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Abstract. Time series are sequences of data indexed by time. Such
data are collected in various domains, often in massive amounts, such
that storing them proves challenging. Thus, time series are commonly
stored in a compressed format. An important compression approach is
piecewise linear approximation (PLA), which only keeps a small set of
time points and interpolates the remainder linearly. Picking a subset of
time points such that the PLA minimizes the mean squared error to
the original time series is a challenging task, naturally lending itself to
heuristics. We propose the piecewise linear approximation genetic algo-
rithm (PLA-GA) for compressing time series by PLA. The PLA-GA is a
memetic (μ+λ) GA that makes use of two distinct operators tailored to
time series compression. First, we add special individuals to the initial
population that are derived using established PLA heuristics. Second,
we propose a novel local search operator that greedily improves a com-
pressed time series. We compare the PLA-GA empirically with existing
evolutionary approaches and with a deterministic PLA algorithm, known
as Bellman’s algorithm, that is optimal for the restricted setting of sam-
pling. In both cases, the PLA-GA approximates the original time series
better and quicker. Further, it drastically outperforms Bellman’s algo-
rithm with increasing instance size with respect to run time until find-
ing a solution of equal or better quality – we observe speed-up factors
between 7 and 100 for instances of 90,000 to 100,000 data points.

Keywords: Genetic algorithms · Time series compression · Piecewise
linear approximation · Hybridization · Experimental study

1 Introduction

In the modern age of Industry 4.0 and the Internet of Things, sensors are used
in abundance in smart devices, cars, or to monitor production facilities. This
leads to a huge accumulation of data over time, whose collection speed is only
going to increase in the nearby future [9]. A prevalent type of such sensory data
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are time series – sequences of measurements indexed by time. In order to store
these vast amounts of data in the long term and to allow scalable data analysis
techniques, it is often necessary to compress time series [17,22]. To this end,
various approaches exist that construct a time series of reduced dimensionality
as an approximation of the original, known as time series representation [15,27].

In this setting, the use of lossy compression methods [18,19,37], adopted from
the research on multimedia data, has been often advocated under several termi-
nologies. These methods trade precision for a higher compression factor so that
the reconstructed time series is only an approximation of the original, frequently
omitting noise, outliers, and other information deemed not worthy of their mem-
ory cost. While some of these methods represent the time series in a transformed
domain (e.g., involving discrete Fourier [1] or Wavelet transforms [31]), in certain
application fields, it is important to maintain the original time domain and the
related time stamps information, such as in GPS or accelerometer data [20].

In this work, we study piecewise linear approximation (PLA [21,24]), which
is among the most important time series representation procedures for lossy com-
pression and has been shown to be efficient in terms of memory and transmission
cost compared to other similar methods [37]. PLA compresses a time series by
representing it via a sequence of linear segments whose quality is assessed by an
error measure between the original and the reconstructed series. This leads to a
combinatorial problem similar to NP-hard problems like cluster analysis or sub-
set selection in regression [35]. Consequently, heuristics are applied. We analyze
to what extent evolutionary algorithms (EAs) can be used for this problem.

Related Work. Using EAs as heuristics for time series analysis is not a novel
approach [3]. However, most research is focused on detecting break points in
time series, that is, certain points in the series that have interesting or impor-
tant structural properties [3,5,7]. To the best of our knowledge, the only prior
research concerning EAs for compression by PLA was conducted by Duràn-Rosal
et al. [10–12]. The authors consider the restricted setting of sampling, for which
the compressed series is restricted to consist only of points contained in the origi-
nal time series. Their works introduce a memetic genetic algorithm [12], particle
swarm optimization algorithm [10], and coral reef optimization algorithm [11],
all augmented with a local search operator to improve intermediate solutions.

Outside the domain of EAs, other heuristics have been considered for com-
pression by PLA [34]. Especially, in the restricted setting of sampling, Bellman’s
algorithm [4] is optimal and deterministic. However, compression by PLA usu-
ally concerns the slightly different setting where one is not given a number of
points m to pick but an error bound ε instead [8,14,26]. The goal is to find a
compressed series with a mean squared error (MSE) of at most ε to the orig-
inal time series. Thus, the number of points to pick can be chosen freely by
the compression algorithm. Recent advances were made in this area [23,36]. The
benefit of this approach is that the result is guaranteed to be within the specified
error distance (if a result is returned). On the downside, the user has no control
over the memory that the compressed time series occupies. However, note that
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the approaches of a given error bound ε and a given compression size m can
be roughly converted into one another by performing a binary search on the
parameter not provided.

Our Results. We propose the piecewise linear approximation genetic algorithm
(PLA-GA, Alg. 1), a memetic (μ + λ) genetic algorithm (GA) variant for gen-
eral time series compression via PLA. It features a seeding and a local search
operator, both specific to this domain. Seeding adds special individuals to the
initial population, which are computed via established PLA heuristics. The local
search operator is a novel contribution that greedily improves a compressed time
series.

We empirically analyze the impact of these two memetic operators on the
PLA-GA’s performance (see 4.2). We find that both operators are favorable, as
they help the PLA-GA improve its MSE as well as its run time (see Fig. 1). We
then evaluate the performance of the PLA-GA against competing approaches
(see Sect. 4.3 and 4.4), which all operate under the sampling restriction. First,
we compare the PLA-GA to the two latest and best-performing EAs [10,11] (see
Sect. 4.3), which are the only EAs for compression by PLA, to the best of our
knowledge. We observe that the PLA-GA outperforms them both with respect
to the MSE as well as run time (see Table 1). Second, we compare the PLA-
GA to Bellman’s algorithm [4] (Sect. 4.4), a deterministic optimal algorithm
for the sampling restriction, which the PLA-GA is not restricted to. First, we
provide the PLA-GA with a run time budget equivalent to that of Bellman’s
algorithm. We observe a large variance of the MSE in the results, with the PLA-
GA usually outperforming Bellman’s – reducing the error of Bellman’s up to
55% (Table 2). Then, we analyze how long the PLA-GA takes to find a solution
of Bellman’s quality or better. Our results show that the PLA-GA drastically
outperforms Bellman’s algorithm, expressing speed-up factors between 7 and 100
for instances of 90,000 to 100,000 data points (see Fig. 2). Overall, our results
suggest that the PLA-GA is particularly well suited to compression by PLA for
long time series.

2 Preliminaries

For m,n ∈ N, let [m..n] denote the set of all natural numbers in the interval
[m,n]. A time series is a function S : R≥0 → R with a finite domain of n ∈ N+

elements, where n is the length of S. We call the domain of S, denoted by dom(S),
the time points of S. Furthermore, for an index i ∈ [1..n], let tSi denote the i-th
smallest time point of S, and let vS

i denote its function value S(tSi ). Given a
time series S of length n, we call a time series C of length m a compression of S
if and only if dom(C) ⊆ dom(S), m ≤ n, and if tS1 = tC1 and tSn = tCm. Note that
while we demand that the time points of C are a subset of those of S, we make
no such claims for the function values of C and S. We view C as a piecewise
linear approximation (PLA) of S by interpolating values for the time points in
dom(S)�dom(C) using linear functions. More formally, we define the PLA of S
via C, denoted as C∗, to be a time series of length n with dom(C∗) = dom(S)
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such that, for all i ∈ [1..m − 1] and all t ∈ dom(S) ∩ [tCi , tCi+1], it holds that
C∗(t) = vC

i +
(
t − tCi

)
(vC

i+1 − vC
i )/(tCi+1 − tCi ).

Approximation Error by PLA. Given a time series S and a compres-
sion C, we quantify the approximation error via the mean squared error
(MSE), which is a common measures [10,14,23,25]. We define MSE(C,S) =
1
n

∑n
i=1

(
vS
i − C∗(tSi )

)2.

3 The Piecewise Linear Approximation Genetic
Algorithm

We introduce the (μ+λ) piecewise linear approximation genetic algorithm (PLA-
GA; Algorithm 1), a memetic genetic algorithm following a (μ + λ) GA outline
and using PLA to compress a time series of length n down to length m ≤ n,
minimizing the MSE. The PLA-GA makes use of a seeding and a local search
operator, both of which are tailored to improve the quality of compressed time
series. Please find the source code as well as a detailed description of the PLA-GA
on GitHub.1

Each individual represents a compressed time series C of length m for a given
time series S of length n. Since we minimize the MSE of C∗ and S, we only store
the time points dom(C); we compute the values vC

i optimally with respect to
the MSE only if needed. That is, we represent a compressed time series C by a
bit string x of length n such that, for all i ∈ [1..n], xi = 1 if tSi ∈ dom(C), and
xi = 0 otherwise, as is common [11,12]. Note that x has exactly m 1s. Recall
that we demand each compressed time series to contain the first and last time
point of S. Thus, for each individual x, it holds that x1 = xn = 1. If a bit string
fulfills these conditions, we call it valid, otherwise invalid.

Algorithm 1: The (μ + λ) PLA-GA with parameters α ∈ [0, 1], k ∈ N,
μ ≥ k, λ ∈ N+, and m ≥ 2, compressing a time series S of length n down
to length m ≤ n, minimizing the MSE
1 P1 ← μ − k individuals, each uniformly at random from {x ∈ {0, 1}n |x is valid};
2 P2 ← k individuals, each generated by one of the k seeding operators;
3 P ← P1 ∪ P2;
4 while termination criterion not met do
5 L ← ranking selectionλ(P, S);
6 O ← recombine(L);
7 bitflip repair(O);
8 bitswap mutationα(O);
9 foreach x ∈ O do local search(x, S);

10 P ← out of P ∪ O, choose μ best individuals;

1 https://github.com/arthurz0/ga-for-time-series-compression-by-pla/.

https://github.com/arthurz0/ga-for-time-series-compression-by-pla/
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In order to determine the fitness of an individual for C, that is, its MSE
to S, we first determine the values vC

i optimally as proposed by Marmarelis [25].
This approach is based on solving a system of m linear equations, where each
equation represents the error of a piecewise linear function of C to S. Solving
these equations takes time in O(n). Afterward, we compute the MSE.

4 Experimental Evaluation

We evaluate the performance of the PLA-GA empirically in different settings.
In Sect. 4.2, we analyze the impact of the memetic operators on the PLA-GA’s
performance by comparing different variants of hybridization. We find that both
memetic operators improve the quality of the solutions and the time to find
them.

Afterward, we compare the PLA-GA against other algorithms that compress
a time series S of length n to a time series C of length m. These algorithms take
a simplified approach to PLA by only choosing points of the original series, that
is, for all t ∈ dom(C), it holds C(t) = S(t), called sampling.

In Sect. 4.3, we compare the PLA-GA against two memetic EAs of Duràn-
Rosal et al. [10,11], which, to the best of our knowledge, are the currently best
EAs for compression by PLA. Since the EAs require a predetermined budget N of
evaluations, we give the PLA-GA a roughly equivalent computation time budget.
We observe that the PLA-GA outperforms the EAs during the entire budget.

In Sect. 4.4, we analyze the quality of the MSE achieved by the PLA-GA
when it is not bound to a fixed time budget. To this end, we use Bellman’s algo-
rithm [4] as a baseline, which is deterministic and optimal under the restriction
of sampling. First, we compare the quality reached when giving both algorithms
the same run time budget on data sets of up to 30,000 points. The results depend
strongly on the data set, ranging from solutions of similar quality to significant
improvements of up to 0.55 times the MSE of Bellman in the best experiment.
Then, we analyze how much time the PLA-GA needs to find solutions of the
same quality as Bellman on problem instances of increasing size. We observe
that the PLA-GA scales far better, reaching speed-up factors between 7 and 100
for problem sizes of 90,000 or 100,000 points.

In all of our experiments, we run the PLA-GA with μ = 200, λ = 200, and
α = 0.8

m−2 (and k = 3). These parameters were determined in pilot experiments.
The experiments were conducted on an Intel(R) Core(TM) i5-6200U CPU @
2.30 GHz with 8 GB RAM, unless noted otherwise.

4.1 Data Sets

Most of our time series originate from the publicly accessible UCR Time Series
Classification Archive [32], which contains sets of time series for classification
purposes. We use the data sets Rock, Ham, HandOutlines, Mallat, Phoneme,
and StarLightCurves from different application fields. Since we aim to conduct
experiments on time series of up to 100,000 points but the classification data sets
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consist of instances with a length between 431 (Ham) and 2844 (Rock) points,
we concatenate the instances of each data set until the desired length is reached.
An exception to this is Mallat (8192 points), where we use the same version as
Duràn-Rosal et al. in [10,11].

Further, we use the “PAMAP2 Physical Activity Monitoring Dataset” [28,29]
from the UCI Machine Learning Repository [33], containing data from real-world
activity tracking. In particular, we use the columns 5 (Subject5 ) and 6 (Subject6 )
from the protocol of Subject103, both of which contain 252,311 points of 3D-
acceleration data. Since the time series are too long for our purposes, we only take
the first n points, where the specific value of n is mentioned in each experiment.

4.2 Evaluation of Hybridization

We examine the benefit added by hybridization and evaluate its cost, demon-
strating that both, seeding and local search, improve the PLA-GA.

Setup. We run the PLA-GA in the following four configurations: with no seed-
ing and no local search (PLA-GA-B), with seeding but no local search (PLA-
GA-S), with local search but no seeding (PLA-GA-L), and the main algorithm
PLA-GA, which uses both seeding and local search. We measure their MSE per
iteration and determine the run time cost of seeding and local search. We have
50 independent runs per algorithm and choose m = 0.01n.

Results. Fig. 1 shows the MSEs of each PLA-GA variant by iteration. Although
it is hardly noticeable in the figure, note that, bar statistical inaccuracies, PLA-
GA and PLA-GA-S have the same best MSE in the initial population (iter-
ation 0), as both use seeding, which deterministically introduces high-quality
solutions. Similarly, both PLA-GA-B and PLA-GA-L start with roughly the
same best MSE, as neither uses seeding. Further, the MSEs of each algorithm
are concentrated around the median, as the interquartile ranges are merely
visible.

On all data sets, PLA-GA-B performs worst and the PLA-GA best. In
between we have PLA-GA-L, which starts worse than PLA-GA-S but overtakes it
after some time, on Phoneme even at iteration 1. This substantiates the intuition
that seeding helps during the start of the algorithm (since it adds good individ-
uals to the initial population), whereas the gain of local search is incremental
and adds up over time. On some data sets, the three better configurations end
up with very close MSEs, though it should be considered that small differences
gain significance the closer the solutions get to the optimum. When looking at
the number of iterations required to reach a specific level of quality, the speed
boost granted by the hybridization operators becomes evident.

For the full picture, one must further consider the computational effort of the
hybridization operators. The creation of the initial population without seeding
costs roughly as much as 1.3 iterations without local search; adding seeding
increases this cost by roughly 25%, so the computational effort of seeding is
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(a) Ham (b) HandOutlines

(c) MALLAT (d) Phoneme (e) Rock

(f) StarLightCurves (g) Subject5 (h) Subject6

Fig. 1. The MSE of the best solution for four different variants of the PLA-GA (Algo-
rithm 1) plotted against the iteration, compressing a time series of length n down to
length m. The solid lines represent the median of 100 runs per algorithm, and the
surrounding shaded areas depict the mid 50 %. The legend of each plot denotes the
order of the curves in the last iteration. Please also refer to Sect. 4.2.

almost irrelevant for the total run time. The local search, on the other hand, is
very expensive: an iteration with the local search takes roughly 2.9 times as long
as an iteration without. Nonetheless, the quality benefit of local search makes it
worthwhile, leading to an overall better performance despite its high cost.

4.3 Comparison with Other Evolutionary Algorithms

Duràn-Rosal et al. propose several memetic EAs for compressing time series by
PLA under the sampling restriction [10–12]. Their best are the particle swarm
algorithm ACROTSS [10] and the coral reef algorithm DBBePTOSS [11]. Both
algorithms require a bound N on the number of evaluations in advance, as they
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Table 1. Median best MSE of each of the 100 runs for the algorithms DBBePTOSS [11],
ACROTSS [10], and the PLA-GA (Algorithm 1) when compressing a time series of
length n. The results state the MSE after the first and the last iteration within the
given budget. Scale denotes the factor that applies to all MSEs in the table. Please
also refer to Sect. 4.3.

Data set n Scale DBBePTOSS ACROTSS PLA-GA

Start End Start End Start End

Mallat 8192 10−5 15889 2207 1427 999 626 410

Ham 10000 10−3 982 474 399 330 246 196

Rock 10000 10−5 15264 1405 1122 918 906 682

Subject5 10000 10−4 5813 1148 920 791 750 598

Subject6 10000 10−3 1251 408 347 308 301 256

HandOutlines 20000 10−7 45619 538 377 335 294 215

Phoneme 20000 10−3 1122 588 534 496 484 393

StarLightCurves 20000 10−6 30833 1115 789 684 319 185

perform local searches after certain iterations, relative to N . When comparing
these algorithms to the PLA-GA, we provide it with a similar budget. However,
since the PLA-GA’s computational effort of a fitness evaluation is much higher
due to calculating optimal function values for the compressed time series first,
we instead give the PLA-GA a wall-clock-time budget matching the converted
median run time of the fastest competing approach.

Setup. For the EAs of Duràn-Rosal et al., we choose the parameters as stated
in the respective publications, including the budget of N = 3.5n evaluations and
compression length m = 0.025n+1. For each algorithm, we start 100 independent
runs and log the MSE of the best individual in the population in each iteration.
Unfortunately, the EAs of Duràn-Rosal et al. are implemented in Matlab, while
the PLA-GA runs in Julia. Thus, we cannot directly take the wall-clock time
of the EAs as budget for the PLA-GA. Instead, we divide the times of the
EAs by 5, which is roughly the speed-up of our implementation of Bellman’s
algorithm [4] when run in Julia compared to Matlab. However, we acknowledge
that no constant conversion factor exists [2,30].

Results. Table 1 shows the median best MSE of each algorithm for the first
and last iteration. The PLA-GA clearly outperforms the competing approaches,
as even its starting values are consistently better than the end values of DBBeP-
TOSS and ACROTSS. This is most likely due to the less restrictive approach of
the PLA-GA and its use of seeding.
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Table 2. Median MSE of the best solution of 50 runs of the PLA-GA (Algorithm 1)
after a computation time equivalent to Bellman’s algorithm [4] when compressing a
time series of length n. Ratio shows the median MSE of the PLA-GA divided by that
of Bellman’s. Best ratio is the best MSE of the PLA-GA divided with the MSE of
Bellman. Scale denotes the factor that applies to all MSEs in the table. Please also
refer to Sect. 4.4.

Data set n Scale Bellman PLA-GA Ratio Best ratio

Mallat 8192 10−4 911 741 0.81 0.79

Ham 20000 10−3 512 496 0.97 0.96

Rock 20000 10−3 270 184 0.68 0.64

Subject5 30000 10−3 131 121 0.92 0.91

Subject6 30000 10−3 300 287 0.96 0.94

HandOutlines 20000 10−7 1663 910 0.55 0.54

Phoneme 20000 10−3 566 573 1.01 1.00

StarLightCurves 20000 10−5 418 270 0.65 0.64

4.4 Comparison with Bellman

We compare the MSE and the wall-clock time of the PLA-GA against Bell-
man’s algorithm [4], which deterministically computes an optimal solution in
the restricted setting of sampling. First, we examine the MSE of the PLA-GA
when giving it a budget equivalent to Bellman’s wall-clock-time. Second, we ana-
lyze how the PLA-GA’s run time scales with the input size n in comparison to
Bellman’s algorithm, which has a rather slow run time of O(n2m).

Setup. Both sets of experiments have 50 independent runs per algorithm and
m = 0.01n. In the first set, the PLA-GA has a run time budget equivalent to the
wall-clock-time of Bellman’s algorithm, and the time series have up to 30,000
points. For the second set, we stop the PLA-GA once it finds a solution equal
to Bellman’s quality or better for the first time. The second set was conducted
on an Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and 8 GB RAM.2

Results. Table 2 compares the MSE of the solutions found by the PLA-GA and
Bellman with the same amount of time; a small ratio is desirable. The results
vary drastically between the experiments, ranging from similar MSEs on some
data sets to huge improvements over Bellman on others. This variance is to be
expected, as the difference between Bellman and the best ratio, which is an
upper bound on the global optimum, also differs between each data set.

2 Bellman’s algorithm was modified to calculate the segment errors incrementally on
the fly. This reduced the memory complexity from O(n2) to O(mn), allowing us to
run larger experiments. This modification does not affect the asymptotic run time.
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(a) Ham (b) Rock

(c) Subject5 (d) Subject6

Fig. 2. Median Wall-clock time it takes for the PLA-GA (Algorithm 1) and Bellman’s
algorithm [4] on increasing instance sizes. The PLA-GA is stopped once it finds a
solution of at least Bellman’s quality. In each figure, the lower curve shows the run
time of the PLA-GA. The numbers over Bellman’s curve denote the speed-up factor
for that value of n, which is the quotient of Bellman’s run time divided by that of the
PLA-GA. Please also refer to Sect. 4.4.

Figure 2 compares the run times of Bellman and the PLA-GA with increas-
ing problem size n and shows the resulting speed-up factors. The results differ
strongly between the data sets, reaching a speed-up of 7 for Ham on 90,000
and 100 for Rock on 100,000. Thus, the PLA-GA seems to be more sensitive to
the type of data than Bellman. Nonetheless, the speed-up factor clearly grows
with n across all four data sets, indicating that the PLA-GA scales far better
than Bellman.

5 Conclusions

We introduced the PLA-GA, which is a memetic (μ + λ) GA for compressing a
time series by PLA. We showed that its two memetic operators – seeding and
local search – have a positive impact on the algorithm’s solution quality and run
time. Further, we ran experiments comparing the PLA-GA to other EAs for time
series compression and an optimal deterministic algorithm for a more restrictive
setting. We observed that the PLA-GA outperforms all of these approaches with
respect to solution quality and run time, leading to speed-up factors between 7
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and 100 in comparison to the optimal algorithm. This indicates a clear advantage
of the PLA-GA to the existing approaches.

An interesting question for future research is how well the PLA-GA performs
on data streams instead of fixed time series. Especially in industrial settings, time
series data are produced in streams in rapid succession. Analyzing how well the
compression works if the PLA-GA only sees certain chunks of data instead of the
entire data set would provide insights into whether the PLA-GA is also useful
for on-the-fly compression. Moreover, it would be interesting to observe whether
including a statistical modeling step in the procedure is beneficial. In fact, we
currently use a mathematical procedure for obtaining optimal predicted values
with respect to the mean squared error, but taking advantage of the dependence
between time points by statistical modeling (e.g., local linear smoothing [16])
before this step could further improve the quality of the approximation.

Acknowledgments. We thank Durán-Rosal et al. [10–12] very much for immediately
providing us with the source code of their evolutionary algorithms upon request.
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