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Abstract—Most complex real-world networks display
scale-free features. This motivated the study of numerous
random graph models with a power-law degree distribu-
tion. There is, however, no established and simple model
which also has a high clustering of vertices as typically
observed in real data. Hyperbolic random graphs bridge
this gap. This natural model has recently been introduced
by Papadopoulos, Krioukov, Boguñá, Vahdat (INFOCOM,
pp. 2973–2981, 2010) and has shown theoretically and
empirically to fulfill all typical properties of real-world
networks, including power-law degree distribution and high
clustering.

We study cliques in hyperbolic random graphs G
and present new results on the expected number of
k-cliques E[Kk] and the size of the largest clique ω(G).
We observe that there is a phase transition at power-
law exponent γ = 3. More precisely, for γ ∈ (2, 3) we
prove E[Kk] = nk(3−γ)/2Θ(k)−k and ω(G) = Θ(n(3−γ)/2)
while for γ > 3 we prove E[Kk] = nΘ(k)−k and
ω(G) = Θ(log(n)/ log logn).

We empirically compare the ω(G) value of several scale-
free random graph models with real-world networks. Our
experiments show that the ω(G)-predictions by hyperbolic
random graphs are much closer to the data than other
scale-free random graph models.

I. INTRODUCTION

Scale-free networks are ubiquitous in nature and soci-
ety. They appear as a large array of real-world graphs that
(mostly) have been formed by autonomous agents. Pop-
ular examples include social networks, protein-protein
interactions, sexual networks, electricity circuits, the
WWW, the internet, and many more [17]. Even though
the term “scale-free network” has never been well-
defined [15], it has been observed that all of these
graphs share similar characteristics. They have hub
nodes (nodes that interconnect the graph), community
structures (subgraphs with high edge density), very low
diameter (longest shortest path), a giant component (a
connected component containing almost all vertices)
and—probably most importantly—their degree distribu-
tion follows a power law: P (k) ∼ k−γ , where P (k) is
the fraction of nodes having degree k.

Over the course of the last decade, research has been
striving to produce generative models for these types of
networks that are able to accurately predict properties

of real-world graphs. Popular models include the pref-
erential attachment graphs [3] and variants of inhomo-
geneous random graphs [24]. The latter generalizes the
Erdős-Rényi random graphs Gn,p by using non-uniform
edge probabilities. These models excel at modeling the
power-law degree distribution; and they have a giant
component, hub nodes and low diameter. Due to their
independent edge probabilities, they are accessible to
rigorous studies. Independent edge probabilities also
imply, however, that the graphs have low clustering,
meaning that there exist no community structures.

In contrast, most real-world graphs do have high
clustering. In the case of social networks this is easy
to envision: Two people are much more likely to be
connected if they already have a friend in common.
A number of fixes to the above models have been
proposed to incorporate that intuition [16, 18, 25] (e.g.
first construct a random graph, and then replace all nodes
with k-cliques). Often times, however, these fixes seem
artificial and can not convincingly explain why clustering
occurs.

Krioukov et al. [13] took a different approach by
assuming an underlying hyperbolic geometry to the
network. Similarly to the well-known geometric random
graphs in Euclidean space [21], they introduced hyper-
bolic random graphs in which all nodes are placed in the
hyperbolic plane, and two nodes are connected whenever
they have a small distance from each other. The cluster-
ing then follows from the geometric interpretation: When
two nodes are close to a third node, it is likely that they
are also close to each other. In fact, [10, 13] showed that
the clustering coefficient in these networks is constant,
and community structures emerge as natural reflections
of the hyperbolic geometry. Furthermore, the hyperbolic
geometry enforces a power-law degree distribution, and
the presence of hub nodes.

The model achieved remarkable results for greedy
forwarding: Embedding the internet graph in such a
hyperbolic plane, an autonomous system can forward
packets using only the hyperbolic location of the des-
tination and its own neighbors [4, 20, 23]. Doing away
with the currently used routing tables, they achieved an
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Table I: New results on the expected number of k-cliques E[Kk] and the size of the largest clique ω(G) in hyperbolic random graphs. Section II

defines the parameters used in this table. Sections III and IV prove the upper and lower bounds on E[Kk], respectively. Section V proves
the bounds on ω(G).

almost optimal routing that is just 10% slower on average
than the optimal routing path. This result suggests that
there is an underlying hyperbolic metric to at least the
internet graph; and the hyperbolic geometry might be
what unites most of the scale-free networks.

While the intuition behind hyperbolic random graphs
is elegant, rigorous treatments can quickly become math-
ematically challenging. Since most of existing research
has focused on the power-law exponent, average degree
and clustering coefficient [8, 10], there are currently still
a number of important questions open regarding this
model, e.g. rigorous proofs for the existence of a giant
component or for the low diameter.

Our contribution. Closely related to clustering and
community structures, we analyze the emergence of
cliques in hyperbolic random graphs. In particular, we
present bounds on the expected number of k-cliques and
the size of the largest clique. The results are summarized
in Table I. We observe that there is a phase transition
at power-law exponent γ = 3, with smaller exponents
yielding polynomial-size cliques and larger exponents
yielding logarithmic-size cliques. While clique is NP-
and W[1]-complete for general graphs, we argue that
the largest clique of hyperbolic random graphs can
be found in polynomial time. Finally, we validate our
results experimentally by observing that the hyperbolic
random graph provides better predictions than several
other models on the size of the largest cliques of real-
world graphs.

Comparison with other scale-free models. Using the
results of Janson et al. [11], we compare the clique
numbers, i.e. the size of the largest clique, of some
popular scale-free network models to the hyperbolic
random graph in Table II.

We notice that the (asymptotic) clique number is al-

most the same for Chung-Lu [1], Norros-Reittu [19] and
hyperbolic random graphs in the case where the power
law exponent is 2 < γ < 3. An intuitive explanation for
this phenomenon is that all these models have a tightly
connected core: A subgraph of polynomial size in which
the edge probability is 1− o(1) or even 1. Large cliques
emerge as a consequence of this core.

But even when such a core does not exist in the graph
(which is the case for γ > 3), one would expect to have
small communities and therefore cliques in the graph.
In particular, due to the large clustering coefficient it
is likely that a node’s neighbors (or a subset of the
neighbors) form a clique. Consequently, the hyperbolic
random graph has approximately logn

log logn as the largest
clique. Existing models with independent edge proba-
bilities in this case predict a largest clique of size 6 3
with high probability (i.e., with probability > 1− o(1)),
which seems unlikely. Our experimental findings in the
next section confirm this intuition.

Experiments. We conducted preliminary experi-
ments to validate our theoretical results. We used all
scale-free networks from [27] that have n > 50 000 and
γ > 2. The power-law exponents γ were estimated by a
maximum likelihood estimation [2, 6] which minimizes
the Kolmogorov-Smirnov (K–S) error. We discarded all
networks with K–S error D > 0.02 and where the clique
finding algorithm by Eppstein and Strash [7] did not
terminate within one day (LiveJournal, Friendster).

To determine the quality of predictions by the various
models in Table II, we compare for each real graph G̃ the
true clique number ω(G̃) for the real graphs to the clique
numbers ω(G̃′) that the various models achieve with high
probability. We chose the adjustable model parameters
(e.g. power-law exponent, average degree) to match the
respective values from the real graph G̃. The results
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Power-Law Exponent

Random Graph Model 2 < γ < 3 γ = 3 γ > 3

Hyperbolic (new results) Θ(n(3−γ)/2) Θ
(

logn
log logn

)
Θ
(

logn
log logn

)
Chung-Lu Θ(n(3−γ)/2) Θ(1) 3

Norros-Reittu Θ(n(3−γ)/2 log−(γ−1)/2 n) Θ(1) 3

Generalized RG Ω(n
3−γ
1+γ ), O(n

3−γ
1+γ log

γ−1
γ+1 n) Θ(1) 3

Pref. Attachment Θ(1) Θ(1) Θ(1)

Table II: Comparison of our new results on the clique number ω(G) of hyperbolic random graphs to known results by Janson et al. [11] for
other scale-free random graph models. All bounds hold with high probability.

are plotted as the multiplicative error ω(G̃′)/ω(G̃) in
Figure 1.

In all cases, the hyperbolic random graph’s predictions
are close to the true value, and for five graphs it beats
all existing models. Chung-Lu and Norros-Reittu have a
multiplicative error of up to two orders of magnitude;
and while the Preferential Attachment model seems to
be close to reality in some cases, its clique number can
never exceed |E|/|V |, giving it limited prediction value.

Especially for networks with power-law exponent
γ > 3—where the clique number of the hyperbolic
random graph differs strongly from previous results—
its prediction is surprisingly accurate; the other models
(unrealistically) report a constant value for ω(G). These
experiments indicate that the hyperbolic random graph
is a further step in the right direction in the analysis and
understanding of complex real-world networks.

II. PRELIMINARIES

The hyperbolic random graph is constructed as fol-
lows. Let H2 be the hyperbolic plane with negative
curvature K = −ζ. For simplicity, we assume in this
paper that ζ = 1, but our results easily translate to
arbitrary ζ > 0. To obtain a graph G with n nodes,
let Dn be a disc in H2 of radius R = 2 lnn+C, where
C adjusts the average degree of G. The disc is centered
in the point of origin. Afterwards, n points are sampled
in Dn as follows. Let α > 0 be some constant. The
probability density for the radial coordinate r of a point
p = (r, φ) is given by

ρ(r) := α
sinh(αr)

cosh(αR)− 1
≈ αeα(r−R),

and the angular coordinate φ is sampled uniformly
from [0, 2π]. We write ru and φu to refer to the polar
coordinates of a point u.

In the most general model, the probability that
two nodes u, v with relative angle ∆θ connect is

(exp(β2 (d(u, v)−R)) + 1)−1, where

cosh(d(u, v)) := cosh ru cosh rv−sinh ru sinh rv cos ∆θ

defines the distance between two points in H2. This
produces a power-law graph with exponent γ = 2α+ 1
if α > 1

2 , and γ = 2 else. We assume that α > 1
2 , i.e.

γ > 2. Observe that when β →∞, p(·) becomes a step
function that connects two nodes if they have distance
at most R from each other. We call this case the step
model; and the case β <∞ the binomial model. In this
paper, we focus on the step model. If not explicitly stated
otherwise, we refer with G to a random graph that was
sampled according to the step model.

Note that when α = 1, the points are uniformly
sampled from Dn, and a power-law graph with exponent
γ = 3 arises. Gugelmann et al. [10] showed that the aver-
age degree in the step model is δ = (1+o(1)) 2α2e−C/2

π(α−1/2)2 .
For most computations on hyperbolic random graphs,

one needs close approximations of the probability that
a sampled point falls in a certain area. To this end,
Gugelmann et al. [10] define the probability measure of
a set S ⊆ Dn as

µ(S) :=

∫
S

f(y) dy,

where f(r) is the probability mass of a point p = (r, θ)

given by f(r) := α sinh(αr)
2π(cosh(αR)−1) . In other words, given

a point p = (r, θ) that was sampled as described above,

µ(S) = Pr[p ∈ S : p = (r, θ)].

We define the ball with radius x around a certain point
(r, θ) as

Br,θ(x) := {(r′, θ′) | d((r′, θ′), (r, θ)) 6 x}.

We write Br(x) for Br,0(x). Using these definitions, we
can formulate the following Lemma.
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n m γ ω(G) Network

10−2 10−1 1 10 102 103

1 696 415 11 095 298 2.34 67 as-Skitter
1 134 890 2 987 624 2.53 17 com-Youtube
3 072 441 117 185 083 2.66 51 com-Orkut

875 713 5 105 039 2.72 44 web-Google
196 591 950 327 2.82 29 loc-Gowalla
403 394 3 387 388 3.15 11 Amazon0601
334 863 925 872 3.58 7 com-Amazon

3 774 768 16 518 948 4.02 11 cit-Patents
62 586 147 892 4.80 4 Gnutella31

Hyperbolic RG

Chung-Lu

Norros-Reittu

Pref. Attachment

Figure 1: Predictions of the clique number by various models. The plot shows the multiplicative error of the estimations, i.e. a value of 1 is
a perfect prediction. Exact bounds (up to a factor of (1 ± o(1)) are known for Chung-Lu and Norros-Reittu, so they are represented by a
point [11]. For Preferential Attachment Graphs we use ω(G) ∈ [2, d δ

2
e], where δ is the average degree. For the hyperbolic random graph, the

box represents our upper and lower bound. The predictions of the Generalized Random Graph [11] are not shown, as they contain unspecified
constants. The predictions of the hyperbolic random graphs are typically closest to the behavior observed in the nine real networks.

Lemma II.1. For any 0 6 r 6 R we have

µ(B0(r)) = e−α(R−r)(1 + o(1)) (1)

µ(Br(R) ∩B0(R)) =
2αe−r/2

π(α− 1/2)
· E1 (2)

µ(Br(R) ∩B0(r)) = (3)
2α

π(α− 1
2 )
e−R(α−1/2)+r(α−1) · E2 if r > R/2,

µ(B0(r)) if r 6 R/2,

with error terms E1 = 1 ± O(e−(α−1/2)r + e−r) and
E2 = 1 ± Θ(e(R−2r)(α−

1
2 )) if α 6= 3

2 and E2 = 1 ±
Θ(eR−2r(2r −R)) otherwise.

For the proof of (1) and (2) we refer to [10]. The proof
of (3) is analogous and rather technical, so we postpone
it to the appendix.

Using Lemma II.1, we compute an upper bound on the
expected number of k-cliques in the hyperbolic random
graph.

III. PROOF OF THE UPPER BOUND

In a clique, each pair of nodes is connected. To
compute an upper bound on the probability that k nodes
form a clique, we examine a relaxed condition; namely
that all nodes connect to one specific node v.

For a set U of k independently sampled points, let
v ∈ U be the node with rv = maxu∈U{ru}. We begin
by computing the probability density function of rv
which we call ρv(r). By the definition of the cumulative

distribution function, we have

Pr[rv 6 x] = Pr[∀u ∈ U : ru 6 x]

=

(∫ x

0

α sinh(αr)

cosh(αR)− 1
dr

)k
=

(
cosh(αx)− 1

cosh(αR)− 1

)k
.

The resulting probability density function is given by

ρv(r) =
∂

∂r

(
cosh(αr)− 1

cosh(αR)− 1

)k
.

= αk sinh(αr)
(cosh(αr)− 1)k−1

(cosh(αR)− 1)k
.

Following the explanation above, we know that the
probability that a set U of k independently sampled
nodes forms a clique is at most the probability that all
nodes are connected to v. Formally,

Pr[U is clique] 6 Pr[∀u ∈ U : d(u, v) 6 R]

=

∫ R

0

ρv(r) · Pr[∀u ∈ U : u ∈ Br(R) | rv = r]

=

∫ R

0

ρv(r) ·
(
µ(Br(R) ∩B0(r))

µ(B0(r))

)k−1
dr

For the last equality, observe that we condition on the
fact that all radial coordinates are 6 r. Hence, the
probability that a uniformly sampled node u is connected
to v is the probability that u ∈ Br(R), conditioned on
the fact that ru 6 r, i.e. u ∈ B0(r). We split the integral
in two parts. If r < R/2, then by triangle inequality it
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follows that all k nodes are connected. This agrees with
Lemma II.1, and we obtain∫ R/2

0

ρv(r) ·
(
µ(Br(R) ∩B0(r))

µ(B0(r))

)k−1
dr (4)

=

∫ R/2

0

ρv(r) dr 6

(
cosh(αR/2)− 1

cosh(αR)− 1

)k
6 e−αk

R
2 .

For the second part of the integration, we compute∫ R

R/2

ρv(r) ·
(
µ(Br(R) ∩B0(r))

µ(B0(r))

)k−1
dr =∫ R

R/2

αk sinh(αr) (cosh(αr)−1)k−1

(cosh(αR)−1)k

(
Θ(eR/2−r)

)k−1
dr

To obtain a tight bound, observe that

(1−x)k = ((1−x)1/x)kx > ( 1
e (1−x))kx > e−2kx (5)

whenever 1− x > 1/e. Note that

ex/2− 1 6 cosh(x)− 1 6 sinh(x) 6 ex/2

whenever x > 0. Furthermore, we have that ( 1
2e

(αR) −
1)k = 1

2e
αRk(1 − 2e−αR)k. By (5) it follows (1 −

2e−αR)k > e−4k exp(−αR). Since R = 2 log n + C and
k 6 n we obtain that (1 − 2e−αR)k > 1/e for large
enough n. Then, for some constant c,∫ R

R/2

ρv(r) ·
(
µ(Br(R) ∩B0(r))

µ(B0(r))

)k−1
dr

6
∫ R

R/2

αk
1

e

eαrk

eαRk

(
ceR/2−r

)k−1
dr (6)

=
αkck−1

(α− 1)k + 1

[
ek(α(r−R)−r+R/2)+r−R/2

]R
R/2

, (7)

where the last equation holds if α 6= 1 and k 6= 1/(1−α).
To cover all possibilities for α and k, we distinguish the
following cases:
(a) α = 1. In this case, (6) evaluates to

kck−1[e−
R
2 (k+1)+r]RR/2 6 kck−1e−

R
2 (k−1).

(b) α > 1. Then,

(7) 6
αkck−1

(α− 1)k + 1
e−

R
2 (k−1).

(c) 1
2 6 α < 1. In this case, we have to pay attention
to the sign in front of the antiderivative.

(c.i) k < 1
1−α . In that case,

(7) 6
αkck−1

(α− 1)k + 1
e−

R
2 (k−1).

(c.ii) k = 1
1−α . Consider once more (6).

(6) =

∫ R

R/2

αkck−1
1

e
e−R(αk− k2+

1
2 ) dr

= αkck−1
R

2e
e−

R
2 (k−1)

(c.iii) k > 1
1−α . Here, the sign of the antiderivative

is negative, and we obtain

(7) 6
αkck−1

(1− α)k + 1
e−αk

R
2 .

Taken together with (4), cases (a)–(c.ii) only change by a
factor of (1 + o(1)), and in the case of (c.iii) we obtain
(1 + αkck−1

(1−α)k+1 )e−αkR/2. When α > 1 (i.e. when the
graph has a power law exponent γ > 3), the number of
cliques is therefore bounded by

E[Kk] =

(
n

k

)
Pr[U is clique]

6
(ne
k

)k αkck−1

(α− 1)k + 1
e−

R
2 (k−1)

= nk−k · αke(ce
−C/2+1)k−1

(α− 1)k + 1

= n ·Θ(k)−k.

For α = 1 we obtain a similar bound E[Kk] 6 n ·
Θ(k)−k+1 = n ·Θ(k)−k.

For networks with a dense core (12 < α < 1), we have
an exponential number nk(1−α) ·Θ(k)−k of k-cliques, if
k is large enough. Table I contains the detailed results
for these cases. In the case where k 6 1/(1−α), which
is not shown in the table, there is in fact a linear number
of k-cliques. This agrees e.g. with the fact that for k = 2
there are Θ(n) many edges in G.

IV. PROOF OF THE LOWER BOUND

To obtain a matching lower bound, we consider two
cases. Let us first investigate a sector of the disc Dn with
angle θ = a/n, for some adjustable constant a. Clearly,
there are 2πn

a such non-overlapping circular sectors. For
small enough a, such a circular sector has a diameter
of 6 R, as we show in the following. The points inside
such a circular sector thereby form a complete subgraph.

Obviously, the probability that a point falls in one
specific circular sector of angle a/n is exactly a

2πn .
Therefore, the probability that k independently sampled
points all lie in one sector is

Pr[U is clique] >
2πn

a
·
( a

2πn

)k
=
( a

2πn

)k−1
.

This probability is clearly maximized by choosing a as
large as possible, i.e. such that for any larger a′ the
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diameter is > R. In the following, we derive the largest
possible value for a.

A. The Diameter of a Circular Sector

Let u, v be two points inside the circular sector
S of angle a/n that have maximal distance. Observe
that these points have to lie on the boundary of S:
Otherwise, consider the geodesic that goes through u, v
and intersects S at u′, v′. Clearly, d(u′, v′) > d(u, v), a
contradiction.

Consider now that u, v both have maximal radial
coordinates ru = rv = R. As we can observe from
the distance formula, the distance between two points
in S can be maximized by setting ∆θ as large as
possible (since S has an angle of a/n � π). It is
therefore sufficient to investigate pairs of points that have
a maximal relative angle of a/n. Then, their distance is

d(u, v) = cosh−1(cosh2(R)− sinh2(R) cos( an )).

A series expansion gives cos(x) = 1 − x2

2 + O(x4),
leaving us with

d(u, v) 6 cosh−1(1 + ( an )2 sinh2(R)).

We now note that by choosing a = 2
√
a′/eC (1 + o(1))

suitably we get that ( an )2 sinh2(R) = a′eR from the
definition of R. Therefore,

d(u, v) 6 cosh−1(1 + a′eR)

= log(1 + a′eR +
√

2a′eR + a′2e2R )

= log(eR · 2a′(1 + o(1)))

6 R+ ln(2a′(1 + o(1)). (8)

Hence, by choosing a′ < 1
2 (1 − o(1)) and thereby a 6√

2/eC (1± o(1)) we obtain that two nodes u, v on the
circular arc of S have distance at most R.

Finally, we show that in this case, the diameter of S
is indeed at most R.

Lemma IV.1. The set S as defined above has a diameter
of at most R.

The proof can be found in the appendix. To conclude,
we notice that

Pr[U is clique] >
( a

2πn

)k−1
=

(
1√

2eC πn
(1± o(1))

)k−1
implies once again that

E[Kk] =

(
n

k

)
Pr[U is k-clique] > n ·Θ(k)−k.

B. Polynomial Cliques

We proved that the expected number of k-cliques in
the hyperbolic random graph is at least n ·Θ(k)−k. This
bound, however, does not match the upper bound for
the dense case, i.e. when 1

2 < α < 1. In this case, we
need a different approach. Consider the ball B0(R/2).
All nodes in this area have distance 6 R from each other
by the triangle inequality. It is therefore left to bound the
number of nodes in B0(R/2). By Lemma II.1 we know
that

µ(B0(x)) = e−α(R−x)(1 + o(1)),

i.e. the probability that a sampled point has at most
distance x from the center of Dn is e−α(R−x)(1+o(1)).
Consequently, we expect ne−αR/2(1 + o(1)) nodes in
B0(R/2). Observe that for 1

2 < α < 1 and R = 2 lnn+
C this amounts to e−αC/2n1−α, which is polynomial.

Let Kk(G) be the number of k-cliques in G. Clearly, if
G′ ⊆ G, then we have that Kk(G′) 6 Kk(G). Consider
for G the hyperbolic random graph and for G′ the graph
induced on G by only taking vertices v with rv 6 R/2.
Then, we get

E[Kk] = E[Kk(G)] > E[Kk(G′)] = E
[(
X

k

)]
,

where X is the random variable describing the number of
nodes that drop in B0(R/2). To show the lower bound,
we use the following well-known lemma, which can e.g.
be found in [26, Ex. 1].

Lemma IV.2. The function f(x) =
(
x
k

)
is convex on

x > k.

Therefore, using Jensen’s inequality [12] which says
f(E[X]) 6 E[f(X)] for convex functions f , we obtain

E
[(
X

k

)]
>

(
E[X]

k

)
=

(
e−αC/2n1−α(1 + o(1))

k

)
>

(
e−αC/2n1−α

k

)k
.

Taken together with the result above, we conclude

E[Kk] > max{n, n(1−α)k} ·Θ(k)−k.

V. LARGEST CLIQUE

In this section, we present bounds on the clique
number ω(G), i.e. the size of the largest clique in G.
So far, we computed an upper bound on the expected
number of k-cliques in the graph. We can use this result
to obtain an upper bound on ω(G) by applying the
Markov inequality

Pr[Kk > 1] 6 E[Kk].
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Let therefore ε be an arbitrarily small constant and set
E[Kk] = n−ε. We obtain an upper bound on the clique
number that holds with high probability.

A. Sparse Case
(
α > 1

)
For α > 1 we have

Pr[Kk > 1] 6 E[Kk] 6 n · (c1k)−k
!
= n−ε

⇔ (c1k)−k = n−1−ε,

for some appropriate constant c1. The solution to this
equation is k = 1

c1
eW (c1 log(n1+ε)), where W (·) is the

Lambert W function, defined by W (z)eW (z) = z. To
see that this holds, observe

(c1k)−k = exp
(
−W (c1 log(n1+ε)) 1

c1
eW (c1 log(n1+ε))

)
= exp(− log(n1+ε)) = n−1−ε

The Lambert W function has an asymptotic expansion
yielding W (z) = ln z − ln ln z + o(1) for growing z,
which simplifies our formula to

k = 1
c1
eW (c1 log(n1+ε))

= 1
c1
elog(c1(1+ε) logn)−log log(c1(1+ε) logn)+o(1)

=
(1 + ε) log n

log(c1(1 + ε) log n)
(1 + o(1))

= (1 + ε± o(1))
log n

log logn
.

Therefore, there is no larger clique than (1 + ε ±
o(1)) logn

log logn with high probability, proving the upper
bound. To obtain a matching lower bound, observe
that the analysis in Section IV corresponds to a balls-
into-bins experiment: There are 2πn

c circular sectors
(bins), and each node (ball) is uniformly sampled in
one of those. Since there are n balls and Θ(n) bins,
an application of [22, Theorem 1] gives that with high
probability the bin with the maximum load will hold at
least logn

log logn (1− o(1)) balls, proving a lower bound for
the maximum clique.

B. Dense Case
(
1
2 < α < 1

)
On the other hand, when α < 1, we get

Pr[Kk > 1] 6 E[Kk] 6 n(1−α)k · (c2k)−k,

for some appropriate constant c2. Let c3 be some con-
stant such that c3c2 > 1. If one sets k = c3n

1−α, we
get

E[Kk] 6 n(1−α)k · (c2k)−k

= n(1−α)c3n
1−α
· (c2c3n1−α)−c3n

1−α

= (c2c3)−e
−C/2n1−α

.

This term is asymptotically smaller than n−ε for any ε,
since

(c2c3)−c3n
1−α

6 n−ε ⇔ c3n
1−α log(c2c3) > ε log n,

since a polynomial in n is larger than ε log n for large
enough n. Therefore, we know that ω(G) 6 Θ(n1−α) in
this case. Combining this with the fact that by a Chernoff
bound, with high probability at least e−αC/2n1−α(1 −
o(1)) nodes have radial coordinate r 6 R/2, we have
that the largest clique is of size Θ(n1−α) with high
probability.

VI. ALGORITHMS FOR FINDING CLIQUES

So far, we showed bounds on the size of cliques in
hyperbolic random graphs, but did not yet investigate on
how to find them algorithmically. For the case α > 1
we showed that there are only few cliques in the graph,
and therefore a degeneracy approach as in [7, 9] or a
simple enumeration algorithm finds the largest clique in
polynomial or even linear time. We now argue that a
polynomial runtime is also achievable for α < 1.

Clark et al. [5] provided a polynomial time algorithm
for finding cliques in unit disc graphs (the euclidean
analog to hyperbolic graphs) which works as follows.
For any two nodes u, v with distance d(u, v) = d 6 R
consider all cliques C(u, v) such that u, v span the
diameter of C ∈ C(u, v), i.e.

∀C ∈ C(u, v),∀u′, v′ ∈ C : d(u′, v′) 6 d.

Clearly, for any clique C there exist two nodes u, v ∈ C
such that C ∈ C(u, v). Since all nodes that belong to
a clique in C(u, v) are closer than d to both u and v,
they lie inside a lens of the form Bd(0) ∩ Bd(d). Now
consider the upper and the lower half of the lens. In
the euclidean geometry, we can easily see that all points
inside the upper (and lower, resp.) half of the lens have
distance at most d 6 R from each other. Hence, the
induced subgraph on all nodes inside Bd(0) ∩ Bd(d)
is the complement of a bipartite graph. Since we can
find the largest independent set on bipartite graphs in
polynomial time, we can find the largest clique in the
complement as well. Finding the largest clique in the
whole graph then boils down to searching for the largest
clique in all such lenses induced by the n edges.

This approach translates to hyperbolic random graphs:
we only have to show that the diameter of such a half
lens is no larger than d. This can be done using the
Karush-Kuhn-Tucker conditions, similar to Lemma IV.1.
Due to space constraints we omit this technical but
not difficult computation and conclude that there is
a polynomial-time algorithm for finding a k-clique in
hyperbolic random graphs.
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VII. CONCLUSION

We present an analysis of the emergence of cliques in
the hyperbolic random graphs and suggest how to find
them algorithmically. We found that the large clustering
coefficient of these graphs strongly affects the clique
number when γ > 3. Previous models with independent
edge probabilities predicted a clique number of 3 in
this case, whereas the hyperbolic random graph contains
a logn

log logn size clique. Our experiments validated that
this is indeed closer to reality; and even in the case
where 2 < γ < 3 the clique number of hyperbolic
random graphs was closer to real-world graphs than other
existing models.

We therefore present another piece of evidence that
hyperbolic random graphs model the behavior of real-
world graphs best compared to existing scale-free mod-
els. This should motivate the study of other graph
properties like giant component and small diameter in
even more detail.
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APPENDIX

Proof of Lemma II.1, (3). Consider first the case r 6
R/2. In that case, the ball Br(R) fully encloses B0(r).
Therefore, the intersection of those two areas has proba-
bility measure exactly µ(B0(r)) = e−α(R−r)(1 + o(1)),
proving the second case.

We now assume r > R/2. Then, we can write

µ(Br(R) ∩B0(r)) = µ(B0(R− r))

+ 2

∫ r

R−r

∫ θr(y)

0

f(y) dθ dy,

where θr(y) = arccos
( cosh(r) cosh(y)−cosh(R)

sinh(r) sinh(y)

)
is given

by the definition of the distance function. The first part
of the sum simplifies to (1+o(1))e−αr. For the integral,
we note that it is the same (apart from the integration
bounds) as in the proof of (2), see [10]. We can thereby
simplify

2

∫ r

R−r

∫ θr(y)

0

f(y) dθ dy = (9)

4

∫ r

R−r
e(R−r−y)/2(1±O(eR−r−y)) α sinh(αy)

2π(cosh(αR)−1) dy.

We first compute the integral without the error term and
later add the error term. We obtain

4

∫ r

R−r

e(R−r−y)/2α sinh(αy)

2π(cosh(αR)− 1)
dy = (10)[

4α exp(R−r−y
2 )

π(4α2−1)(cosh(αR)−1) (2α cosh(αy) + sinh(αy))
]r
R−r
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Setting C1 = 4α
π(4α2−1)(cosh(αR)−1) and inserting the

integration bounds, we obtain

(10) = C1

(
e
R
2 −r(2α cosh(αr) + sinh(αr))

− 2α cosh(α(R− r)) + sinh(α(R− r))
)

= C1(α+ 1
2 )
(
e
R
2 −reαr(1 + Θ(e−2αr))

− eα(R−r)(1 + Θ(e−2α(R−r)))
)

= C1(α+ 1
2 )e

R
2 +r(α−1)(1 + Θ(e−2αr)

−Θ(e(R−2r)(α−
1
2 ))).

Since 1/(cosh(x)−1) = 2e−x(1+Θ(e−x)), we conclude

(10) =
2α

π(α− 1
2 )
e−R(α−1/2)+r(α−1)

· (1 + Θ(e−αr)−Θ(e(R−2r)(α−
1
2 ))).

It is left to bound the error term in (9). To this end, we
compute ∫ r

R−r
O(e

3
2 (R−r−y))

sinh(αy)

cosh(αR)
dy

=

∫ r

R−r
O(e

3
2 (R−r−y)+α(y−R)) dy

This integral evaluates to O(e−R(α−1/2)+r(α−1)) · E3,
where E3 = eR−2r if α > 3

2 , E3 = e−
R
2 −r(α−1) if

α < 3
2 and E3 = eR−2r(2r−R) otherwise. Observe that

in the former cases e(R−2r)(α−
1
2 ) dominates the error

term. Since (R − 2r)(α − 1
2 ) > −αr, we obtain for

α 6= 3
2 the final solution

µ(Br(R) ∩B0(r)) = 2α
π(α− 1

2 )
e−R(α−1/2)+r(α−1) · E2,

where E2 = 1±Θ(e(R−2r)(α−
1
2 )), proving the claim.

Proof of Lemma IV.1. We use the Karush-Kuhn-Tucker
conditions [14] for finding maxima under inequality
constraints:

max. f(r, r′) = cosh(r) cosh(r′)− sinh(r) sinh(r′) · q
s.t. 0 6 r, r′ 6 R,

where we write q = cos( an ). We introduce slack
variables α, β, λ, µ and obtain the following system of
equations.

0 6 r, r′ 6 R

λ(r −R) = 0

µ(r′ −R) = 0

α, β, λ, µ > 0

αr = 0

βr′ = 0

sinh(r) cosh(r′)− q cosh(r) sinh(r′) = λ− α
cosh(r) sinh(r′)− q sinh(r) cosh(r′) = µ− β

We distinguish several cases given by the conditions that
are equal to zero. We notice that either α = 0 or r = 0

such that above system holds. Let r = 0. The case for
r′ = 0 is analog. Then, the system collapses to

0 6 r′ 6 R

q sinh(r′) = α

sinh(r′) = µ− β.

α, β, µ > 0

µ(r′ −R) = 0

βr′ = 0

We can now further distinguish the cases (i) µ = 0 and
(ii) r′ = R. For (i) we are done immediately, since then
sinh(r′) = −β implies that r′ = β = 0; and u, v have a
total distance of 0, which is clearly not a maximum. For
the case (ii) we get that u and v have a distance of R.
Let us now assume that α = β = 0. Moreover, assume
w.l.o.g. that r > r′. Then we obtain that sinh(r−r′) > 0
and therefore

sinh(r) cosh(r′) > cosh(r) sinh(r′).

Since cos( an ) = q < 1 in our case, this means that
λ > 0, which in turn implies that r = R. Therefore, we
can rewrite the last condition as

cosh(R) sinh(r′)− q sinh(R) cosh(r′) = µ.

Again, we distinguish two cases (i) µ = 0 and (ii) µ > 0.
For (i), we immediately obtain r′ = r = R, for which we
can use (8) and obtain a distance 6 R for appropriately
chosen constants. For the case (ii) where µ > 0, we
obtain that r′ = tanh−1(q · tanh(R)). In this case, we
first compute two bounds on the above term. By the
definitions of hyperbolic functions, we get

r′ = tanh−1(q tanh(R)) = 1
2 ln

(
(1+q)eR+(1−q)e−R
(1−q)eR+(1+q)e−R

)
To obtain an upper bound, remember that q 6 1 and
q = cos(a/n) = 1− a

2e
−R +O(e−2R), giving

r′ 6
1

2
ln

(
2eR + ae−2R

a−O(e−R)

)
6
R

2
±Θ(1),

when R is large enough. Similarly, the lower bound is

r′ >
1

2
ln

(
eR

a+O(e−R)

)
>
R

2
±Θ(1).

Putting this together, we see that for ru = R and rv =
tanh−1(q tanh(R)) = R

2 ±O(1) we get the distance

cosh(d(u, v))

= cosh(R) cosh(tanh−1(q tanh(R)))−
q sinh(R) sinh(tanh−1(q tanh(R)))

6 cosh(R2 ±Θ(1)) + ae−R sinh(R) sinh(R2 ±Θ(1))

= O(eR/2)

which is smaller than cosh(R) for large enough R. This
concludes the proof.
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