
Analyses of Simple Hybrid Algorithms
for the Vertex Cover Problem∗

Tobias Friedrich tobias.friedrich@mpi-inf.mpg.de
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Jun He jqh@aber.ac.uk
Department of Computer Science, University of Wales, Aberystwyth, United Kingdom

Nils Hebbinghaus nils.hebbinghaus@mpi-inf.mpg.de
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Frank Neumann frank.neumann@mpi-inf.mpg.de
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Carsten Witt carsten.witt@cs.uni-dortmund.de
Fakultät für Informatik, LS 2, Technische Universität Dortmund, Dortmund, Germany

Abstract
Hybrid methods are very popular for solving problems from combinatorial optimiza-
tion. In contrast, the theoretical understanding of the interplay of different optimization
methods is rare. In this paper, we make a first step into the rigorous analysis of such
combinations for combinatorial optimization problems. The subject of our analyses is
the vertex cover problem for which several approximation algorithms have been pro-
posed. We point out specific instances where solutions can (or cannot) be improved by
the search process of a simple evolutionary algorithm in expected polynomial time.

Keywords
Hybrid algorithms, evolutionary computation, combinatorial optimization, running
time analysis.

1 Introduction

Evolutionary Algorithms (EAs) have been widely applied to optimization problems
(Goldberg, 1989; Holland, 1992; Michalewicz, 1996). Especially for combinatorial opti-
mization they have been shown to produce good solutions. To be competitive with other
methods such as approximation algorithms (Vazirani, 2001), Tabu Search (Glover and
Laguna, 1997), Branch and Bound (Dakin, 1965), or Linear Programming (Schrijver,
1998), often a “pure” EA is not used but some knowledge is incorporated into the
algorithm.

In contrast to the assumption that using hybridization in evolutionary computation
often yields better results than a more general approach with problem-specific knowl-
edge, there are up to now no theoretical investigations with respect to the runtime

∗A preliminary version of this article appeared in Proceedings of the 14th IEEE Congress on Evolutionary
Computation (CEC 2007), pp. 2614–2621, Piscataway, NJ: IEEE Press, 2007.

C© 2009 by the Massachusetts Institute of Technology Evolutionary Computation 17(1): 3–19

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

behavior of such algorithms. A lot of theoretical results giving bounds on the runtime
of simple evolutionary algorithms for combinatorial optimization problems have been
obtained in recent years. Among these problems, there are some of the most popular
polynomially solvable problems such as sorting and shortest path (Scharnow et al.,
2004), the computation of a maximum matching (Giel and Wegener, 2003, 2006), the
Eulerian cycle problem (Doerr et al., 2006; Neumann, 2004), and the computation of
minimum spanning trees (Neumann and Wegener, 2004, 2005). In the case of NP-hard
problems, results have been obtained for a scheduling problem on two machines (Witt,
2005) and the multi-objective minimum spanning tree problem (Neumann, 2007). Espe-
cially in the case of well-known NP-hard combinatorial optimization problems, often
the initial solution is computed by an approximation algorithm and later on improved
by a heuristic method. None of previous works on the runtime analysis of combinatorial
optimization problems has considered this scenario. All investigations considered the
case where the initial solution is drawn uniformly at random from the considered search
space. Our aim is to make a first step to understand in which situations evolutionary
algorithms are able to improve solutions obtained by specialized approximation algo-
rithms. We do not aim to show general results on improving the approximation ratio
of such a problem as this would be a statement that has to be made about all possible
instances. We instead focus on describing different situations where the random search
process of an evolutionary might (or might not) be useful.

The subject of our investigations is the vertex cover problem. Various EAs have been
applied to this problem (Evans, 1998; Khuri and Bäck, 1994). Kehden and Neumann
(2006) showed in an experimental study that in the case of random graphs, solutions
obtained by a well-known approximation algorithm are often far from optimal and
may be improved in a small number of iterations by evolutionary algorithms so that
nearly optimal solutions are obtained. The first rigorous runtime analysis on classes
of instances for this problem is given in He et al. (2005). Recently, it has been shown
that the well-known (1+1) EA is not able to produce a good approximation for the
vertex cover problem (Friedrich et al., 2007). In this work, it has been proven that even
in the case of bipartite graphs the approximation ratio achievable by this algorithm in
expected polynomial time is almost as bad as the trivial cover made up of all vertices
of the given graph.

Such a bad approximation quality can be prevented by starting with an initial
solution that has been obtained by running a good approximation algorithm. In the
case of the vertex cover problem several approximation algorithms are known. The first
idea for such an algorithm is to start with the empty vertex set and in each iteration
add a vertex that covers the largest number of uncovered edges. It is well known that
this approach achieves an approximation ratio of �(log n), where n is the number of
vertices in the graph. Some simple approximation algorithms obtain an approximation
ratio of 2 which is asymptotically the best known up to now. Such an approximation
quality can, for example, be obtained by computing a maximal matching of the given
graph and including for each edge of this matching both endpoints into the cover.

We investigate for which cases the solutions obtained by the two described approx-
imation algorithms can be improved by an evolutionary algorithm. We investigate the
(1+1) EA starting with such a solution and point out situations where such a search
process does (or does not) have the ability to improve a solution constructed by the
approximation algorithms.

The outline of the paper is as follows. In Section 2 we introduce the vertex cover
problem and the EA that is subject to our investigations. Section 3 considers

4 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

improvements achievable by the EA for the greedy approximation algorithm and Sec-
tion 4 investigates the combination with the maximal matching approach. Finally, we
finish with some conclusions.

2 The Vertex Cover Problem and the (1+1) EA

The vertex cover problem is one of the most studied NP-hard combinatorial opti-
mization problems. Given an undirected graph G = (V,E) where |V | = n and |E| = m,
the aim is to find a subset V ′ ⊆ V of minimum cardinality such that for each e ∈ E,
e ∩ V ′ �= ∅ holds.

We consider the well-known (1+1) EA (see Algorithm 1) for the vertex cover prob-
lem. The search space is {0, 1}n and each bit xi of a solution x corresponds to a vertex
vi ∈ V . The vertex vi is chosen in the current solution x if xi = 1 and otherwise it is
unchosen.

Algorithm 1: (1+1) EA

1. Choose an initial solution x ∈ {0, 1}n.

2. Repeat

• Create x ′ by flipping each bit of x with probability 1/n.

• If f (x ′) ≤ f (x), set x := x ′.

Denote by |x|1 and |x|0 the number of ones respectively of zeros in a bitstring x. The
fitness of a search point x is given by f (x) = (u(x), |x|1) where u(x) denotes the number
of uncovered edges of the solution x. In the case of the (1+1) EA, the function should
be minimized with respect to the lexicographic order. This setting has already been
examined in Friedrich et al. (2007) for randomly chosen initial solutions. We examine
the effect of using an initial solution that has been computed by some approximation
algorithm. Here in any case all edges are covered and the (1+1) EA does not accept
solutions that do not constitute a vertex cover.

Our aim is to analyze the (1+1) EA by a rigorous runtime analysis until it has
produced good solutions for the vertex cover problem. The measure of interest is the
number of constructed solutions until certain goals have been achieved. Often the ex-
pectation of this value is considered and called the expected time to achieve such a goal.

Most of our investigations consider the approximation ability of the proposed algo-
rithms. The worst-case approximation ratio of an algorithm A for a given minimization
problem R is defined as maxI∈R

A(I)
OPT(I) where A(I) denotes the value obtained by A when

applied to an instance I of R and OPT(I) denotes the value of an optimal solution for
the given instance. We are mainly interested in upper and lower bounds for the number
of constructed solutions until a certain approximation ratio has been achieved by the
introduced algorithms.

As the (1+1) EA does not accept worsenings, the approximation ratio achieved is at
least as good as the approximation ratio of the algorithm to compute the initial solution.

3 Analysis of Hybrid EAs with the Greedy Method

In this section we examine how an initial solution produced by a greedy algorithm can
be improved by the (1+1) EA. We show that the success of such a hybrid EA depends on

Evolutionary Computation Volume 17, Number 1 5

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

Figure 1: An illustration of Graph 1 for k = 4. The gray straps should indicate complete
bipartite subgraphs. For better clarity, the edges incident to W2 are omitted.

the specifics of the examined graphs. We introduce two graph classes and show that the
hybrid EA may fail on the first one to find a solution with approximation ratio o(log n)
in polynomial time and finds the optimum quickly for the second class of graphs.

The greedy method is based on the following idea. In the vertex covering problem,
the aim is to find a vertex cover that uses the minimum number of vertices to cover all
edges. Therefore, a vertex with a larger degree is more likely to appear in the optimal
vertex cover. However, this is only a heuristic knowledge and it will not lead to an
optimal solution in general.

We consider the greedy method described in Papadimitriou and Steiglitz (1998) to
compute the initial solution x. In each step of the algorithm, a vertex with the largest
degree is added to the solution and the vertex and the edges incident to it are removed
from the graph. The process is iterated until the graph becomes empty. We can state the
algorithm as follows (see Figure 1).

Algorithm 2: Greedy Vertex Cover

1. Set x = 0n

2. Repeat

• Choose a vertex vk having the largest degree in G.

• Set xk = 1, V := V \ {vk}, and E := E \ {e | e ∩ vk �= ∅}
3. Until G is empty

The greedy approach achieves an approximation ratio of O(log n). We obtain a
simple hybrid algorithm by computing the initial solution of the (1+1) EA using

6 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Algorithm 2. The resulting algorithm we will denote by Greedy Vertex Cover (1+1) EA
((1+1) EAG). It achieves the same approximation ratio O(log n) as the greedy approach
as it does not accept solutions that are worse than the initial one.

Friedrich et al. (2007) have shown that the (1+1) EA starting with a solution that
is chosen uniformly at random from the search space is not able to obtain a good
approximation for a specific class of bipartite graphs in expected polynomial time.
They have also shown that a greedy approach in the form of a multi-objective EA is
able to produce an optimal solution for such problems quickly. The same holds for
Algorithm 2. Hence, using the greedy procedure for the initial solution can make the
difference between obtaining an optimal solution or achieving only a bad approximation
of such a solution.

Compared with other approximation algorithms that achieve an approximation
ratio of 2 for the vertex cover problem, the greedy approach behaves badly in the worst
case. Therefore, the question arises whether a solution that is far from optimal can
always be improved by the (1+1) EA. The following example shows that this is not
always the case. The solution for Graph 1 computed by the greedy approach might be
far from optimal and the (1+1) EAG is likely to achieve not even a single improvement.

Graph 1: Let the vertex set be W1 ∪ W2 ∪ ⋃k
i=�k/2 Vi with

W� := {w�,j | j = 1, . . . , 2k} for all � ∈ {1, 2}
Vi := {vi,j | j = 1, . . . , 2k} for all �k/2 ≤ i ≤ k

and the edge set be

E := {{vi,j1 , w�,j2} | �k/2 ≤ i ≤ k, � ∈ {1, 2},
1 ≤ j1, j2 ≤ 2k, �j1/2i = �j2/2i}.

The number of vertices is n = (�k/2� + 3) 2k and the vertices in set W1 and W2 have
degree

∑k
i=�k/2 2i = 2k+1 − 2�k/2 while the vertices in Vi have degree 2i+1. The optimal

cover is

C∗ := W1 ∪ W2.

In the following, we show that Algorithm 2 produces a factor �(log n) approxima-
tion of an optimal solution and that such a solution is hard to improve by the search
procedure of the (1+1) EA.

THEOREM 1: On Graph 1 the expected time for the (1+1) EAG to obtain a solution whose

approximation ratio is o(log n) is 2�(
√

n log n).

PROOF: We first show that the solution produced by Algorithm 2 is only a factor
�(log n) approximation and lower bound the expected time to improve such a solution
afterward.

As the vertices in sets Vk have the largest degree, the greedy Algorithm 2 first
chooses all vertices from Vk . After removing these nodes, the vertex degrees in W1 and
W2 decrease to

∑k−1
i=�k/2 2i = 2k − 2�k/2 while the vertices in Vi still have degree 2i for

Evolutionary Computation Volume 17, Number 1 7

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

Figure 2: An illustration of Graph 2 for k = 6.

i < k. Hence, the greedy method chooses the vertices of Vk-1 to be added next to the
cover. Iterating this procedure, the greedy method obtains the cover

C = Vk ∪ Vk-1 ∪ . . . ∪ V�k/2

and the approximation ratio

|C|
|C∗| = (�k/2� + 1) 2k

2 2k
= �(k) = �(log n).

Hence, Graph 1 is, up to a constant factor, a worst case example for Algorithm 2 with
respect to approximability.

To gain an improvement if C is the current solution, a certain number of vertices
of W1 ∪ W2 have to be added while a larger number of vertices of

⋃
i Vi have to be

removed. As the minimum vertex degree in Graph 1 is δ = 2�k/2+1, at least 2δ arbitrary
bits have to be flipped to gain an improvement. It remains to bound the probability
that the (1+1) EAG achieves such an improvement in one mutation step. For this, we
use Stirling’s formula, the identity n = 2log n, and (for sufficiently large n) δ ≥

√
n

log n
and

(2
e

√
n

log n
)3 ≥ n. Hence, the probability of an improvement can be upper bounded by

(n

2δ
)

n2δ
≤ 1

(2δ)!
≤

(
2δ

e

)-2δ

≤ n
- 2

3

√
n

log n = 2-�(
√

n log n).

which proves the theorem.

Theorem 1 shows that the (1+1) EAG may be unable to improve a bad greedy
solution. We will now show that there are also graph classes on which the above hybrid
EA can play a positive role. On the following (bipartite) Graph 2, the (1+1) EA finds
the optimal vertex cover in expected polynomial time.

Consider the following well-known graph given in Papadimitriou and Steiglitz
(1998); see Figure 2.

Graph 2: Let k ∈ N. Let the vertex set be B ∪ ⋃k
i=1 Ai with

B := {bj | j = 1, . . . , k},
Ai := {ai,j | j = 1, . . . , �k/i�} for all 1 ≤ i ≤ k

8 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

and the edge set be

E := {{bj , ai,�j/i} | 1 ≤ i ≤ k, 1 ≤ j ≤ i�k/i�}.

Graph 2 has the following properties. Since every vertex in Ai is connected with
exactly i vertices in B and no two vertices in B have a common neighbor in any Ai , all
vertices in B have degree at most k and all vertices in Ai have degree i. Let us denote the
total number of vertices by n. Then n = �(k log k). Due to Papadimitriou and Steiglitz
(1998), the greedy algorithm (Algorithm 2) can determine the set

⋃k
i=1 Ai as a vertex

cover. This set is a factor of �(log n) away from the optimal vertex cover B. In contrast
to the behavior of the (1+1) EAG on Graph 1, the (1+1) EAG determines the optimal
vertex cover in expected time O(n3). We formulate this result in a more general way in
the following theorem.

THEOREM 2: The expected optimization time of the (1+1) on Graph 2 is O(n3) for each initial
search point.

PROOF: In Friedrich et al. (2007) it is shown that the (1+1) EA produces a vertex cover
in expected time O(n log n) regardless of the chosen initial solution. Therefore, we now
assume that a vertex cover has been obtained and upper bound the expected time to
produce an optimal solution that consists of the vertex set B. If the current cover is
not a minimal one at least one vertex can be removed to achieve an improvement. The
corresponding probability for such an event is �(1/n) and its expected waiting time is
O(n).

If the current solution is minimal but not a minimum vertex cover at least one
vertex v1 in A2 has been chosen. Otherwise, all vertices of B must be selected (to cover
all edges between A2 and B) and no other vertex can be chosen due to the minimality
of the vertex cover. But this is the mimimum vertex cover. The chosen vertex v1 of A2
has two neighbors v2 and v3 in B. In addition v2 is adjacent to a vertex v4 in A1 and v3
is adjacent to a vertex v5 in A1. To reduce the number of vertices in the case that the
current solution is minimal but not a minimum vertex cover, we consider special two-bit
flips concerning the vertices of {v2, v3, v4, v5}. As the current solution is a cover that is
minimal exactly two vertices of {v2, v3, v4, v5} have been chosen and at least one of the
chosen vertices belongs to A1. Deleting a chosen vertex of A1 and including its neighbor
of B is always accepted and can be done by a specific two-bit flip. Similarly, deleting
a vertex of B and including its neighbor of A1 can be done by a specific two-bit flip.
However, the acceptance of such a step is determined by the choice of the other vertices
of V \ (B ∪ A1), for example, removing the vertex of B is not possible if at least one of
its neighbors in V \ (B ∪ A1) is unchosen. This shows that the probability of switching
from a chosen vertex of A1 to its neighbors in B is at least as high as the probability of
switching from a chosen vertex of B to its neighbor of A1.

Only steps affecting the vertices in {v2, v3, v4, v5} are relevant for us. If both vertices
of B have not been chosen, the probability of increasing the number of vertices in
B in such a step is at least 1/2 the probability of the case where at least one of the
two vertices of B is missing. Two such steps consecutively are sufficient to have both
vertices of B chosen. Each such step chooses a missing B-vertex in favor of an A1-vertex
independently of earlier steps. Therefore, the probability that two consecutive such
steps both increase the number of B-vertices is at least 1/4. The probability of carrying
out a specific two-bit flip mutation step is at least 1/(en2). Hence, after an expected

Evolutionary Computation Volume 17, Number 1 9

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

number of O(n2) steps, both vertices of B are chosen. Now the solution is not minimal
as the vertex v1 can be removed. The probability that the vertex v1 is removed before v4
(respectively v5) are replaced by v2 (respectively v3) is 1 − O(1

n
).

Thus, the expected waiting time for such an improvement is O(n2) in any case and
the number of vertices is O(n). This implies that a minimum vertex cover is obtained
after an expected number of O(n3) steps.

4 Analysis of Hybrid EAs with Two-Approximation Heuristics

It has been known for a long time (see e. g., Papadimitriou and Steiglitz, 1998) that the
vertex cover problem admits a two-approximation using so-called maximal matchings.
A matching is a subset of pairwise disjoint edges of a given undirected graph. Thus, the
empty set is always a matching. A matching is called maximal if there is no edge left
that can be added to the subset without violating the matching property. Therefore the
maximal matching problem can be solved in linear time w. r. t. the number of edges by
greedily adding edges to the current matching until the matching is maximal.

Note that a maximal matching is not necessarily a matching of maximum cardinal-
ity. From an algorithmic point of view, the latter problem—called the maximum matching
problem—is more complicated yet can also be solved in polynomial time (Papadimitriou
and Steiglitz, 1998). It is interesting that almost-maximum matchings can be found in
polynomial time using pure evolutionary algorithms (Giel and Wegener, 2003).

The proposed two-approximation algorithm works as follows:

Algorithm 3: Maximal Matching Vertex Cover

1. Compute a maximal matching.

2. Output all endpoints of the edges of the matching.

The set of vertices we obtain is a vertex cover since otherwise, the matching would
not have been maximal. Moreover, the set forms a two-approximation since at least one
endpoint of each edge in the matching must be chosen for a minimum vertex cover.
There are examples, for example, the bipartite graph consisting of n/2 vertex-disjoint
edges, where the approximation ratio is tight since the matching chooses twice as many
vertices as necessary. It is therefore interesting to study how such solutions can be
improved by other heuristics.

We obtain a simple hybrid algorithm by computing the initial solution of the
(1+1) EA using Algorithm 3. This is called the Maximal Matching (1+1) EA ((1+1) EAM).
Note that in fact, a family of algorithms is considered since the component computing
the maximal matching has not been specified yet.

In the following, we study the interplay of the maximal matching component and
the (1+1) EA in our hybrid algorithm. It is easy to see that for the above-mentioned
graph on n/2 vertex-disjoint edges, the (1+1) EAM finds a minimum vertex cover in
expected polynomial time. Due to the NP-hardness of the problem, we however can-
not expect the (1+1) EAM to always find optimal solutions in expected polynomial
time. In fact, we do believe that there are instances where it fails to find in polyno-
mial time solutions that are significantly better than two-approximate. The best known
polynomial-time approximation algorithm for vertex cover has an approximation ratio
of 2 − �(1/

√
log n) (Karakostas, 2005), so we cannot hope to show better results for our

10 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Figure 3: An illustration of Graph 3 for k = 4.

simple hybrid algorithm. However, a simple observation proves that the evolutionary
component helps to improve solutions that are exactly two-approximate.

PROPOSITION 1: With probability �(1), the (1+1) EAM produces in expected polynomial time
a vertex cover with an approximation ratio of 2 − 2/n.

PROOF: Suppose that the optimal vertex cover has size k. If the solution of the maximal
matching component is not (2 − 2/n)-approximate, k ≤ n/2 must hold and the solution
must be of cardinality greater than 2k − 2k/n, hence of cardinality 2k. This means that
an optimal cover consists of exactly one endpoint of each edge in the matching. With
probability �(1), the first step that flips one of the 2k bits of the solution flips only one
of the bits that do not belong to the optimal vertex cover. The new solution of 2k − 1
vertices is a (2 − 2/n)-approximation.

The following considerations show that the choice of the maximal matching can
be crucial for the performance of the hybrid algorithm and that the random search of
the (1+1) EA can still result in very different solutions for a given initial matching.
We describe two examples where specific matchings can lead the (1+1) EA into local
optima of bad quality. The first one is composed of bipartite subgraphs on vertex sets
of size k = n/5. These bipartite subgraphs are connected in a chain-like manner such
that the whole graph still is bipartite. Figure 3 depicts the graph for n = 20.

Graph 3: Let the vertex set be the union of

Vi = {vi,1, . . . , vi,k}

for 1 ≤ i ≤ 5 and the edge set be the union of the sets

{{vi,r , vi+1,s} | 1 ≤ r, s ≤ k}

for 1 ≤ i ≤ 4.

An optimal vertex cover for Graph 3 is obtained by choosing the sets V2 and V4. A
suboptimal vertex cover of approximation ratio 3/2 is given by V1 ∪ V3 ∪ V4. Both vertex
covers are likely to be reached if the initial solution of the (1+1) EA is V1 ∪ V2 ∪ V3 ∪ V4.
This initial solution is created by, for example, the maximal matching

M∗ :=
k⋃

r=1

{v1,r , v2,r} ∪ {v3,r , v4,r}. (1)

Evolutionary Computation Volume 17, Number 1 11

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

THEOREM 3: Suppose the maximal matching component of the (1+1) EAM creates the cover
V1 ∪ V2 ∪ V3 ∪ V4 for Graph 3. Then with probability �(1) each,

• The (1+1) EA creates the globally optimal solution V2 ∪ V4 in polynomial time,

• Stays at the locally optimal solution V1 ∪ V3 ∪ V4 for a superpolynomial number of steps.

PROOF: We first observe that no vertex from V4 can be removed from the cover unless
a step adds all missing vertices from V5 simultaneously to the cover. If the fitness
function did not count the number of chosen vertices from V5, this number would
follow a random walk on the 2n/5 possible assignments to the bits corresponding to V5,
and the time to reach the all-one assignment would be 2�(n) with probability at least
1 − 2-�(n) using the arguments on needle-in-a-haystack functions in Wegener and Witt
(2005). Since the fitness function is linear in the number of chosen vertices in V5 and
has to be minimized, the actual time to reach the all-one assignment is even larger. We
therefore assume that no vertex from V4 is removed from the cover in any phase of
length 2cn for small enough constant c, and hence do not have to take into account the
sets V4 in V5 in the sequel. As a mutation step of the (1+1) EAM with probability at
least (1 − 1/n)2n/5 = �(1) does not flip a bit corresponding to V4 or V5 and since these
bits are treated independently of the bits corresponding to V1 ∪ V2 ∪ V3, the assumptions
will not affect our following asymptotic statements.

We are now faced with a situation like in the study of the (1+1) EA on the bipar-
tite graph B in the paper by Friedrich et al. (2007, Theorem 5). The set V ′ := V1 ∪ V3
of Graph 3 plays the role of V2 of graph B and V ′′ := V2 plays the role of V1. With
probability �(1), a vertex from V ′ of Graph 3 is removed before a vertex from V ′′ is
removed. Then we apply the argumentation concerning the second phase in the proof
of Theorem 5 in Friedrich et al. (2007), which will show us that all vertices from V ′ are
removed in polynomial time with constant probability. This will imply that the global
optimum is reached with constant probability in polynomial time since the expected
time to remove possible nodes from V5 is also polynomial. More precisely, we consider
a phase of n3/2 mutation steps and show that all vertices of V ′ are removed with prob-
ability �(1). In this phase (all vertices of V ′′ and some vertices of V ′ chosen), the only
mutation steps accepted by the (1+1) EAM are the following. Either all missing vertices
of V ′ are chosen and at least as many vertices of V ′′ are removed, or all vertices of V ′′

are kept and the number of vertices in V ′ is decreased (or stays the same by adding
and removing some vertices). The former mutation step has a probability of at most
n-k , where k denotes the current number of missing vertices in V ′. For the latter kind of
mutation steps we restrict ourselves to one-bit flips reducing the number of vertices in
V ′. The probability for such a mutation step is at least (1/n)(1 − 1/n)n−1 ≥ 1/(en). For
our calculations we take only those two kinds of mutation steps into account, the “good
event” with probability at least 1/(en) and the “bad event” with probability at most
n-k since all other accepted mutation steps reduce or preserve the number of vertices
in V ′. The probability that the “good event” occurs before the “bad event” is at least
1
en

/(1
en

+ n-k) = 1 − e
nk-1+e

. Thus, the probability that the vertices of V ′ were all removed
by the (1+1) EAM before the “bad event” occurs is at least

2n/5∏
k=1

(
1 − e

nk-1 + e

)
≥ 1

1 + e

(
1 − e

n

)n-e
= �(1).

12 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Figure 4: An illustration of Graph 4 for k = 4.

The expected waiting time for removing all vertices of V ′ by the (1+1) EAM is O(n log n)
and, therefore, all vertices of V ′ are removed within n3/2 steps with probability 1 − o(1)
using Markov’s inequality (always assuming that the “bad event” does not occur during
this phase). Hence, the probability that the (1+1) EAM determines the global optimum
as vertex cover in polynomial time is at least �(1).

The second claim follows by the same arguments. With probability �(1), a vertex
from V2 is removed first and the local optimum is reached with constant probability in
polynomial time. To leave the local optimum, a step that flips k bits simultaneously has
to occur. This has probability n-�(n) and with probability 1 − n-�(n), does not happen in
a superpolynomially long phase of 2cn steps for a small enough constant c > 0.

It seems tempting to decrease the size of V2 in Graph 3 to trick the (1+1) EA into local
optima with an even worse approximation ratio than 3/2. This, however, does not work
since the maximal matching component would choose only a subset of V1 and V3 then.

Using a less obvious, still bipartite graph, we can show that the (1+1) EA is very
likely to get stuck at (2 − o(1))-optimal solutions if the initial maximal matching is
chosen badly. The idea is to start from a big complete bipartite graph on vertex sets
of size k = �(n) and to add small extra components of only log k vertices in a circular
manner. Depending on the choice of the vertices from the small components, it can be
necessary to add all vertices from the big bipartite graph to obtain a vertex cover. An
optimal vertex cover, however, chooses only one side of the big bipartite graph.

Graph 4: Let n = 2k + 4 log k. Let the vertex set be the union of

Vi = {vi,1, . . . , vi,k}

for 1 ≤ i ≤ 2 and

Vi = {vi,1, . . . , vi,log k}

for 3 ≤ i ≤ 6. Define the edge set as the union of the sets

{{v,w} | v ∈ Vi,w ∈ V(i mod 6)+1
}

for 1 ≤ i ≤ 6.

Figure 4 shows Graph 4 for k = 4.

Evolutionary Computation Volume 17, Number 1 13

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

To obtain a minimum vertex cover, we can choose the sets V1 ∪ V3 ∪ V5 or V2 ∪ V4 ∪
V6. An optimal vertex cover, therefore, is of size k + 2 log k. A bad initial solution for the
(1+1) EA is produced if all vertices V1 ∪ V2 are chosen but the vertices from V3 ∪ V6 are
missing. This happens, for example if the maximal matching chooses the edges between
V1 and V2 and those between V4 and V5. The following theorem shows that it is really
hard to obtain improvements from this initial solution.

THEOREM 4: Suppose the maximal matching component of the (1+1) EAM creates the cover
V1 ∪ V2 ∪ V4 ∪ V5 for Graph 4. Then with probability 1 − 2-�(log2

n), the (1+1) EA needs 2�(log2
n)

steps to obtain a solution whose approximation ratio is better than 2 − O((log n)/n).

PROOF: Note that the initial cover is of the approximation ratio (2k + 2 log k)/(k +
2 log k) = 2 − O((log n)/n). To remove one of the vertices in V1 or V2 from the cover,
all vertices from the neighboring sets V6 and V3, respectively, must be included in the
cover. The (1+1) EA can include vertices in the cover only if the number of vertices
in a different set is decreased at the same time. However, for the supposed cover, the
situation is similar to the proof of Theorem 3. Vertices from a subset (e. g., V6) can only be
added by swapping all vertices from this subset with all vertices from the neighboring
set (e. g., V5) in a single step. The latter has probability at most (1/n)log k = 2-�(log2

n).
Hence, the probability of an improvement in a phase of 2c log2

n steps is still 2-�(log2
n) if

c > 0 is chosen small enough but constant.

In the examples above, the search of the (1+1) EAM is likely to get stuck at local
optima since a worst-case initial maximal matching is assumed. We now turn to a
more general view. In the following, we use the above-mentioned greedy algorithm
to compute the maximal matching in the (1+1) EAM . This means that we choose
uniformly free edges until there are no such edges left. Let the obtained algorithm
be called greedy (1+1) EAM ((1+1) EAGM).

With respect to the previous examples, Graphs 3 and 4, the probability that the
search of the (1+1) EA leads to an optimal vertex cover seems to become higher when
using the greedy maximal matching algorithm. (We do not go into the details here.)
As stated above, we however cannot expect the (1+1) EAGM to find efficiently optimal
solutions on arbitrary instances. The following example shows when it is indeed likely
to run into local optima of bad quality.

We define the bipartite graph B(k, �), � < k, on 2k + � vertices as follows.

Graph 5: Let the vertex set be

{v1, . . . , vk}︸ ︷︷ ︸
=:L

∪ {vk+1, . . . , v2k}︸ ︷︷ ︸
=:R

∪ {v2k+1, . . . , v2k+�}︸ ︷︷ ︸
=:C

and the edge set be

{{vi, vk+i} | i = 1, . . . , k}
∪ {{vi, v2k+j } | i = 1, . . . , k, j = 1, . . . , �}.

Hence, we obtain the whole edge set from the induced subgraph on L ∪ R, which is
a perfect matching, and the induced subgraph on L ∪ C, which is a complete bipartite

14 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Figure 5: An illustration of Graph 5 for k = 10 and � = 5.

graph. A minimum vertex cover chooses all L-vertices while any vertex cover that
leaves out an L-vertex in favor of its adjacent R-vertex must choose all C-vertices.
The following theorem (note that k = �(n)) shows that the latter event can mislead the
(1+1) EAGM into a local optimum.

THEOREM 5: Let � ≤ k − 2 log n. Then with probability �(1 − �/k), the (1+1) EAGM on
B(k, �) needs at least 2�(k−�) steps to create a solution that is better than (1 + �/k)-approximate.

PROOF: The proof outline is as follows. We first show that the maximal matching
routine will choose all C-vertices with the claimed probability. Afterwards, it removes
with this probability at least �(k − �) of the L-vertices from the cover before a C-vertex
flips. From this situation, it takes with probability �(1) at least 2�(k-�) steps to obtain a
cover that does not choose all C-vertices. Up to then, all covers contain at least k + �

vertices and are, therefore, no better than (1 + �/k)-approximate.
We call the edges that are incident on C-vertices C-edges and the remaining edges,

which are incident on R-vertices, R-edges. We are interested in matchings that consist
of � C-edges and k − � R-edges. If i C-edges and j R-edges have already been chosen
during the construction of the maximal matching, there are � − i free C-vertices and
k − i − j free L-vertices left. Hence, the number of free C-edges equals (� − i)(k − i − j)
while there are only k − i − j free R-edges left. The probability of choosing another
R-edge in this situation is

(� − i)(k − i − j)
(� − i)(k − i − j) + (k − i − j)

= � − i

� − i + 1

Therefore, for i < �, the expected number of chosen R-edges between the i-th and the
(i + 1)-st choice of a C-edge is at most

� − i + 1
� − i

− 1 = 1
� − i

since the random number of steps between the two choices follows a geometric dis-
tribution. Hence, the expected number of chosen R-edges until � C-edges have been
chosen is at most

∑�−1
i=0 1/(� − i) ≤ (ln �) + 1. By Markov’s inequality, the number is at

Evolutionary Computation Volume 17, Number 1 15

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

most k − �, that is, � C-edges are chosen, with probability at least 1 − (ln � + 1)/(k − �).
Due to our assumption on �, the last expression is positive and bounded from below by
�(1 − �/k).

For the second part of the proof, we assume that a matching with � C-edges and
k − � R-edges has been created and consider the subsets L∗ ⊆ L and R∗ ⊆ R consisting
of the k − � vertices in L resp. R on which the R-edges of the matching are incident.
Starting from the vertex cover corresponding to the matching, the (1+1) EA accepts
each step that flips only an L∗-bit. We consider the probability that an L∗-vertex flips
before a C- or R∗-vertex flips. By simple calculations, this probability is bounded from
below by �(1 − k/�). We assume that such a flip occurs. Let v∗ be the flipping L∗-vertex.
As long as v∗ is not added to the cover again, no C-vertices can be removed.

In the following, we are interested in the event of reducing the number of chosen
L∗-vertices even further. Consider a phase consisting of the n/4 steps after v∗ has been
removed. With probability �(1), v∗ is not chosen again during the phase. We assume
this to happen. The expected number of flipping R∗-bits in the phase is bounded from
above by (k − �)/4. By Chernoff bounds, the number is at most (k − �)/2 with probability
1 − 2-�(k-�). If this event holds, there are throughout the phase still (k − �)/2 − 1 L∗-
vertices left that can be (or already have been) removed without violating the cover. We
apply Chernoff-bound arguments again. Altogether, in the end of the phase, we have
with probability �(1) − 2-�(k-�) arrived at a cover that contains all C-vertices but misses
at least �(k − �) of the L-vertices. We assume to be in such a situation.

To obtain a cover without C-vertices from this situation, all L-vertices have to be
chosen at at least one point of time. We consider the �(k − �) R-edges whose L-vertex is
unchosen. The random number of unchosen L-vertices can be increased or decreased.
This process can be identified with the random walk of the (1+1) EA on a needle-in-a-
haystack function where the R-edges correspond to bits and an unchosen L-vertex of an
R-edge corresponds to a zero-bit and and unchosen R-vertex to a one-bit. With �(k − �)
bits and starting from �(k − �) zero-bits, the time until the all-ones string is reached
is bounded from below by 2�(k-�) with probability 1 − 2-�(k-�) = �(1 − k/�) (using the
results in Wegener and Witt, 2005).

Theorem 5 provides only a lower bound �(1 − �/k) on the probability of reaching
the local optimum which seems to be too pessimistic for small � since the bound is only
�(1) then. If �/k converges to 0, we however conjecture that the probability converges
to 1. This can be made precise for the special case � = 1.

THEOREM 6: Let � = 1. Then with probability 1 − O(1/
√

n), the (1+1) EAGM on B(k, �)
needs at least 2�(n) steps to create a solution that is better than (1 + 1/n)-approximate.

PROOF: The proof follows the same lines as the one of Theorem 5. Using the arguments
from the first part of the proof, it is easy to see that the greedy maximal matching
algorithm chooses with probability at least 1 − 1/n one C-edge and k − 1 R-edges. This
case means that the initial solution of the (1+1) EA chooses the single C-vertex and
2(k − 1) = n − 3 L- and R-vertices. We assume this to happen.

Next consider the phase of the
√

n steps after initialization. With probability 1 −
O(1/

√
n), the C-vertex does not flip in the phase. Using the Chernoff-bound arguments

from the proof of Theorem 5, we prove that with probability 1 − 2-�(
√

n), at least �(
√

n)
L-vertices are removed from the cover. Note that we need not assume that an L-vertex
flips before the first R-vertex flips.

16 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Assuming that �(
√

n) L-vertices have been removed by the end of the phase, we
apply the ideas from the last paragraph of the proof of Theorem 5. Hence, the probability
that all L-vertices are in the cover again—which is necessary for the C-vertex to flip—
before 2�(n) steps have elapsed is 2-�(n).

We are left with several interesting open problems. It would be desirable to have
an example where the (1+1) EAGM gets stuck at (2 − o(1))-optimal solutions with
probability 1 − o(n-c) for any constant c, that is, the success probability should be only
superpolynomially small. Such examples should exist if the vertex cover problem does
not admit approximations with a constant factor less than 2. Moreover, one could work
on generalizations of Proposition 1. Since the (1+1) EA is able to flip any given subset
of ln n/ln ln n bits in a single step with probability n-O(1), it might happen that it is
able to explore in polynomial time the Hamming ball of radius ln n/ln ln n centered
around the initial solution. This would imply that solutions with an approximation
ratio 2 − O(ln n/(n ln ln n)) could be found in polynomial time with at least polynomially
small probability.

5 Conclusions

In the case of combinatorial optimization problems hybrid methods are often used to
obtain good solutions for a certain problem. The theoretical understanding of combining
evolutionary algorithms with other methods is rather weak. We have made a first
step into the rigorous analysis of such methods by considering the combination of
well-known approximation algorithms with a simple evolutionary algorithm. In our
analyses we have pointed out situations where approximate solutions can (or cannot)
be improved by the search procedure of an EA.

There are several open questions concerning the topic of analyzing the combination
of evolutionary algorithms with other methods. Some regarding the vertex cover prob-
lem and starting with solutions computed by the considered approximation algorithms
have been pointed out in Sections 3 and 4. We also want to state a more general question.
The EAs considered in this paper only use an initial solution that has been computed
by another method. In general a different optimization procedure is applied more often
during the run of an EA. These so-called memetic approaches have already been ana-
lyzed w. r. t. their runtime on toy problems (Sudholt, 2006a,b). It would be nice to have
some results on such methods by rigorous analyses on a well-known combinatorial
optimization problem.

Acknowledgments

J. He was supported by the UK Engineering and Physical Research Council under Grant
No. EP/C520696/1. C. Witt was supported by the Deutsche Forschungsgemeinschaft
(DFG) in terms of the Collaborative Research Center “Computational Intelligence”
(SFB 531).

References

Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal, 8:250–255.

Evolutionary Computation Volume 17, Number 1 17

T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt

Doerr, B., Hebbinghaus, N., and Neumann, F. (2006). Speeding up evolutionary algorithms
through restricted mutation operators. Proceedings of PPSN ’06, vol. 4193 of LNCS, pp. 978–
987.

Evans, I. K. (1998). Evolutionary algorithms for vertex cover. In V. W. Porto, N. Saravanan, D.
E. Waagen, and A. E. Eiben (Eds.), Proceedings of Evolutionary Programming VII, vol. 1447 of
LNCS, pp. 377–386. Berlin: Springer.

Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., and Witt, C. (2007). Approximating cover-
ing problems by randomized search heuristics using multi-objective models. Proceedings of
GECCO ’07, pp. 797–804. New York: ACM Press.

Giel, O., and Wegener, I. (2003). Evolutionary algorithms and the maximum matching problem.
Proceedings of STACS ’03, vol. 2607 of LNCS, pp. 415–426.

Giel, O., and Wegener, I. (2006). Maximum cardinality matchings on trees by randomized local
search. Proceedings of GECCO ’06, pp. 539–546. New York: ACM Press.

Glover, F., and Laguna, M. (1997). Tabu search. Norwell, MA: Kluwer.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA:
Addison-Wesley.

He, J., Yao, X., and Li, J. (2005). A comparative study of three evolutionary algorithms incorporat-
ing different amount of domain knowledge for node covering problems. IEEE Transactions
on Systems, Man and Cybernetics, 35(2):266–271.

Holland, J. H. (1992). Adaptation in natural and artificial system, 2nd ed. Cambridge, MA: MIT Press.

Karakostas, G. (2005). A better approximation ratio for the vertex cover problem. Proceedings of
ICALP ’05, vol. 3580 of LNCS, pp. 1043–1050. Berlin: Springer.

Kehden, B., and Neumann, F. (2006). A relation-algebraic view on evolutionary algorithms for
some graph problems. Proceedings of EvoCop ’06, vol. 3906 of LNCS, pp. 147–158.

Khuri, S., and Bäck, T. (1994). An evolutionary heuristic for the minimum vertex cover problem.
In J. Hopf (Ed.), Genetic algorithms within the framework of evolutionary computation, Proceedings
of the KI-94 Workshop, pp. 86–90.

Michalewicz, Z. (1996). Genetic algorithms + data structure = Evolution program, 3rd ed. Berlin:
Springer Verlag.

Neumann, F. (2004). Expected runtimes of evolutionary algorithms for the Eulerian cycle problem.
Proceedings of CEC ’04, vol. 1, pp. 904–910. Piscataway, NJ: IEEE Press.

Neumann, F. (2007). Expected runtimes of a simple evolutionary algorithm for the multi-objective
minimum spanning tree problem. European Journal of Operational Research, 181(3):1620–
1629.

Neumann, F., and Wegener, I. (2004). Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Proceedings of GECCO ’04, vol. 3102 of LNCS, pp. 713–724.

Neumann, F., and Wegener, I. (2005). Minimum spanning trees made easier via multi-objective
optimization. Proceedings of GECCO ’05, pp. 763–770. New York: ACM Press.

Papadimitriou, C. H., and Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity.
Mineola, NY: Dover.

Scharnow, J., Tinnefeld, K., and Wegener, I. (2004). The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms,
pp. 349–366.

18 Evolutionary Computation Volume 17, Number 1

Analyses of Simple Hybrid Algorithms for the Vertex Cover Problem

Schrijver, A. (1998). Theory of linear and integer programming. New York: John Wiley & Sons.

Sudholt, D. (2006a). Local search in evolutionary algorithms: The impact of the local search
frequency. Proceedings of ISAAC ’06, vol. 4288 of LNCS, pp. 359–368.

Sudholt, D. (2006b). On the analysis of the (1+1) memetic algorithm. Proceedings of GECCO ’06,
pp. 493–500. New York: ACM Press.

Vazirani, V. (2001). Approximation algorithms. Berlin: Springer.

Wegener, I., and Witt, C. (2005). On the optimization of monotone polynomials by simple ran-
domized search heuristics. Combinatorics, Probability and Computing, 14:225–247.

Witt, C. (2005). Worst-case and average-case approximations by simple randomized search heuris-
tics. Proceedings of STACS ’05, vol. 3404 of LNCS, pp. 44–56.

Evolutionary Computation Volume 17, Number 1 19

