investi-
gate CSPs under both structural restrictions and limitations on
constraint types. Such combinations allow us to identify in-
teresting classes of CSPs that have expressive constraint lan-
guages and are still tractable under some natural conditions
on relations between variables and constraints in the frame-
work of parameterized complexity.

We restrict the type of allowed constraints to the most com-
mon constraint called the AllDiff constraint [25, 31]. The

AllDiff constraint requires a set of variables to take pairwise
distinct values. We call a CSP with the language that consists
of only AllDiff constraints the MULTIPLE ALLDIFF CON-
STRAINT SATISFACTION PROBLEM (MAD-CSP). Finding a
solution of the MAD-CSP is NP-complete due to a straight-
forward reduction from a graph coloring problem.

Our structural limitations of MAD-CSPs are inspired by
a large body of research on global constraints in constraint
programming. We consider a class of MAD-CSPs that pos-
sess the convexity of constraints property. This property
means that the variables are linearly ordered so that all All-
Diff constraints are defined over intervals of variables in this
order. Such MAD-CSPs can be seen as a generalization of the
SLIDE constraint where AllDiff is the relation to slide [3].
We also investigate another restriction on CSPs that comes
from work on global constraints over variables with interval
domains that we call convex domains. This means that ev-
ery domain constitutes an interval of values. It is interesting
to consider the convex domain restriction in the context of
MAD-CSPs, as it has proved useful for constructing efficient
inference algorithms for global constraints. Many global con-
straints, like NValue [2] or overlapping AllDiff [4], that are
NP-hard to reason about become polynomially solvable if the
domains of the variables are intervals of values. We further
say that a MAD-CSP instance is biconvex if it has both con-
vex domains and convex constraints.

To motivate the AllDiff constraint and our notion of con-
vexity, consider the following three examples of real-world
and combinatorial problems that can be naturally encoded as
MAD-CSP problems:

• The time table of a workshop on CSP might be modeled
with one variable per speaker with the domain of the
variables corresponding to the availability of the speak-
ers [30, 37]. For example, speakers A and B might be
available during the first and third session and speaker C
during all sessions. We introduce three variables S1, S2

and S3 with domains D(S1) = {1, 3}, D(S2) = {1, 3}
and D(S3) = {1, 2, 3}. One (convex) AllDiff constraint

1We know that this case is FPT for several aggregate pa-
rameters like domain size and the treewidth of the constraint
graph (Lemma 5.2), domain size and the treewidth of the do-
main graph (Lemma 5.3), and domain size and the number of con-
straints (Theorem 5.5), but for the single parameter domain size it
remains open. See Section 5 for details.

522

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

parameter
n = number m = size of k =maximum size � =maximum

of variables the universe of constraint scopes domain size

no convexity
FPT para-NPC para-NPC para-NPC

(Thm. 3.1) (Lem. 2.1) (Lem. 2.1) (Lem. 2.1)

convex FPT para-NPC para-NPC para-NPC
domains (Thm. 3.1) (Lem. 2.1) (Lem. 2.1) (Lem. 2.1)

convex FPT FPT FPT para-NPC
constraints (Thm. 3.1) (Thm. 4.5) (Thm. 6.2) (Lem. 5.1)

bi-convex
FPT FPT FPT

open1

(Thm. 3.1) (Thm. 4.5) (Thm. 6.2)

Table 1: Overview of our results.

containing all variables encodes that there are no two
talks at the same time. If the available times of the speak-
ers are intervals, this MAD-CSP instance is biconvex.

• Scheduling of n jobs with given start and end times on
m machines can be modeled as a MAD-CSP with one
variable per job and values corresponding to machines
on which the job can be run. Each job can be performed
by a subset of machines. Suppose we have 3 jobs with
the following time intervals: J1 has to be performed in
the interval [1, 2] and can be assigned to one of the ma-
chines {1, 3}, J2 in the interval [2, 4] on one of the ma-
chines {1, 3} and J3 in the interval [3, 5] on one of the
machines {2, 3}. The domains of variables Ji are as fol-
lows: D(J1) = D(J2) = {1, 3} and D(J3) = {2, 3}.
Convex AllDiff constraints then ensure that each ma-
chine only runs one job per time slot: AllDiff[J1,J2]
and AllDiff[J2,J3]. Our results demonstrate that this
scheduling problem is FPT parameterized by the total
number of machines.

• The classical graph coloring problem where two adja-
cent vertices should get different colors can be described
as a MAD-CSP with one variable per vertex and one All-
Diff constraint per edge. If there is no restriction on the
set of colors used, the domains are convex. If the graph
is an interval graph, also the constraints are convex (see
Theorem 4.1).

It should be noted that finding a solution of a MAD-CSP
with convex domains and constraints is still an NP-complete
problem due to a reduction from the list coloring of an inter-
val graph problem (Section 4). Hence, we use the more fine-
scaled framework of parameterized complexity [13, 14, 29]
to analyze its complexity.

Our Results. We examine MAD-CSPs in several dimen-
sions. First, the domains and/or constraints can be convex
as observed in the examples above. Second, there are vari-
ous natural parameters which might be fixed or bounded for
typical problem instances. We selected four commonly used
parameters: The number of variables, the number of values
(universe size), the maximum size of the constraint scopes
(arity), and the maximum domain size. From the theoreti-
cal point of view, our parameterizations allow us to reveal
the core of the hardness of this problem. From the practi-
cal point of view, they can be used to construct efficient fil-

tering algorithms for the Multiple AllDiff constraint. Note
that even though some of these parameters, like the num-
ber of variables or the number of values, may not be typ-
ically bounded in some applications, during the backtrack-
ing search of a constraint solver these parameters become
bounded due to the solver’s branching and inference mech-
anisms (see e.g. [35, 36]). Hence efficient algorithms for
bounded parameters are of high practical relevance.

Depending on the convexity of the domains and con-
straints, our results for the four chosen parameters are pre-
sented in Table 1. For the first parameter (number of vari-
ables), we give an FPT algorithm independent of the convex-
ity (Theorem 3.1). For this case we can also show that there
is a polynomial-sized problem kernel (Theorem 3.3). For the
second and third parameters (size of the universe and maxi-
mum size of the constraint scopes), we give an FPT algorithm
if the constraints are convex (Theorem 4.5 and 6.2). For most
of the remaining cases we can prove that there is no FPT al-
gorithm unless P=NP (Lemmas 2.1 and 5.1). More precisely,
we show that these cases are para-NPC, that is, NP-complete
for some (small) fixed parameter. There is one case left open.
This is the case of bi-convex MAD-CSP instances when pa-
rameterized by maximum domain size. We conjecture that
this case is in FPT, but we can only prove this for the aggre-
gate parameter domain size and number of constraints (The-
orem 5.5). See Section 5 for details.

Our results also extend to another natural notion of convex
constraints and domains where the variables and values are
arranged on a tree and convexity corresponds to connected
subtrees. We defer the discussion of this to the full version of
the paper.

Related work. The AllDiff constraint first appeared in
the ALICE constraint programming language [25]. The com-
plexity of a single AllDiff constraint is examined in a series
of papers by different authors [26, 30, 31]. Recently much re-
search has been devoted to constructing efficient algorithms
for conjunctions of AllDiff constraints [4, 23, 24]. Unfortu-
nately, even for the conjunction of two AllDiff constraints a
polynomial algorithm does not exist unless P = NP [19, 23].
This motivates looking for tractable subclasses. Bessiere et
al. [4] give a polynomial-time algorithm for a conjunction of
two AllDiff constraints if the domains are convex. We ex-
tend this to multiple AllDiff constraints and explore different

523

parameters and restrictions for which the problem becomes
tractable.

In the context of general CSPs, much research has been
done on tractable constraint satisfaction problems. One line
of this research deals with tractable constraint languages
(e.g. [9, 20, 34]), another exploits structural properties of
CSPs [11, 15, 27, 28]. Marx [27, 28] investigated general
CSPs from the parameterized complexity point of view, and
Samer and Szeider [33] identified relevant parameters in gen-
eral constraint satisfaction problems.

It should be noted that the problem that we consider is a
special case of the Same-Relation constraint studied in [21].
Jefferson et al. [21] consider a binary constraint satisfac-
tion problem with an identical binary relation over each
edge of the primal constraint graph and a set of unary con-
straints. They showed that such binary CSPs are intractable
for many structures of constraint graphs (cf. Definition 2.1),
like cliques, bipartite graphs, grids or directed acyclic graphs.
In our work, we continue this research and identify additional
restrictions on the Same-Relation constraint that make this
constraint fixed parameter tractable.

In [1, 10, 22] the similar INTERVAL CONSTRAINED COL-
ORING problem was studied. The objective of this problem is
to assign a color to a set of variables such that a set of con-
straints is satisfied. Each constraint is a convex set of vari-
ables which specifies exactly the number of variables that be-
long to each color class. Despite the similarity, this problem
is neither a generalization nor a specialization of MAD-CSPs.

Organization of the paper. We first formally define CSP
and MAD-CSP in Section 2. In Sections 3 and 4 we exam-
ine the cases of fixed number of variables and values, respec-
tively. Section 5 discusses fixed maximum domain size. In
the last section, we study fixed maximum size of the con-
straint scopes. Note that although each section covers a dif-
ferent parameter, the proofs of Section 6 build on results from
Section 5 which in turn depend on Section 4.

2 Formal Model

Formally, a CSP instance is a triple (X ,U , C), where X :=
{x1, . . . , xn} is a set of variables, U ⊆ N is a set of possible
values (also called the universe), and C is a set of constraints.
A constraint C is defined over a set of variables, that are
called the scope of the constraint C, denoted scope(C) ⊆ X .
A constraint C can be represented extensionally as a table
of valid (or invalid) assignments to variables in its scope or
intensionally, by giving an expression or a formula involv-
ing the variables in the constraint scope. We consider only
constraints represented extensionally. Each constraint in C is
a triplet (S,R,m), where S is an m-tuple of variables and
R is an arbitrary m-ary relation over U (constraint relation).
We will slightly abuse notation by writing x ∈ C to indicate
that variable x ∈ X is in the scope S of some constraint
C ∈ C. Also, we assume w.l.o.g. that every variable oc-
curs in at least one constraint scope, and every domain el-
ement occurs in at least one constraint relation. A solution
to a CSP instance is a function (assignment) τ from the set
of variables X to the set of values U satisfying that for each
constraint (S,R,m) with S = (xi1 , xi2 , . . . , xim) the tuple

(τ(xi1), τ(xi2), . . . , τ(xim)) is a member of R. If there is
such an assignment we say that the CSP instance is satisfi-
able, and otherwise we say it is unsatisfiable.

We will focus on CSP instances which include only All-
Diff constraints, henceforth referred to as MULTIPLE ALL-
DIFF CSP (MAD-CSP) instances. A MAD-CSP instance
is a quadruple (X ,U ,D, C), where X and U are defined as
above, D is a function assigning domains to variables, and C
is the set of AllDiff constraints. The function D is defined
from X to 2U , restricting variable x ∈ X to have values only
from D(x). The set C is a set of subsets of 2X enforcing
that all variables occurring together in one constraint must be
assigned different values. We assume w.l.o.g. that all MAD-
CSP instances are in a “canonic” form, that is, the universe
is U = {1, 2, . . . , |U|}, there are no values which are not
used by any variable, there is no variable with an empty do-
main, there are no empty constraints, and there is no con-
straint which is a proper subset of another constraint. A so-
lution to a MAD-CSP instance is a function τ : X → U such
that:
(i) ∀x ∈ X : τ(x) ∈ D(x).
(ii) ∀C ∈ C and ∀x, y ∈ C : x �= y ⇒ τ(x) �= τ(y).

We are specifically interested in domains and constrains
with a particular structure. We say that a domain D(x) of a
variable x is convex, if D(x) = {i, i + 1, i + 2, . . . , j} for
some 1 ≤ i ≤ j ≤ m. Analogously, a constraint C ∈ C
is called convex, if C = {xi, xi+1, xi+2, . . . , xj} for some
1 ≤ i ≤ j ≤ n. A MAD-CSP instance has convex domains
(constraints) if all domains (constraints) are convex, and it is
bi-convex if it is has convex domains and constraints simulta-
neously.

Our work focuses on analyzing MAD-CSP instances un-
der the framework of parameterized complexity. Readers are
referred to [13, 14, 29] for relevant concepts and definitions.
We consider the following parameters for MAD-CSP:

• Parameter n := |X | measuring the number of variables.
• Parameter m := |U| measuring the size of the universe.
• Parameter k := maxC∈C |C| measuring the maximum

size of the constraint scopes.
• Parameter � := maxx∈X |D(x)| measuring the maxi-

mum domain size.
It is not difficult to see that MAD-CSP instances can naturally
model the GRAPH COLORING problem, where we are given a
graph G := (V,E), and an integer k, and the goal is to find a
function (k-coloring) f : V → {1, . . . , k} with f(u) �= f(v)
for all {u, v} ∈ E. To reduce GRAPH COLORING to MAD-
CSP, we let X = V , U = {1, . . . , k}, D(x) = U for all x ∈
X , and C = E. Then the MAD-CSP instance is satisfiable iff
G has a k-coloring. Since GRAPH COLORING is known to
be NP-complete for instances with k ≥ 3 [16], we have the
following hardness result for MAD-CSP.
Lemma 2.1. MAD-CSP is NP-complete even when restricted
to convex domain instances with m = 3, k = 2, and � = 3.

We conclude this section by introducing the notion of a
constraint graph, a concept playing an important role in many
works regarding CSP [18, 28, 33]. After presenting a for-
mal definition of this notion, we state an important theorem

524

by Gottlob et al. [18] relating the fixed-parameter tractability
of CSP instances to a structural parameter of the constraint
graph, namely the treewidth parameter (see e.g. [12] for a for-
mal definition).
Definition 2.1. The constraint graph of a CSP instance
(X ,U , C) is the underlying graph of the hypergraph (X , C).
That is, it is the graph with vertex-set X , where two variables
x, y ∈ X are connected by an edge iff there is a constraint
C ∈ C with x, y ∈ C.
Theorem 2.2 ([11]). CSP can be solved in mt+1 ·nO(1) time
and space, where t is the treewidth of the constraint graph.

3 Fixed Number of Variables

We begin our discussion by considering the instances of
MAD-CSP with a fixed number of variables n. We will
present two parameterized algorithms for this parameter, both
with asymptotically similar dependencies on the parameter,
and both working even when neither the domains nor the con-
straints are convex. Note that general CSP is not FPT when
parameterized by n as for example k-Clique can be expressed
as a CSP with k variables [33].
Theorem 3.1. MAD-CSP can be solved in O(n!nm) time,
independent of the underlying convexity assumption.

Proof. We examine the following algorithm:
1. Try all permutations π of {1, 2, . . . , n}.
2. For i from 1 to n: assign xπ(i) the smallest valid value

from D(xπ(i)).
3. If this is possible for all variables, return yes.
4. If there is no permutation for which a valid assignment

is found, return no.
We can easily bound the worst-case runtime of this algo-

rithm by O(n!nm) which is FPT for the parameter being the
number of variables n. It remains to prove correctness of the
algorithm. It is clear that if the algorithm returns “yes”, it has
found a valid assignment and the answer is correct. To show
that it is also correct if it returns “no”, it is sufficient to prove
the following:
(1) If the given instance is satisfiable, then there is a permu-

tation π of {1, 2, . . . , n} such that the algorithm finds a
valid assignment.

In order to prove claim (1), we first show the following claim.
(2) If the given instance is satisfiable, then there is an assign-

ment such that there is a variable x which is assigned to
minD(x).

To show claim (2), assume the contrary, that is, there is a sat-
isfiable instance where in all valid assignments no variable x
is assigned to minD(x). In this case, take any valid assign-
ment and observe that the value 1 cannot have been assigned
to any variable. By the definition of our problem, there must
be a variable x with value 1 in its domain. Reassigning x to 1
gives a valid assignment in which x is assigned to minD(x).
This proves claim (2).

It remains to show claim (1). Given a satisfiable instance,
we use claim (2) and choose the first variable in the permu-
tation π to be a variable x which is assigned to minD(x) in

a valid assignment. To choose the second variable in the per-
mutation, we reduce the given instance by the already fixed
variable x. More precisely, we remove the variable x, the
value minD(x), and all values which are solely used by x
from the instance. This new instance must also be satisfiable
and claim (2) gives the second variable in the required per-
mutation for claim (1). Going on the same way for the third,
fourth, etc. variable, gives the desired permutation and proves
claim (1). The theorem is thus proven.

Our second algorithm shows that the MAD-CSP problem is
not only FPT when parameterized by the number of variables,
it actually also has a polynomial kernel in this parameter (see
e.g. [6] for a discussion on this important concept in parame-
terized complexity). Our kernelization algorithm is based on
a simple reduction rule, which roughly states that if a variable
has a large enough domain it can be deleted. The justification
of this rule is given in the following simple lemma.
Lemma 3.2. Let (X ,U ,D, C) be a MAD-CSP instance and
x ∈ X be a variable with |D(x)| ≥ n. Then (X ,U ,D, C)
is satisfiable iff (X ′,U ′,D′, C′) is satisfiable, where X ′ :=
X \ {x}, U ′ :=

⋃
x∈X ′ D(x), D′ := D|X ′ , and C′ := {C \

{x} : C ∈ C and C �= {x}}.
Using this rule iteratively until it can no longer be applied,

we obtain a MAD-CSP instance where each variable has a
domain size which is bounded by the total number of remain-
ing variables in the instance. This immediately implies that
the problem has a kernel of size O(n2).
Theorem 3.3. The MAD-CSP problem has a kernel of size
O(n2), independent of the underlying convexity assumption.

4 Fixed Number of Values

In this section we consider the MAD-CSP problem when pa-
rameterized by the size of the universe m of the instance.
We will show that MAD-CSP with convex constraints is
FPT in this parameter. In contrast, as previously shown in
Lemma 2.1, MAD-CSP with convex domains is para-NPC.

Before presenting our parameterized algorithm, we show
that MAD-CSP with convex constraints is equivalent to
the classical LIST COLORING PROPER INTERVAL GRAPHS
(LCPIG) problem. A graph G := (V,E) is an interval graph
if there exists a set S of intervals on the real line and a bijec-
tion I : V → S such that {u, v} ∈ E ⇐⇒ I(u) ∩ I(v) �= ∅
(see e.g. [17]). If no interval is properly contained in another
in S, then G is a proper interval graph. In LCPIG, we are
given a proper interval graph G, where each vertex v has a
list of colors L(v), and the goal is to assign a color to each
vertex from its list such that adjacent vertices are assigned
different colors.

To show that MAD-CSP with convex constraints is equiva-
lent to LCPIG, we use an equivalent definition of proper inter-
val graphs due to Roberts [32] who showed that G is a proper
interval graph iff the adjacency matrix of G has the consecu-
tive 1’s property; that is, if there is an ordering of the vertices
of G such that the adjacency matrix of G under this order-
ing has 1’s appearing consecutively in each row and column.
Due to the classical Booth and Lueker [8] algorithm, this or-
dering can be computed in linear time. It is easy to verify that

525

the adjacency matrix of the constraint graph associated with a
MAD-CSP instance with convex constraints has the consec-
utive 1’s property. Conversely, any graph whose adjacency
matrix has the consecutive 1’s property can be interpreted as
a constraint graph of a MAD-CSP instance with convex con-
straints. We therefore obtain the following theorem which
will also be useful in Section 5.
Theorem 4.1. MAD-CSP with convex constraints is equiva-
lent to the LCPIG problem.

Now using that LCPIG is NP-complete even in the case
where each list is an interval of consecutive colors [5, 7], we
immediately get from Theorem 4.1 the following corollary.
Corollary 4.2. MAD-CSP is NP-complete even in the bi-
convex case.

We next proceed to describe our parameterized algorithm
for the parameter m. We first observe the following simple
lemma that follows directly from the definition of the MAD-
CSP problem.
Lemma 4.3. If there is any constraint C ∈ C with scope
greater than m, then the given MAD-CSP instance cannot be
satisfied.

We next use Lemma 4.3 above to bound the treewidth of
our constraint graph. For this, we will use a slightly different
graph invariant called pathwidth. The pathwidth of a given
graph is bounded from below by its treewidth, and it is well-
known that the graph has pathwidth k iff the smallest clique
number of an interval graph that contains it as a subgraph is
k+1 (see e.g. [12]). This result together with Lemma 4.3 and
the fact that the constraint graph of a MAD-CSP instance with
convex constraints is an interval graph, gives us the following
Lemma 4.4.
Lemma 4.4. If each constraint scope in a given MAD-CSP
instance with convex constraints is of size at most k then the
constraint graph of the instance has pathwidth at most k− 1.

We now can directly use Theorem 2.2 to obtain the main
result of this section.
Theorem 4.5. MAD-CSP with convex constraints can be
solved in mm · nO(1) time.

5 Fixed Maximum Domain Size

We next consider the parameter � which measures the max-
imum number of values in any variable domain. Recall that
by Lemma 2.1 we know that MAD-CSP with convex domains
is para-NPC for this parameter. The following lemma shows
that this also holds for convex constraints.
Lemma 5.1. MAD-CSP with convex constraints is NP-
complete for instances with � ≥ 3.

The proof of Lemma 5.1 uses a result of Jansen [19]. It also
implies that MAD-CSP with convex constraints is para-NPC
even when parameterized by both the maximum domain size
and the number of constraints. We next show that for these
two parameters, MAD-CSP turns out to be in FPT when the
domains are convex. The complexity of the bi-convex case
for the single parameter � remains open. We begin with the
following lemma, which we will also need in Section 6. Its
proof is based on Theorem 2.2.

Lemma 5.2. MAD-CSP can be solved in �t+1 · nO(1), where
t is the treewidth of the constraint graph, independent of the
underlying convexity assumption.

We next introduce a graph of MAD-CSP instances which is
defined by considering the relationships between the domains
of different variables. Following this, we will prove an analo-
gous result to Lemma 5.2 for the case where the treewidth of
the so-called domain graph is bounded.

Definition 5.1. The domain graph of a MAD-CSP instance
(X ,U ,D, C) is a graph with vertex set X where two variables
x, y ∈ X are adjacent iff D(x) ∩ D(y) �= ∅.

Lemma 5.3. MAD-CSP can be solved in �t+1 · nO(1), where
t is the treewidth of the domain graph, independent of the
underlying convexity assumption.

Our goal now is to use Lemma 5.3 above for showing that
MAD-CSP is FPT when parameterized by both � and |C|. For
this, we show that unless our given MAD-CSP instance is un-
satisfiable, the domain graph of this instance has treewidth
bounded by a function of both these parameters. The follow-
ing lemma gives the first step in this direction.

Lemma 5.4. Let (X ,U ,D, C) be an instance of MAD-CSP,
and let D be a domain of some variable in X . If there are
more than � · |C| variables x ∈ X with D(x) = D, then
(X ,U ,D, C) cannot be satisfied.

Theorem 5.5. MAD-CSP with convex domains can be solved
in �2c�

2 · nO(1) time, where c := |C| is the number of con-
straints in the given instance.

Proof. We prove the theorem by applying Lemma 5.3. We
first observe that in the case of convex domains, the domain
graph G of a given MAD-CSP instance is an interval graph.
This can be seen by assigning each variable its interval do-
main. Our algorithm begins by checking whether there is a
domain D in our instance where the number of variables with
this domain is more than c�. If this is the case, we report
that the instance is unsatisfiable by Lemma 5.4. Otherwise,
the number of interval domains which start or end at a cer-
tain value s, which is exactly the number of interval domains
that are contained inside the interval [s, s + l] or [s − l, s],
is at most c�. From this it follows that any domain inter-
sects less than 2c�2 other domains, and therefore G has max-
imum clique-size less than 2c�2. Thus, G has treewidth at
most 2c�2 − 1, and we can apply Lemma 5.3 to complete the
proof.

6 Fixed Maximum Size of Constraint Scope

In this section we examine the parameter k which measures
the maximum size of constraint scopes. Lemma 2.1 showed
that MAD-CSP is para-NPC without convexity of the con-
straints. To show that convex constraints make the problem
FPT with respect to k, we first argue that that variables with
domain size larger than k2 can be safely removed.

Lemma 6.1. Let (X ,U ,D, C) be an instance of MAD-CSP
where all constraints C ∈ C are convex and all constraint
scopes are of size at most k. Also, let x ∈ X be a vari-
able with D(x) > k2. Then (X ,U ,D, C) is satisfiable

526

iff (X ′,U ′,D′, C′) is satisfiable, where X ′ := X \ {x},
U ′ :=

⋃
x∈X ′ D(x), D′ := D|X ′ , and C′ := {C \ {x} : C ∈

C and C �= {x}}.

This reduction rule gives us an FPT algorithm for convex
constraints as follows.

Theorem 6.2. MAD-CSP with convex constraints can be
solved in k2k · nO(1) time.

Proof. Given a MAD-CSP instance with maximum size of
constraint scopes k, we know from Lemma 4.4 that the path-
width, and therefore also the treewidth, of the constraint
graph is at most k − 1. By above Lemma 6.1, we can re-
duce in polynomial time the given MAD-CSP instance to a
MAD-CSP instance with maximum domain size k2. As the
treewidth of the constraint graph remains bounded by k − 1,
applying Lemma 5.2 finishes the proof.

References

[1] E. Althaus, S. Canzar, K. M. Elbassioni, A. Karren-
bauer, and J. Mestre. Approximating the interval con-
strained coloring problem. In 11th SWAT, pages 210–
221, 2008.

[2] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and
T. Walsh. Filtering algorithms for the NValue constraint.
In 2nd CPAIOR, pages 79–93, 2005.

[3] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and
T. Walsh. SLIDE: A useful special case of the CARD-
PATH constraint. In 18th ECAI, pages 475–479, 2008.

[4] C. Bessiere, G. Katsirelos, N. Narodytska, C.-G. Quim-
per, and T. Walsh. Propagating conjunctions of AllDif-
ferent constraints. In 24th AAAI, pages 27–32, 2010.

[5] M. Biró, M. Hujter, and Z. Tuza. Precoloring extension.
I: Interval graphs. Discrete Math., 100:267–279, 1992.

[6] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and
D. Hermelin. On problems without polynomial kernels.
J. Comput. Syst. Sci., 75:423–434, 2009.

[7] F. Bonomo, G. Durán, and J. Marenco. Exploring
the complexity boundary between coloring and list-
coloring. Annals of Operations Research, 169:3–16,
2009.

[8] K. S. Booth and G. S. Lueker. Testing for the consecu-
tive ones property, interval graphs, and graph planarity
using PQ–tree algorithms. J. Comput. Syst. Sci., 13:
335–379, 1976.

[9] A. A. Bulatov. A dichotomy theorem for constraints on
a three-element set. In 43rd FOCS, page 649, 2002.

[10] J. Byrka, A. Karrenbauer, and L. Sanita. The interval
constrained 3-coloring problem. In 9th LATIN, pages
591–602, 2010.

[11] R. Dechter and J. Pearl. Tree clustering for constraint
networks. Artif. Intell., 38:353–366, 1989.

[12] R. Diestel. Graph Theory. Springer-Verlag, 2000.
[13] R. Downey and M. Fellows. Parameterized Complexity.

Springer-Verlag, 1999.
[14] J. Flum and M. Grohe. Parameterized Complexity The-

ory. Springer-Verlag, 2006.
[15] E. C. Freuder. A sufficient condition for backtrack-

bounded search. J. ACM, 32:755–761, 1985.

[16] M. Garey and D. Johnson. Computers and intractabil-
ity: A guide to the theory of NP-completeness. W. H.
Freeman, 1979.

[17] M. Golumbic. Algorithmic graph theory and perfect
graphs. Academic Press, 1980.

[18] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter
complexity in AI and nonmonotonic reasoning. Artif.
Intell., 138:55–86, 2002.

[19] K. Jansen. The optimum cost chromatic partition prob-
lem. In 3rd CIAC, pages 25–36, 1997.

[20] P. Jeavons, D. A. Cohen, and M. Gyssens. Closure prop-
erties of constraints. J. ACM, 44:527–548, 1997.

[21] C. Jefferson, S. Kadioglu, K. E. Petrie, M. Sellmann,
and S. Zivný. Same-relation constraints. In 15th CP,
pages 470–485, 2009.

[22] C. Komusiewicz, R. Niedermeier, and J. Uhlmann. De-
constructing intractability: A case study for interval
constrained coloring. In 20th CPM, pages 207–220,
2009.

[23] M. Kutz, K. M. Elbassioni, I. Katriel, and M. Mahajan.
Simultaneous matchings: Hardness and approximation.
J. Comput. Syst. Sci., 74:884–897, 2008.

[24] F. Lardeux, E. Monfroy, F. Saubion, B. Crawford, and
C. Castro. SAT encoding and CSP reduction for inter-
connected alldiff constraints. In 8th MICAI, pages 360–
371, 2009.

[25] J.-L. Lauriere. ALICE: a language and a program for
stating and solving combinatorial problems. Artif. In-
tell., 10:29–127, 1978.

[26] M. Leconte. A bounds-based reduction scheme for con-
straints of difference. In 2nd CONSTRAINT, pages 19–
28, 1996.

[27] D. Marx. Can you beat treewidth? In 48th FOCS, pages
169–179, 2007.

[28] D. Marx. Tractable hypergraph properties for constraint
satisfaction and conjunctive queries. In 42nd STOC,
pages 735–744, 2010.

[29] R. Niedermeier. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press, 2006.

[30] J.-F. Puget. A fast algorithm for the bound consistency
of alldiff constraints. In 13th AAAI, pages 359–366,
1998.

[31] J.-C. Régin. A filtering algorithm for constraints of dif-
ference in csps. In 9th AAAI, pages 362–367, 1994.

[32] F. Roberts. Indifference graphs. In Proof Techniques in
Graph Theory, pages 139–146, 1969.

[33] M. Samer and S. Szeider. Constraint satisfaction with
bounded treewidth revisited. J. Comput. Syst. Sci., 76:
103–114, 2010.

[34] T. J. Schaefer. The complexity of satisfiability problems.
In 10th STOC, pages 216–226, 1978.

[35] C. Schulte and P. J. Stuckey. Efficient constraint propa-
gation engines. ACM Trans. Program. Lang. Syst., 31:
1–43, 2008.

[36] K. Stergiou. Heuristics for dynamically adapting prop-
agation. In 18th ECAI, pages 485–489, 2008.

[37] W.-J. van Hoeve. The alldifferent constraint: A survey.
In 6th CSCLP, 2001.

527

