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Abstract. We study the fully-dynamic all pairs shortest path problem for
graphs with arbitrary non-negative edge weights. It is known for digraphs
that an update of the distance matrix costs Õ(n2.75)1 worst-case time
[Thorup, STOC ’05] and Õ(n2) amortized time [Demetrescu and Italiano,
J.ACM ’04] where n is the number of vertices. We present the first average-
case analysis of the undirected problem. For a random update we show
that the expected time per update is bounded by O(n4/3+ε) for all ε > 0.

Keywords: Dynamic graph algorithms, shortest paths, average-case
analysis, random graphs.

1 Introduction

Dynamic graph algorithms maintain a certain property (e. g., connectivity in-
formation) of a graph that changes (a new edge inserted or an existing edge
deleted) dynamically over time. They are used in a variety of contexts, e. g., op-
erating systems, information systems, database systems, network management,
assembly planning, VLSI design and graphical applications. An algorithm is
called fully-dynamic if both edge weight increases and edge weight decreases
are allowed. While a number of fully dynamic algorithms have been obtained
for various properties on undirected graphs (see [6]), the design and analysis of
fully-dynamic algorithms for directed graphs has turned out to be much harder
(e. g., [9, 13, 15, 16]).

In this article, we consider the fully-dynamic all-pairs shortest path problem
(APSP) for undirected graphs, which is one of the most fundamental problems
in dynamic graph algorithms. The problem has been studied intensively since
the late sixties (see [4] and references therein). We are interested in algorithms
that maintain a complete distance matrix as edges are inserted or deleted. The
static directed APSP problem can be solved in O(mn + n2 log n) time [8] where
n is the number of vertices and m is the number of edges. This gives O(n3)
per update in the worst-case for a static recomputation from scratch. The first
major improvement that is provably faster than this only worked on digraphs
with small integer weights. King [10] presented a fully-dynamic APSP algorithm

1 Throughout the paper, we use Õ(f(n)) to denote O(f(n) polylog(n)).
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for general directed graphs with positive integer weights less than C that sup-
ported updates in O(n2.5√C log n). In the remainder of the paper, we will only
consider non-negative real-valued edge weights. Demetrescu and Italiano pur-
sued this problem in a series of papers and showed that it can be solved in
O(n2 log3 n) amortized time per update. [4]. This has been slightly improved to
O(n2(log n + log2((m + n)/n))) amortized time per update by Thorup [17]. In
[18], Thorup showed a worst-case update time of Õ(n2.75).

We are interested in expected update times. The only known result for this is for
the undirected, unweighted, decremental, randomized, and approximate version
of the APSP problem. Roditty and Zwick [14] showed for this setting an expected
amortized time of Õ(n). For our setting of the problem on undirected graphs with
arbitrary non-negative edge weights, there is nothing known about the average-
case update times. We analyze a variant of Demetrescu and Italiano’s algorithm
described in Section 3. Let R(p) denote the expected runtime of our algorithm
for a single random edge update of a random graph G ∈ G(n, p). Let ε, ε′ > 0.
For arbitrary p, we can show R(p) = O(n4/3+ε). However, for most p we can
prove that the runtime is actually much smaller. The above bound is best only at
the phase transition around pn = 1, i. e., when the size of the largest component
rapidly grows from Θ(log n) to Θ(n). When the graph is sparser, our algorithm
is much faster. In this case, we can show R(p) = O(n2/3+ε) for pn ≤ 1 − n−1/3

and R(p) = O(nε) for pn < 1/2. Similarly, the algorithm becomes faster when
the graph has passed the critical window. We show R(p) = O(nε/p) for pn ≥
1+ ε′. The final result is given in Theorem 11. Additionally to these asymptotic
upper bounds on the expected runtime, we also examined the empirical average
runtime. Interestingly, this also shows that the update costs are first increasing
and later decreasing when more edges are inserted. This corresponds well with
the above phase distinction for the asymptotic bounds.

The remainder of this paper is organized as follows. The next section presents
all necessary graph theoretical notations. In Section 3 we present our algorithm.
In Section 4 we prove a number of random graph properties which are then used
in Section 5 to show the asymptotic bounds. The last section presents some
empirical results.

2 Preliminaries

Demetrescu and Italiano [5] performed several experiments on directed random
graphs. We want to bound the expected runtime of random updates on a random
graph of a very similar algorithm. We utilize the random graph model G(n, p)
introduced and popularized by Erdős and Rényi [7]. The G(n, p) model consists
of a graph with n vertices in which each edge is chosen independently with
probability p. In our model, a random update first chooses two vertices x and y
(x �= y). Then, with (fixed) probability δ, it inserts the edge (x, y) with a random
weight w ∈ [0, 1]. If the edge was already in the graph, it changes its weight to w.
Otherwise, with probability 1−δ, a random update deletes the edge (x, y) if (x, y)
is in the graph (otherwise, it does nothing). Note that T random updates on a
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random graph G ∈ G(n, p) lead to a graph with edges present with probability
p′ = δ + (p − δ)(1 − 1/

(
n
2

)
)T , but not necessarily mutually independent.

Throughout the paper, we use the following notations:

– G = (V, E) is an undirected graph with arbitrary non-negative edge weights.
– Δ := maxv∈V deg(v) is the maximum degree of the graph G.
– dist(x, y) (distance) is the length of the shortest path from x to y.
– diam(G) (diameter) is the greatest distance between any two vertices of one

component.
– C(x) denotes the component that contains the vertex x.
– C(G) denotes the largest component of G.
– wxy denotes the weight of an edge (x, y).
– πxy = 〈u0, u1, . . . , uk〉 is a path from vertex x = u0 to vertex y = uk, i. e.,

a sequence of vertices such that with (ui, ui+1) ∈ E for each 0 ≤ i < k (no
repeated edges).

– w(πxy) =
∑k−1

i=0 wuiui+1 is the weight of a path.
– πxy ◦ πyz denotes the concatenation of two paths πxy and πyz.
– �(πxy) denotes the subpath πxa of πxy such that πxy = πxa ◦ 〈a, y〉.
– r(πxy) denotes the subpath πby of πxy such that πxy = 〈x, b〉 ◦ πby.

We assume without loss of generality that there is only one shortest path be-
tween each pair of vertices in G. Otherwise, ties can be broken as discussed in
Section 3.4 of [4].

3 Algorithm

We will now describe our algorithm. It is a slight modification of the algorithm
of Demetrescu and Italiano [5] as our aim is an average-case analysis of the
undirected problem while they were interested in the amortized costs for directed
graphs.

The main tool Demetrescu and Italiano [4] very cleverly introduced and ap-
plied is the concept of “locally shortest paths”. A path πxy is locally shortest if
every proper subpath is a shortest path or it consists of only a single vertex. The
algorithm maintains the following data structures:

– wxy weight of edge (x, y)
– Pxy priority queue of the locally shortest paths from x to y (priority w(πxy))
– P ∗

xy shortest path from x to y
– L(πxy) set of left-extensions 〈x′, x〉◦πxy of πxy that are locally shortest paths
– L∗(πxy) set of left-extensions 〈x′, x〉 ◦ πxy of πxy that are shortest paths
– R(πxy) set of right-extensions πxy ◦ 〈y, y′〉 of πxy that are locally shortest

paths
– R∗(πxy) set of right-extensions πxy ◦ 〈y, y′〉 of πxy that are shortest paths

Note that P ∗
xy ⊆ Pxy and that every minimum weight path in Pxy is also a

shortest path. Each path πxy ∈ Pxy is stored implicitly with constant space by
just storing two pointers to the subpaths �(πxy) and r(πxy).
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Update(u, v, w)
� Phase 1: Delete edge (u, v) and all paths containing edge (u, v),

store pairs of vertices affected by the update in list A
1 if (u, v) ∈ Puv then
2 Q ← {(u, v)}
3 while Q �= ∅ do
4 extract any πxy from Q
5 remove πxy from Pxy, L(r(πxy)), and R(�(πxy))
6 if πxy ∈ P ∗

xy then
7 remove πxy from P ∗

xy, L∗(r(πxy)), and R∗(�(πxy))
8 add (x, y) to A
9 add all paths in L(πxy) to Q

10 add all paths in R(πxy) to Q
� Phase 2: Insert edge (u, v) with weight w

11 if w < ∞ then
12 add (u, v) to A
13 add (u, v) to Puv, L(πvv), and R(πuu)

� Phase 3: Scan pairs in A
14 while A �= ∅ do
15 extract any pair (x, y) from A
16 add πxy with minimum w(πxy) to H (if any)

� Phase 4: Propagation loop
17 while H �= ∅ do
18 extract path πxy with minimum w(πxy) from H
19 if w(πxy) is larger than the smallest weight in Pxy then continue
20 add P ∗

xy to Q
21 add πxy to P ∗

xy, L∗(r(πxy)), and R∗(�(πxy))
22 for each πx′b ∈ L∗(�(πxy)) do
23 if (x′, x) ◦ πxy ∈ L(πxy) then continue
24 πx′y ← (x′, x) ◦ πxy

25 w(πx′y) ← wx′x + dxy

26 �(πx′y) ← πx′b, r(πx′y) ← πxy

27 add πx′y to Px′y , L(πxy), R(πx′b), and H
28 for each πay′ ∈ R∗(r(πxy)) do
29 if πxy ◦ (y, y′) ∈ R(πxy) then continue
30 πxy′ ← πxy ◦ (y, y′)
31 w(πxy′) ← dxy + wyy′

32 �(πxy′) ← πxy, r(πxy′) ← πay′

33 add πxy′ to Pxy′ , L(πay′), R(πxy), and H
� Phase 5: Delete all LSPs π that stopped being LSP

because �(π) or r(π) stopped being SP
34 while Q �= ∅ do
35 extract any πxy from Q
36 for each πx′y ∈ L(πxy) do
37 remove πx′y from R((x′, x) ◦ �(πx,y)) and L(πx,y)
38 for each πxy′ ∈ R(πxy) do
39 remove πxy′ from L(r(πx,y) ◦ (y, y′)) and R(πx,y)

Fig. 1. The slightly modified APSP algorithm of Demetrescu and Italiano [5]
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The pseudo-code of our algorithm is given in Figure 1. The first four phases
are equivalent to [5]. We will just describe them briefly. A detailed description
can be found in [4]. In the first phase, the algorithm deletes from the data
structure all the paths that would stop being locally shortest if we deleted the
edge (u, v). In doing so it stores the pairs of the endpoints of the affected paths
in the temporary list A. In the following phase it adds the edge (if it is an insert
or update operation) to the data structures. The third phase initializes the heap
H with the minimum weight paths πxy for all (x, y) ∈ A. In the fourth phase the
algorithm repeatedly extracts the cheapest path πxy from H . The first extracted
path for each pair (x, y) must be a shortest path. If this is the case, the path is
stored in the data structures. To propagate this information, also its left- and
right-extensions are updated and added to H to find all further extensions.

The amortized number of new locally shortest paths can be Ω(n3) per update.
To allow a better worst-case performance, Demetrescu and Italiano [4] had to
delay the update of the data structure in a very clever way. Their data structure
can contain paths in Pxy which are not locally shortest anymore. We avoid
this with the fifth phase. There, all locally shortest paths which stopped being
locally shortest because one of their two subpaths stopped being shortest path
are detected and deleted.

We analyze the expected time for the algorithm to insert a randomly chosen
edge e in the graph G ∈ G(n, p) and maintain the sets of shortest path and locally
shortest path. The weights of e and of the edges in G are chosen uniformly at
random from the set [0, 1].

4 Random Graph Properties

To bound the runtime of our algorithm in the next section, we first provide some
properties of random graphs G ∈ G(n, p). The main result of this section will be
Theorem 9. It bounds the quantity μ(p) which we define as the expected number
of locally shortest paths and shortest paths passing a fixed edge of G. Let lsp

denote the set of all locally shortest paths and sp the set of all shortest paths
in G.

The following four lemmas are well-known.

Lemma 1 (Bollobás [2]). Let G ∈ G(n, p) with pn < 1/2. Then,
Pr [|C(G)| ≤ 20 logn] = 1 − O(n−2).

Lemma 2 (Bollobás [2]). For every α > 0 and G ∈ G(n, p) with pn = α log n,
Pr [G is connected] = 1 − O(n1−2α).

Lemma 3 (Chung and Lu [3]). For every ε > 0 and G ∈ G(n, p) with pn =
1 + ε, Pr [diam(G) ≤ 2 logn] = 1 − o(n−1).

Lemma 4 (Nachmias and Peres [12]). Let x ∈ G and G ∈ G(n, p) with
pn ≤ 1 + n−1/3. Then, Pr

[
|C(x)| > 2n2/3

]
= O(n−1/3).
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The following lemma gives a general upper bound on the expected diameter of
a random graph G ∈ G(n, p) for arbitrary p. Recall that we defined the diameter
of a disconnected graph as the maximum diameter of its components.

Lemma 5. Let G ∈ G(n, p). Then, E [diam(G)] = O(n1/3).

Proof. Let G be a complete graph on n vertices with edge weights uniformly
distributed at random in [0, 1]. Let G≤p = (V, E≤p) be the subgraph of G
containing all vertices but only those edges with weight less or equal p. Then
G≤p is a G(n, p)-graph. We apply Kruskal’s algorithm [11] for the construction
of a minimum spanning forest of G, i. e., we look at the edges in increasing
weight order and integrate every edge that does not introduce a cycle in the
current edge set. We stop this process if the current edge has weight greater
than p and denote the obtained subset of edges EKruskal,≤p. Let us also de-
note the edge set of the spanning forest which is returned from the completed
Kruskal algorithm by EKruskal. By Addario-Berry, Broutin, and Reed [1], the
expected diameter of GKruskal := (V, EKruskal) is of order Θ(n1/3). Clearly,
EKruskal,≤p ⊆ EKruskal ∩ E≤p. As GKruskal,≤p := (V, EKruskal,≤p) is a minimum
spanning forest of G≤p, we get

E [diam(G≤p)] ≤ E [diam(GKruskal,≤p)] ≤ E [diam(GKruskal)] = O(n1/3).

To prove the desired bound on μ(p) we also need the following three technical
lemmas.

Lemma 6. Let G ∈ G(n, p) with pn ≥ 4 logn. Then every shortest path in G

has weight O( log2 n
n ) with probability 1 − O(n−2).

Proof. Let us consider two random graphs G1, G2 ∈ G(n, 2 log n
n ) on the same

set of vertices and let G∪ be the union of G1 and G2 (union of the edge sets).
Then we get G∪ ∈ G(n, 4 log n

n − 4 log2 n
n2 ). By Lemmas 2 and 3, Gi is connected

and and diam(Gi) ≤ 2 log n with probability 1 − O(n−1) for i = 1, 2. As the
two random graphs are chosen independently, at least one of them is connected
and has diameter O(log n) with probability 1 − O(n−2). By construction, this
also holds for G∪. Therefore all G ∈ G(n, p) with pn ≥ 4 logn are connected and
have a diameter of order O(log n) with probability 1 − O(n−2).

We now prove that every shortest path in G has a total weight of O( log2 n
pn )

with probability 1 − O(n−2). Let us consider the subgraph G0 = (V, E≤ 4 log n
pn

)

consisting of all vertices but only those edges of G with weight at most 4 log n
pn .

This is a random graph G(n, 4 log n
n ) with weights chosen uniformly at random

from [0, 4 log n
pn ]. As we have shown above, G0 is connected and has diameter of

order O(log n) with probability 1−O(n−2). This implies that every shortest path
in G0 has a total weight of O( log2 n

pn ) with probability 1 − O(n−2). This upper
bound also holds with the same probability for all shortest paths in G.
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Lemma 7. Let G ∈ G(n, p). The subgraph Gsp = (V, Esp) of all edges that are
shortest paths in G fulfills Δ(Gsp) ≤ nε with probability 1−O(n−2). In particular,
|lsp| ≤ |sp|nε with probability 1 − O(n−2).

Proof. Let us first consider the case pn ≥ 4 log n. We know from Lemma 6 that
all elements of Esp have weight O( log2 n

pn ) with probability 1−O(n−2). Thus, Gsp

is a subgraph of a random graph in G(n, log2 n
n ). Therefore, we can prove the first

claim of the lemma by bounding Δ(G′) for G′ ∈ G(n, log2 n
n ). Using Stirling’s

formula, the probability for a vertex in G′ to have a degree greater or equal nε

is at most (
n

nε

) (
log2 n

n

)nε

≤ (log2 n)nε

√
2πnε

(
nε

e

)nε ≤ n−εnε/2

for n large enough. Hence, the probability for Δ(G′) to be greater or equal nε

is at most

1 −
(
1 − n−εnε/2

)n

≤ 1 −
(

(
1 − n−εnε/2

)nεnε/2−1
)2n1−εnε/2

≤ 1 − e−2n1−εnε/2

≤ n−nε/3
,

where we used 2n1−εnε/2 ≤ n−nε/3
for n large enough and 1 + x ≤ ex for all

x ∈ R. This proves Δ(Gsp) ≤ nε with probability 1 − O(n−2). The second claim
is a consequence of the fact, that each locally shortest path from vertex x to
vertex y is uniquely determined by its first and also by its last edge. Moreover,
every locally shortest path with at least 2 edges starts and ends with edges that
are shortest paths themselves. Thus, there are at most O(nε) locally shortest
paths for each shortest path with probability at least 1 − O(n−2), which proves
the lemma for pn ≥ 4 logn.

Let pn < 4 log n. We consider G′ ∈ G(n, 4 log n
n ) with edge weights chosen

randomly in [0, 4 log n
pn ]. Although the weights of this graph are scaled up by the

factor 4 log n
pn , we get Δ(G′

sp
) ≤ nε with probability 1 − O(n−2), since the scaling

has no effect on the subgraph G′
sp

of all shortest path edges in G′. Now the
subgraph G of all edges of G′ with weight less or equal 1 is a G(n, p)-graph with
edge weights chosen uniformly at random from [0, 4 log n

pn ]. Hence, every edge that
is a shortest path in G is also a shortest path in G′. With this we get Δ(Gsp) ≤ nε

with probability 1−O(n−2). The second claim follows with the same arguments
as in the case pn ≥ 4 logn.

Lemma 8. Let G ∈ G(n, p) with pn ≥ 1/2. For all ε > 0, μ(p) =
O

(
E [diam(G)] |sp|nε−2 / p

)
.

Proof. We consider the subgraph G′ = (V, E<1/(2pn)) containing all vertices
of G but only those edges with weight less than 1/(2pn). Then by Lemma 1
G ∈ G(n, 1/(2n)) and the largest component of G′ is of order O(log n) with
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probability 1 − O(n−2). Thus, every path in G′ contains O(log n) edges with
probability 1 − O(n−2). The expected weight of the heaviest element of lsp is
at most E [diam(G)]. Moreover, in the case p ≥ 4 log n

n the expected weight of
the heaviest element of lsp is at most O( log2 n

pn ) as shown in Lemma 6. Thus, in
expectation the largest number of edges with a weight greater or equal 1/(2pn)
in an element of lsp is of order O(E [diamG] pn) and O(log2 n) if p ≥ 4 log n

n .
This implies an upper bound of O(E [diamG] log2 n) for the maximal number
of edges with weight greater or equal 1/(2pn) in locally shortest paths of G in
expectation for all p ≥ 1/(2pn).

By Lemma 7 we know that the bound |lsp| = O(|sp|nε/2) is violated with
probability O(n−2). In this case we can estimate the number of locally shortest
paths and shortest paths in G by O(n3) (the first edge and the other endpoint
of a locally shortest path determines the path uniquely) and the length of this
paths trivially by n − 1. Since the probability for this event is O(n−2), the
contribution to the expected number of edges in the multiset of all edges of
all (locally) shortest paths is O(n2). If |lsp| = O(|sp|nε/2), the maximal num-
ber of edges with weight greater or equal 1/(2pn) in locally shortest paths of
G is O(E [diamG] log2 n) in expectation. Now in every (locally) shortest path
in G there can only be consecutive parts of edges of G′ of order O(log n) and
they must be followed by an edge with weight greater or equal 1/(2pn). Since
there can only be O(E [diamG] log2 n) of these edges in the path in expecta-
tion, the total number of edges in the longest of all (locally) shortest paths is
O(E [diamG] log3 n) in expectation. Thus, the multiset of all edges of all (lo-
cally) shortest paths contains O(|sp|E [diamG] nε/2 log3 n) edges. By Chernoff
bounds G has Θ(pn2) edges. Therefore, the average number of (locally) shortest
paths through a fixed edge is O(E [diamG] |sp|nε−2/p).

We are now well-prepared to prove the main theorem of this section. It bounds
μ(p) which is the expected number of locally shortest paths and shortest paths
passing a fixed edge.

Theorem 9. Let G ∈ G(n, p). For all ε, ε′ > 0,

(i) μ(p) = O(1) for pn < 1/2,
(ii) μ(p) = O(n2/3) for 1/2 ≤ pn ≤ 1 − n−1/3,
(iii) μ(p) = O(n1+ε) for 1 − n−1/3 ≤ pn ≤ 1 + n−1/3,
(iv) μ(p) = O(n4/3+ε) for 1 + n−1/3 ≤ pn ≤ 1 + ε′,
(v) μ(p) = O(nε/p) for 1 + ε′ ≤ pn.

Proof. (i) We bound μ(p) by the total number of paths passing a fixed edge. Let
us first estimate the expected number of paths of a fixed length k in G going
through a fixed edge. There are k possible positions of the fixed edge in a path
of length k. Furthermore, we can choose the remaining k − 1 vertices of such a
path in

∏k−1
i=1 (n − i) different ways. Since every e ∈

([n]
2

)
is an edge of G with

probability p, the expected number of paths in G that go through a fixed edge
is bounded above by
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n−1∑

k=1

kpk−1
k−1∏

i=1

(n − i) ≤
n−1∑

k=1

k(pn)k−1 ≤ (pn)−1
n∑

k=1

k(pn)k.

Thus, the expected number of paths in G going through a fixed edge is at most

(pn)−1
n∑

k=1

n∑

i=k

(pn)k =
n∑

k=1

(pn)k−1−(pn)n

1−pn ≤ 1−(pn)n

(1−(pn))2 ≤ 1
(1−pn)2 .

Thus, μ(p) = O(1) for pn ≤ 1/2.
(ii) Using the bound in (i), we get μ(p) = O(1/(1 − pn)2) = O(n2/3) for

pn ≤ 1 − n−1/3.
(iii) Applying Lemma 4, we get |sp| = O(n5/3) with probability 1 − O(n−1/3)

and |SP | = O(n2) otherwise. Combining this with Lemma 8 and Lemma 5 gives
μ(p) = O(n1+ε).

(iv) By Lemma 5, the expected diameter of G is O(n1/3). Thus, Lemma 8
yields μ(p) = O(n4/3+ε).

(v) By Lemma 3, we get E [diamG] = O(log n) . Now Lemma 8 yields μ(p) =
O(nε/p).

5 Runtime Analysis

In this section we describe the runtime of our algorithm in terms of the parameter
μ(p). With this, the main result Theorem 11 is an immediate corollary of the
bounds on μ(p) from the previous section.

Theorem 10. Let G ∈ G(n, p). The expected runtime of our algorithm for a
random edge update on G is O(μ(p)nε).

Proof. To bound the runtime, we will use the quantity μ(p) which is the expected
number of locally shortest paths and shortest paths through a fixed edge e of G.
If the algorithm performs the deletion of the edge e, this is exactly the number
of paths that stop being (locally) shortest. In the case of the insertion, we get
(almost) the same picture by making a backwards analysis. Instead of the inser-
tion of e to G = (V, E) we can also investigate the deletion of e from the graph
G′ = (V, E ∪ {e}). Therefore the quantity μ(p) is also the expected number of
paths in G′ that start being (locally) shortest. The slight modification that G′

contains one edge more than G has no consequence for the order of μ(p).
We bound the runtime of all five phases separately. The algorithm is running

through the first phase, only if the considered edge e is already in the graph and
has to be deleted or updated. If this is the case, the algorithm goes through the
while loop for every locally shortest path of G that contains the edge e at most
twice, since a locally shortest path can be added to Q as a left- and as a right-
extension. The only part of the while loop with more than constant runtime is
the removing of the path πxy from the lists Pxy, L(r(πxy)), and R(�(πxy)). Since
every locally shortest path is uniquely determined by the first (respectively the
last edge), we can bound the runtime of phase 1 by O(μ(p)nε) using Lemma 7.
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(b) Deletion of 3000 random edges.

Fig. 2. Experimental results for the algorithm of Demetrescu and Italiano [5]. We start
with an empty graph with n = 100 vertices and insert 3000 random edges. (a) shows the
measured runtimes depending on the number of inserted edges. Analogously, (b) shows
the measured runtimes for the deletion of 3000 edges in a random order till the empty
graph is obtained again. The horizontal axes describe the current number of edges m.
The vertical axes show the measured runtimes averaged over three million runs.

The runtime of the second phase is constant. The while loop in the third phase
has an expected length of O(μ(p)). Since adding the path πxy to the priority
queue H costs O(log n), the runtime of phase 3 is O(μ(p) log n).

For the analysis of the runtime of phase 4 it is crucial to observe that every
line in the for loops as well as every other line is executed O(μ(p)) times in
expectation. Moreover, the algorithm has to add the extended paths πx′y and
πxy′ to lists of locally shortest path and the priority queue H which is done in
time O(nε) in every execution. Thus, the runtime of the algorithm in phase 4 is
O(μ(p)nε).

If the algorithm performs an insertion or an update, the set Q in phase 5
contains all shortest paths of G that stop being shortest. If the algorithm per-
forms a deletion, Q is empty. Thus, the algorithm is running through the while
loop O(μ(p)) times in expectation. The for loops are both performed O(nε/2)
times using Lemma 7 in the same way as in the beginning of this proof but with
ε/2 instead of ε. In the same way, we can bound the expected runtime of the
lines in the for loops by O(nε/2). Altogether this gives an expected runtime of
O(μ(p)nε) in phase 5.

With this we can now conclude our main result.

Theorem 11. Let R(p) denote the expected runtime for an edge update in a
graph G ∈ G(n, p). For all ε, ε′ > 0 we have shown that

(i) R(p) = O(nε) for pn < 1/2,
(ii) R(p) = O(n2/3+ε) for pn ≤ 1 − n−1/3,
(iii) R(p) = O(n1+ε) for pn ≤ 1 + n−1/3,
(iv) R(p) = O(n4/3+ε) for pn ≤ 1 + ε′,
(v) R(p) = O(nε/p) for pn ≥ 1 + ε′.
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Let us give an intuition how the properties of G(n, p) change when more and
more edges are inserted and how this affects R(p). In the early stage (i) of
the random graph process, the graph consists of many small components of size
O(log n) which are trees or unicyclic. There, it is very fast to update edges. Soon
after in stage (ii), the components become larger and it becomes likely for a new
edge to connect two of them. Therefore, the expected number of new (locally)
shortest paths increases significantly. In stage (iii) and (iv) a giant component
grows and the algorithm has to update many (locally) shortest paths whenever
the giant component catches other components of the graph. In (v) the last
isolated vertex joins the giant component and the graph becomes connected.
As the process evolves, the minimum degree and the connectivity grows and it
becomes less and less likely that an inserted edge is a shortest path. Thus, also
the expected insertion costs are going down.

6 Empirical Observations

To show that the theoretically observed behavior indeed occurs in practice, we
also performed some experiments. For this, we used the original algorithm of
Demetrescu and Italiano [5] available from www.dis.uniroma1.it/∼demetres/
experim/dsp/2. As the number of locally shortest paths between any pair of
nodes has been reported to be very small [5], we assume that the experimental
performance of our algorithm described in Section 3 should be similar to that of
Demetrescu and Italiano.

We start with an empty graph with n = 100 vertices and add 3000 edges in a
random order. Figure 2(a) shows the measured runtimes per insertion averaged
over three million runs. Afterwards, we examine the opposite direction and re-
move all edges in a random order. The measured average runtimes per deletion
are shown in Figure 2(b). Note that as predicted in Theorem 11, both charts
identify the largest update complexity shortly after the critical window.
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