
When to Use Bit-Wise Neutrality

Tobias Friedrich and Frank Neumann

Abstract— Representation techniques are important issues
when designing successful evolutionary algorithms. Within this
field the use of neutrality plays an important role. We examine
the use of bit-wise neutrality introduced by Poli and López [9]
from a theoretical point of view and show that this mechanism
only enhances mutation-based evolutionary algorithms if not
the same number of genotypic bits for each phenotypic bit is
used. Using different numbers of genotypic bits for the bits in
the phenome we point out by rigorous runtime analyses that it
may reduce the optimization time significantly.

I. INTRODUCTION

USING neutrality in evolutionary algorithms (EAs) has
gained increasing interest during the last years. The

use of redundancy in the representation of an EA is often
motivated by the neutrality which can be found in natural
evolution. Several experimental studies have investigated
whether redundancy can significantly help to come up with
better algorithms [1, 10, 11, 13].

We examine the use of neutrality from a theoretical point
of view and take a closer look on bit-wise neutrality which
has been introduced in [9]. Our investigations point out that
there is a direct correlation between the mutation probability
in the genotype and the phenotype. Therefore working with
this kind of neutrality in mutation-based evolutionary algo-
rithms has only the effect of changing mutation probability.
Due to this result it seems to be unnecessary to use bit-
wise neutrality for such algorithms as the effect can also be
obtained by changing the mutation probability directly in the
phenotype.

Later on, we point out that the use of bit-wise neutrality
is useful when considering different numbers of genotypic
bits to encode the phenotypic bits. The reason for this is
that the number of genotypic bits used for a phenotypic
bit determines the mutation probability for this bit in the
different encodings. We consider simple evolutionary algo-
rithms and analyze the effect of bit-wise neutrality with
different numbers of genotypic bits by carrying out rigorous
runtime analyses. Analyzing the runtime time of evolutionary
algorithms has become an important topic in the theoretical
analysis of evolutionary algorithms (see e. g. [3, 6]) Using
this kind of analysis, we point out that bit-wise neutrality
can indeed help to speed up the computation of evolutionary
algorithms. In particular, we examine plateau and deceptive
functions and show that the proposed model of bit-wise
neutrality can help to speed up the optimization process
significantly if different numbers of genotypic bits are used
to encode the bits in the phenome.

Tobias Friedrich and Frank Neumann are with the Department 1: Al-
gorithms and Complexity, Max-Planck-Institut für Informatik, Saarbrücken,
Germany (email: firstname.lastname@mpi-inf.mpg.de).

The outline of the paper is as follows. In Section II, we
introduce the model of bit-wise neutrality together with the
different encodings we examine in the paper. Section III
shows the correlation between the genotypic and pheno-
typic mutation rates. Optimal genotypic mutation rates are
discussed in Section IV and example functions where bit-
wise neutrality using different numbers of genotypic bits is
provably useful are presented in Section V. Finally, we finish
with some concluding remarks.

II. MODEL OF NEUTRALITY

We are considering the search space {0, 1}�, i. e., each
phenotype is a bitstring of length �. We examine bitwise
neutrality based on a genotype-phenotype mapping in the
evolutionary process. In this form of neutrality each phe-
notypic bit is obtained from a group of genotypic bits
via some encoding function. We consider three different
kinds of genotype-phenotype encodings and assume the i-
th phenotypic bit is encoded using a number of ni genotypic
bits. The encodings are defined as follows.

• Parity encoding: xi is set to 1 if the number of ones
among the ni corresponding genotypic bits is even,
otherwise xi is set to 0.

• Truth Table encoding: A truth table is generated
and the outcome is chosen randomly. 2ni−1 randomly
chosen assignments get output 0 and the other 2ni−1

assignments get an output of 1. Considering ni geno-
typic bits the phenotypic bit is chosen according to the
corresponding output of the truth table.

• Majority encoding: xi is set to 1 if the number of ones
among the ni corresponding genotypic bits is at least
ni/2, otherwise xi is set to 0. We will only allow odd
n to avoid draws.

In Poli and López [9] these concepts of neutrality have
been examined using the same number of n genotypic bits
for each phenotypic bit, i. e., ni = n for all 1 ≤ i ≤ �. In
this case, one table is chosen that is used for each genotype-
phenotype mapping in the Truth Table encoding.

Our aim is to examine the correspondence between the
genotypic and phenotypic mutation rate in greater detail.
Later on, we will examine in which situations it is useful
to have different numbers of genotypic bits for the bits of
the phenotype. This is motivated by neutrality observed in
nature where different kind of information is encoded by
parts of a DNA strand of different length.

III. CORRESPONDENCE BETWEEN PHENOTYPIC AND

GENOTYPIC MUTATION RATES

We are interested in the relation between the genotypic
mutation rate pge and the phenotypic mutation rate pph

997

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

depending on the applied genotype-phenotype encoding. The
understanding of this relation in important since the perfor-
mance of an evolutionary process depends greatly on the
right choice of the mutation rate. Poli and López [9] already
discovered that there is a direct correspondance between the
genotypic and phenotypic mutation rate. In this section, we
make this relation more comprehensible by deriving simple
explicit equations mapping one to the other.

Parity encoding: For this encoding, Poli and López [9]
have pointed out that the mutation rate at phenotype level
for the Parity encoding is given by

pph =
∑

0≤i≤n
i≡1(mod 2)

(
n

i

)
pi
ge (1 − pge)

n−1.

In the following, we give a closed equation for this
relationship that enables us to increase insight into the
correspondence between the mutation rates in the genome
and phenome.

pph =

�n/2�+1∑
i=0

(
n

2 i + 1

)
pge

2 i+1(1 − pge)
n−2 i−1

=
∑�n/2�+1

i=0

∑n−2 j−1
j=0

(
n−2 j−1

j

)(
n

2 i+1

)
pge

2 i+1(− pge)
j

=
∑n

i=1

(
n
i

)
(−2)i−1pge

i

=
1 −∑n

i=0

(
n
i

)
(−2 pge)

i

2

=
1 − (1 − 2pge)

n

2
. (1)

To illustrate the correspondence between the mutation rates
the function is shown in Figure 1 (a) and (b) for n = 5
and n = 10, respectively. Equation (1) and the two figures
show that there is a direct mapping between the genotypic
and phenotypic mutation rate if the number of bits used in
the genome is fixed. Note that pph(pge) is symmetric, i. e.,
pph(pge) = pph(1−pge), for even n and antisymmetric, i. e.,
pph(pge) = 1 − pph(1 − pge), for odd n. The simple closed
form of equation (1) allows us to derive the inverse function
easily. That is, for odd n we get

pge =

{
1−(1−2 pph)1/n

2 for pph ≤ 1/2
1+(2 pph−1)1/n

2 for 1/2 ≤ pph < 1.
(2)

As the mapping from pge to pph is not unique for even n,
there are two inverse solutions for even n:

pge ∈
{

1 − (1 − 2 pph)1/n

2
,
1 + (1 − 2 pph)1/n

2

}
(3)

Equations (2) and (3) are very useful when the optimal
phenotypic mutation rate is known and we want to choose
the corresponding genotypic mutation rate. Such an example
is given in Section IV.

Truth Table encoding: When the Truth Table encoding
is used, the phenotypic mutation rate is given by

pph =
1 − (1 − pge)

n

2
. (4)

For n = 5 and n = 10 this function is shown in Figure 1 (c)
and (d), respectively. Note that the phenotypic mutation
rate is upper bounded by 1/2 independent of the genotypic
mutation rate.

It is also interesting to observe that for pge ≤ 1/2,
the phenotypic mutation rate for the Truth Table encoding
(cf. equation (4)) is equal to the phenotypic mutation rate for
the Parity encoding (cf. equation (1)) if we half the genotypic
mutation rate pge . Hence, both encodings result in the same
phenotypic behaviour if the Parity encoding uses half the
mutation rate of the Truth Table encoding.

As equation (4) essentially describes the lower branch
pge ≤ 1/2 of equation (1), it easy to find its inverse function:

pge = 1 − (1 − 2 pph)1/n. (5)

Again, this can be used to obtain optimal genotypic mutation
rates if the optimal phenotypic mutation rates are known.

Majority encoding: The Majority encoding is much
harder to analyse as its effect on the phenotypic mutation rate
depends on the current number of ones in the genotype. We
can, however, obtain numerical estimates. To understand the
mapping from the genotypic mutation rate to the phenotypic
mutation rate, we have empirically examined the phenotypic
effect of different genotypic mutation rates.

We approximate the resulting phenotypic mutation rate
pph for a fixed genotypic mutation rate pge with the rela-
tive number of phenotypic changes for a sequence of 106

genotype mutations with mutation rate pge . That is, we start
with a random genome and mutate each bit of the genome
106 times with mutation rate pge . Each time we count the
number of zeros and ones in the genome. As the genome
must have an odd number of genes, either the zeros or the
ones hold the majority in the genome. We count the number
the majority changes and set the resulting empiric phenotypic
mutation rate to the number of majority changes divided by
the number of runs (here 106).

The resulting functions are shown in Figures 1 (e) and (f).
The calculated mappings give a very good approximation
of the dependence of the phenotypic mutation rate on the
genotypic mutation rate. This can be used to calculate the
phenotypic mutation rate given the genotypic mutation rate
and vice versa.

IV. OPTIMAL GENOTYPIC MUTATION RATES

For many test functions the optimal phenotypic mutation
rates are known. In this section, we derive the respective
genotypic mutation rates for such cases.

For the ONEMAX-function on � bits, it is well known that
the optimisation time is minimized at a phenotypic mutation
rate of pph = 1/� (see e. g. [2]). When the Parity encoding
is used, the optimal genotypic mutation rate is therefore (for
� ≥ 2)

pge =
1 − (�−2

�

)1/n

2
.

Asymptotic in the problem size �, this is

pge =
1

n�
+ O

(
1

�2

)
.

998 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(a) Parity (n = 5)

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(b) Parity (n = 10)

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(c) Truth Table (n = 5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(d) Truth Table (n = 10)

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(e) Majority (n = 5)

genotypic mutation rate pge

ph
en

ot
yp

ic
m

ut
at

io
n

ra
te

p
p
h

(f) Majority (n = 11)

Fig. 1: Mapping from genotypic mutation rate to phenotypic mutation rate for different encodings.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 999

Encoding Optimal pge

Parity (n = 5): pge ≈ 0.0152
Parity (n = 6): pge ≈ 0.0127
Parity (n = 7): pge ≈ 0.0109
Parity (n = 8): pge ≈ 0.0095

Majority (n = 5): pge ≈ 0.0425
Majority (n = 7): pge ≈ 0.0377

Truth Table (n = 5): pge ≈ 0.0304
Truth Table (n = 6): pge ≈ 0.0254
Truth Table (n = 7): pge ≈ 0.0218
Truth Table (n = 8): pge ≈ 0.0191

Tab. 1: Optimal genotypic mutation rates for the
ONEMAX-function on � = 14 bits.

Since pge doubles when using the Truth Table encoding
instead of the Parity encoding, we get for the Truth Table
encoding

pge = 1 −
(

� − 2

�

)1/n

=
2

n�
+ O

(
1

�2

)
.

Poli and López [9] have examined the runtime behavior
of mutation-based EAs on ONEMAX depending on pge for
� = 14 bits. With the above derived theory we can now
calculate the optimal genotypic mutation rate for the ONE-
MAX problem. For � = 14 the optimal pge for the three
different encodings and choice of n used in [9] are shown
in Table 1. Using this table the experimental results given in
Table 4 of [9] can be easily explained as it gets clear which
genotypic mutation rate is close to the optimal mutation rate
when considering the function ONEMAX.

V. BENEFITS OF BIT-WISE NEUTRALITY

In the following, we examine the case where the pheno-
typic bits may be encoded by a different number of genotypic
bits. As pointed out in the previous sections, the mutation
probability in the phenome depends on the genotypic mu-
tation probability and the number of bits used to encode
one phenotypic bit. Considering evolutionary algorithms,
one usually works with a mutation probability that is the
same for all bits. Hence, it seems to be natural to keep the
genotypic mutation probability pge fixed and examine the
effect of using different numbers of bits in the genome for
the corresponding bits in the phenome.

We show that two popular evolutionary algorithms can
only optimize certain functions in polynomial time if the
phenotypic mutation rate is not fixed for all bits. We also
prove that for fixed genotypic mutation rates this can be
achieved by using different numbers of bits in the genome
for each phenotypic bit. This shows a natural setting in
which using neutrality improves the asymptotic runtime of
an evolutionary algorithm.

First, we investigate the function NH-ONEMAX defined
by Gutjahr and Sebastiani [5]. It has been used for the

analysis of evolutionary algorithms and ant colony optimiza-
tion [5, 8]. The function is defined as

NH-ONEMAX(x) =

(
k∏

i=1

xi

)(
n∑

i=k+1

xi

)

and consists of a NEEDLE-function on k bits and a ONEMAX-
function on n − k bits. The ONEMAX-part can only be
optimized if the needle has been found beforehand. We call
the first k bits the NEEDLE-part and the remaining n − k
bits the ONEMAX-part of a bitstring x. We consider the case
k = ln n bits.

Gutjahr and Sebastiani considered the behavior of a simple
evolutionary algorithm known as (1+1) EA* in the litera-
ture [7] on this function. The algorithm can be defined as
follows.

Algorithm 1 ((1+1) EA*):
1) Choose an initial solution x ∈ {0, 1}n uniformly at

random.
2) Repeat

a) Create x′ by flipping each bit of x with probabil-
ity pph .

b) If f(x′) > f(x), set x := x′.
The optimization time of an evolutionary algorithm is

defined as the number of fitness evaluations until an optimal
search point has been obtained for the first time. Often
the expectation of this value is considered and called the
expected optimization time.

Gutjahr and Sebastiani showed a superpolynomial lower
bound on the expected optimization time of the (1+1) EA*
on NH-ONEMAX when the standard choice pph = 1/� is
used. We generalize this result and show a superpolynomial
lower bound that holds for each fixed choice of pph .

Theorem 1: The optimization time of the (1+1) EA* for
each fixed choice of pph on NH-ONEMAX is superpolyno-
mial with probability 1 − o(1).

Proof: We distinguish two cases and show that for
pph ≤ n−1/2 the (1+1) EA is not able to optimize the
NEEDLE-part while for pph ≥ n−1/2 the ONEMAX-part can
not be optimize.

We consider the case pph ≤ n−1/2 first. The initial
solution has at most k − (ln n)/3 ones in the NEEDLE-part
with probability 1 − o(1) due to Chernoff bounds. As long
as the needle has been found steps no other solutions is
accepted. The probability to produce from a solution with
at most k − (ln n)/3 ones in the NEEDLE-part the needle is
upper bounded by (1√

n
)(ln n)/3 = n−(ln n)/6 which implies

that the optimization is superpolynomial with probability
1 − o(1) in this case.

For the case pph ≥ n−1/2 holds we consider the ONEMAX-
part. Let r =

∑n
i=k+1 xi be the number of ones in the

ONEMAX-part of the current solution x. For the initial
solution n/3 < r < (2/3)n holds with probability 1−e−Ω(n)

using Chernoff bounds. For the next accepted solution the
needle has to be found as otherwise no improvement can be
achieved. The expected number of ones that are turned into
zeros in the ONEMAX-part is r ·pph and the expected number

1000 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

of zeros turned into ones is (n−r) ·pph This implies that the
number of ones that are turned into zeros is with probability
1 − e−Ω(

√
n) at least Ω(

√
n) using Chernoff bounds once

more. Hence, an optimal solution has not been achieved with
probability exponentially close to 1 when the needle has been
found for the first time.

We consider the point of time where r ≥ (3/4) · n
holds for the first time. Note, that an optimal solution has
not been reached at this time as Ω(

√
n) 1-bits flip with

1−e−Ω(
√

n) in a step that leads to this situation. After having
achieved r ≥ (3/4) · n, expected number of ones turned
into zeros is at least (3/4)pphn and at least (2/3)pphn with
probability 1 − e−Ω(

√
n) using Chernoff bounds. Similarly,

the expected number of zeros turned into ones is at most
(1/4)pphn and most (1/3)pphn with probability 1−e−Ω(

√
n)

using Chernoff bounds. Therefore, the number of ones in the
ONEMAX-part decreases by at least (1/3)pphn ≥ √

n/3 with
probability 1 − e−Ω(

√
n) which implies that the number of

steps needed to increase the number of ones in the ONEMAX-
part is exponential with probability exponentially close 1
after having reaching a search point that has at least (3/4) ·n
ones in ONEMAX-part.

In the following, we point out how bit-wise neutrality
using different number of genotypic bits for the phenotypic
bits may help to reduce the runtime of the (1+1) EA*
significantly.

We investigate a model of bit-wise neutrality using the
parity encoding although the result can also be shown for
other models of bit-wise neutrality. The mutation rate is
pge = 1/� for each genotypic bit but different numbers
of genotypic bits for the bits in the phenome are used. We
choose ni = 2� for 1 ≤ i ≤ k and ni = 1 for k +1 ≤ i ≤ �.
Hence, the number of bits in the genome is 2�k + � − k
and we apply the evolutionary algorithm to the search space
{0, 1}2�k+�−k. Note, that the fitness evaluation still takes
place on the basis of the corresponding phenotypic bits, i. e.,
a genotype is decoded before fitness evaluation.

The resulting mutation probabilities for the bits in the
phenome can be computed using equation (1). It holds

pph(xi) =
1 − (1 − 2/�)2�

2
≥ 1/e, 1 ≤ i ≤ k

and

pph(xi) =
1 − (1 − 2/�)1

2
= 1/�, k + 1 ≤ i ≤ �.

Using this setting we can prove that the runtime behavior
of the (1+1) EA* changes significantly. In particular the
expected optimization time on NH-ONEMAX becomes a
polynomial of small degree.

Theorem 2: Using the (1+1) EA* with pge = 1/� together
with the parity encoding where for each xi, 1 ≤ i ≤ k, of
the phenotype 2� genotypic bits and for each xj , k+1 ≤ j ≤
n , of the phenotype 1 genotypic bit is used, the expected
optimization time on NH-ONEMAX is O(n2 log n).

Proof: Each bit on the NEEDLE-part in the phenotype
is flipped with probability at least 1/e. The probability that

a specific bit in the phenotype is not flipped is at least 1/2.
Hence, a solution x with k leading ones is produced with
probability at least (1/e)lnn in the next step. This means
that the expected number of steps to produce a search point
consisting of k leading ones is O(n) and holds independently
of the current solution. Each solution with k leading ones
that has at least one 1-bit in the ONEMAX-part is accepted.
Assuming that all bits in the ONEMAX-part are zeros the
expected waiting time to flip one of these bits is O(n−k

n) =
O(1). Hence, the expected time to produce an accepted
solution where the needle is found and the number of ones in
the ONEMAX-part is at least 1 is O(n). After this the needle
will not be lost and the number of ones in the ONEMAX-part
can only increase until an optimal solution has been found.

The (1+1) EA* with mutation rate 1/� optimizes the
function ONEMAX in an expected number of O(n log n)
steps [3]. As the needle is re-sampled after an expected
number of O(n) steps the O(n2 log n) bound on the expected
optimization time follows.

Often EAs replace equally good search points in the
selection steps. In this case, they are able to deal with
plateaus of moderate size. The following algorithm called
(1+1) EA uses this selection methods and is frequently used
for the runtime analysis.

Algorithm 2 ((1+1) EA):
1) Choose an initial solution x ∈ {0, 1}n uniformly at

random.
2) Repeat

a) Create x′ by flipping each bit of x with probabil-
ity pph .

b) If f(x′) ≥ f(x), set x := x′.
It is not to hard to show that the (1+1) EA with pph = 1/�

optimizes the function NH-ONEMAX in expected polyno-
mial time by using results of the optimization of the (1+1) EA
on NEEDLE (see e. g. [4, 12]). However, this algorithm has
difficulties when replacing the NEEDLE-part by a TRAP-part
that makes the problem deceptive.

The function TRAP-ONEMAX differs from NH-ONEMAX

by the role of the first k bits. It is defined as

TRAP-ONEMAX(x) =

(
k∏

i=1

xi

)(
n∑

i=k+1

xi

)
+

k∑
i=1

(1−xi).

Similar to NH-ONEMAX, we call the first k bits the
TRAP-part and the remaining n − k bits the ONEMAX-part
of a bitstring x and consider the case k = ln n. We first
investigate the case where each phenotypic bit has the same
mutation rate pph and show that the (1+1) EA is not efficient
on TRAP-ONEMAX in this case.

Theorem 3: The optimization time of the (1+1) EA for
each fixed choice of pph on TRAP-ONEMAX is superpoly-
nomial with probability 1 − o(1).

Proof: Again, we distinguish two cases and show that
for pph ≤ n−1/2 the (1+1) EA is not able to optimize the
TRAP-part while for pph ≥ n−1/2 the ONEMAX-part can not
be optimize.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1001

We consider the case pph ≤ n−1/2 first. The initial
solution has at most k − (ln n)/3 in the TRAP-part with
probability 1 − o(1) due to Chernoff bounds. As long as
no solution with k leading ones has been found, steps
that increase the number of ones in the TRAP-part are not
accepted. Hence, the probability to produce a solution with k
leading ones is upper bounded by (1√

n
)(ln n)/3 = n−(ln n)/6

which implies that the optimization time is superpolynomial
with probability 1 − o(1) in this case.

For the case pph ≥ n−1/2 holds we consider the ONEMAX-
part. Thereby, we neglect the time needed to reach the opti-
mum on the TRAP-part. Note that as long as the optimum has
not been found on the TRAP-part the optimization process is
completely independent of the ONEMAX-part. As each bit is
flipped with the same probability, we may assume that the
bits on the ONEMAX-part are uniformly distributed when the
optimum on the TRAP-part has been found for the first time.

Let r =
∑n

i=k+1 xi be the number of ones in the
ONEMAX-part of the current solution x. For the solution x
where the optimum of the TRAP-part has been found for
the first time n/3 < r < (2/3)n holds with probability
1 − e−Ω(n). This implies that this solution is accepted by
the algorithm. Later on, only solutions that are optimal with
respect to the TRAP-part are accepted and we can follow the
ideas in the proof of Theorem 1 to complete the proof.

The optimization time of the (1+1) EA on TRAP-
ONEMAX can be reduced significantly using bit-wise neu-
trality with different numbers of genotypic bits. We use
the setting already investigated for the (1+1) EA* on NH-
ONEMAX and show that this can also help to speed up the
computation of the (1+1) EA on TRAP-ONEMAX.

Theorem 4: Using the (1+1) EA with pge = 1/� together
with the parity encoding where for each xi, 1 ≤ i ≤ k, of the
phenotype 2� genotypic bits and for each xj , k+1 ≤ j ≤ n,
of the phenotype one genotypic bit is used, the expected
optimization time on TRAP-ONEMAX is O(n2 log n).

Proof: Each bit on the TRAP-part is flipped with
probability at least 1/e and with probability at most 1/2.
Hence, a solution x with k leading ones is found after an
expected number of elnn = O(n) steps for the first time. To
reach an improvement the number of one in the ONEMAX-
part has to be at least k + 1. As long the number of ones in
the ONEMAX-part is not at least k+1 the probability that the
number of ones in this part increases by at least ln n + 1 is
at least e−O(ln n+1) = Ω(1/n) as the number of flipping bits
on the ONEMAX-part is asymptotically Poisson distributed
with parameter λ = 1. Hence, the expected waiting time to
produce an optimal solution on the TRAP-part with at least
k + 1 ones in the ONEMAX-part is O(n2).

The reach the optimum a search point with k leading ones
has to be re-sampled which means that non of the bits in the
needle trap flip. The expected waiting time for the event is
again eln n = O(n). Using the O(n log n) runtime bound
for (1+1) EA with mutation rate 1/� on ONEMAX [3] the
O(n2 log n) bound follows.

VI. CONCLUSIONS

We have examined the use of bit-wise neutrality in evo-
lutionary algorithms. In our investigations we have pointed
out that there is a direct mapping between genotypic and
phenotypic mutation rates and derived simple closed equa-
tions for two encodings. Hence, using for each phenotypic bit
the same number of genotypic bits only changes the overall
mutation rate in the phenotype which can also be achieved
by doing this directly without using neutrality. Later on, we
have shown that using different numbers of genotypic bits for
each phenotypic bit can help to speed up computation. These
results are obtained by rigorous runtime analyses on plateau
and trap functions that point out that bit-wise neutrality may
be useful for hard problems in this case.

ACKNOWLEDGEMENT

We thank Riccardo Poli for an interesting discussion on
the topic of this paper.

REFERENCES

[1] M. Collins. Finding needles in haystacks is harder with
neutrality. In Proc. of GECCO ’05, pages 1613–1618.
ACM Press, 2005.

[2] S. Droste, T. Jansen, and I. Wegener. A rigorous com-
plexity analysis of the (1 + 1) evolutionary algorithm for
separable functions with boolean inputs. Evolutionary
Computation, 6(2):185–196, 1998.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis of
the (1+1) evolutionary algorithm. Theor. Comput. Sci.,
276:51–81, 2002.

[4] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Com-
putation, 7(2):173–203, 1999.

[5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of ant
colony optimization. Methodology and Computing in
Applied Probability, 2007. To appear. Also available as
Technical report, Mathematics department, ”Sapienza”
University of Rome, 2007/03.

[6] J. He and X. Yao. Drift analysis and average time
complexity of evolutionary algorithms. Artif. Intell.,
127(1):57–85, 2001.

[7] T. Jansen and I. Wegener. Evolutionary algorithms
– how to cope with plateaus of constant fitness and
when to reject strings of the same fitness. IEEE Trans.
Evolutionary Computation, 5(6):589–599, 2001.

[8] F. Neumann, D. Sudholt, and C. Witt. Comparing
variants of MMAS ACO algorithms on pseudo-boolean
functions. In Proc. of SLS, volume 4638 of LNCS, pages
61–75. Springer, 2007.

[9] R. Poli and E. G. López. On the effects of bit-wise
neutrality on fitness distance correlation, phenotypic
mutation rates and problem hardness. In Proc. of
FOGA ’07, pages 138–164, 2007.

[10] F. Rothlauf. Population sizing for the redundant trivial
voting mapping. In Proc. of GECCO ’03, volume 2724
of LNCS, pages 618–627. Springer, 2003.

1002 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

[11] M. Toussaint and C. Igel. Neutrality and self-
adaptation. Natural Computing, 2(2):117–132, 2003.

[12] I. Wegener and C. Witt. On the optimization of
monotone polynomials by simple randomized search
heuristics. Combin. Probab. Comput., 14:225–247,
2005.

[13] K. Weicker and N. Weicker. Burden and benefits of
redundancy. In Proc. of FOGA ’00, pages 313–333.
Morgan Kaufmann, 2001.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

