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Abstract
Network science is driven by the question which properties large real-world networks have and how
we can exploit them algorithmically. In the past few years, hyperbolic graphs have emerged as a
very promising model for scale-free networks. The connection between hyperbolic geometry and
complex networks gives insights in both directions:

(1) Hyperbolic geometry forms the basis of a natural and explanatory model for real-world
networks. Hyperbolic random graphs are obtained by choosing random points in the hyperbolic
plane and connecting pairs of points that are geometrically close. The resulting networks share
many structural properties for example with online social networks like Facebook or Twitter. They
are thus well suited for algorithmic analyses in a more realistic setting.

(2) Starting with a real-world network, hyperbolic geometry is well-suited for metric embeddings.
The vertices of a network can be mapped to points in this geometry, such that geometric distances are
similar to graph distances. Such embeddings have a variety of algorithmic applications ranging from
approximations based on efficient geometric algorithms to greedy routing solely using hyperbolic
coordinates for navigation decisions.
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1 Introduction

In the field of algorithms, a major discrepancy between theory and practice derives from the
fact that the analysis usually assumes worst-case instances. However, real-world instances
behave very differently. In fact, numerous NP-hard problems can be solved in reasonable
time even on large real-world instances, using techniques such as

branch-and-bound [30], branch-and-reduce [5], or reductions to integer linear program-
ming [26], which in itself is an NP-hard problem that is rather well-behaved on practical
instances. One approach to bridge this gap between theory and practice is to employ an
average-case analysis by bounding the expected run time under the assumption that the input
is randomly drawn from a certain distribution. This was already pointed out by Karp [42] in
1983, who noted that: “One way to validate or compare imperfect1 algorithms for NP-hard
combinatorial problems is simply to run them on typical instances and see how often they fail.
[. . .] While probabilistic assumptions are always open to question, the approach seems to
have considerable explanatory power.” In 1986, Levin [45] laid the foundation for average-case
complexity theory by providing an average-case complete problem. For more on this topic,
see the survey by Bogdanov and Trevisan [19].

1 Karp calls an algorithm “imperfect” if it potentially outputs the wrong answer or runs too long.
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Probability distributions on graphs.
The practical relevance and “considerable explanatory power” [42] of an average-case analysis
of course heavily depends on the assumed probability distribution of the input. Thus, when
focusing on graph problems, the considered graph model should mimic at least the most
important properties of typical real-world networks. Two fundamental properties that have
been observed in large real-world networks of many domains are the following.

Heterogeneity: Large real-world networks are highly heterogeneous, i.e., they usually have
some high-degree and many low-degree vertices. In fact, many real-world networks
are scale-free, which means that the number of vertices of degree at most x is roughly
proportional to x−β for some constant β. One then says that such graphs have a power-law
degree distribution with power-law exponent β, which usually lies between 2 and 3.

Interdependency: Edges in real-world networks are typically not independent, i.e., vertices
with a common neighbor tend to be rather similar and thus more likely to be connected
than two random vertices. Formally, this can be measured using the so-called clustering
coefficient, which comes in two flavors, local and global. The global clustering coefficient
is the ratio of triangles among triples of vertices that have at least two edges; and the
local clustering coefficient of a single vertex is the ratio of connected neighbors among all
pairs of neighbors (one then usually considers these local clustering coefficients averaged
over all vertices).

We note that some types of real-world networks are homogeneous in the sense that most
vertices have roughly the same degree (e.g., the degrees of most vertices in a typical road
network lie between 1 and 4 [52]). However, large networks from many domains (social
networks, electricity maps, biological networks, co-author graphs, romantic relationships,
etc. [41, 29, 46, 47]) are highly heterogeneous. Intuitively, this reflects the fact that the
entities represented by nodes typically differ in importance, influence, or popularity.

The interdependency between edges is also not surprising. For example, two autonomous
systems in the Internet that both have a direct connection to a third autonomous system
are likely to be geographically close, which increases the chance that they also have a direct
connection. In a similar fashion, two researchers who collaborated with the same third
researcher are probably working on similar topics and are thus more likely to collaborate than
two random researchers. One can therefore expect the clustering coefficients of real-world
networks to be bounded away from 0 (e.g., the local clustering coefficients of collaboration
networks are mostly above 0.5 [52]). In the following we briefly discuss different random
graph models with heterogeneity and interdependency in mind.

Random graphs.
The earliest and most-studied model is the Erdős-Rényi random graph [31]. In this model, an
input graph G(n, p) with n vertices is generated by connecting each vertex pair independently
with probability p. Erdős-Rényi graphs are popular among researchers mainly for two reasons.
First, for p = 1

2 , it produces each (labeled) graph with n vertices with the same probability,
which seems like a desirable property. Second, it is simple, which makes it accessible to
rigorous and very detailed mathematical analysis. It is thus not surprising, that, on the
one hand, Erdős-Rényi graphs were used in the early days of average-case analysis, and are,
on the other hand, still the object of current research. To name two examples, Angluin
and Valiant [8] showed in 1977 that on Erdős-Rényi random graphs the NP-hard problem
Hamiltonian Circuit can be solved in expected time O(n log2 n) if the probability p
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is sufficiently large. Also the the W[1]-hard k-Clique problem admits an average-case
FPT-algorithm on Erdős-Rényi graphs, bringing together the fields of average-case and
parameterized complexity [33].

Unfortunately, graphs generated with the Erdős-Rényi model lack the above-mentioned
desired properties. Asymptotically almost surely (i.e, with probability → 1 for n→∞), all
vertices have roughly the same degree, leading to almost regular graphs, and their clustering
coefficients tend to 0 for n→∞.

Heterogeneous random graphs.

To account for the heterogeneity of real-world networks, different models have been introduced.
The Barabási-Albert model [9] (also called preferential attachment) adds one vertex at a
time, connecting it to already existing vertices with probability proportional to their degree.
This model actually has an explanatory character in the sense that a reasonable assumption
(namely that already popular nodes are more attractive to new nodes) leads to the power-law
degree distribution observed in practice. On the downside, this procedural description of the
model introduces strong stochastic dependencies, which makes a mathematical analysis of
the resulting graphs rather difficult [21]. The Chung-Lu model [28, 27] produces scale-free
graphs by assigning weights to the nodes (following a power law) and connecting every pair
of vertices with a probability proportional to the product of their weights [3, 4]. Though
the Chung-Lu model cannot explain the emergence of a power-law degree distribution in
real-world networks, it is much more accessible to a mathematical analysis due to the fact
that edges are chosen independently. Further similar random models are inhomogeneous
random graphs by van der Hofstad [40] and Norros-Reittu graphs [48].

However, despite this abundance of theoretical models for power-law networks, all of
them fall short in describing real-world networks as their clustering coefficient tends to 0 for
n→∞ while it is bounded away from 0 for most real-world networks.

Random graphs with interdependencies.

There are a number of random graph models that lead to graphs with non-vanishing clustering
coefficients. An example of such models are geometric random graphs [38] (also called random
unit disk graphs). Such a graph is obtained by assigning random coordinates to each vertex
and connecting two vertices if and only if they are close (with respect to Euclidean distance).
It is not surprising that the geometric locality (two vertices close to a third vertex are also
close to each other) leads to high clustering coefficients in the resulting graphs [49]. Though
random geometric graphs are well suited to represent sensor networks [51], they are less
suited for many other real-world networks. As in the Erdős-Rényi model, the resulting degree
distribution is rather homogeneous [49]. Moreover, two other properties often observed in
large real-world networks, namely sparsity and a small diameter, cannot be achieved together
by random unit disk graphs for the following reason: If the generated graph is sparse, the
vertices have to occupy an area linear in the number of vertices. This inevitably leads to a
polynomial diameter (e.g.,

√
n in the 2-dimensional Euclidean plane).

Watts and Strogatz [56] proposed a model leading to sparse graphs with high clustering
and logarithmic diameter and coined the term small-world network for this type of network.
Their model starts with a regular graph with high clustering and randomly rewires edges
(i.e., it deletes and adds edges randomly). The resulting graphs inherit the high clustering
from the initial graph while obtaining a small diameter due to the edges added independently

STACS 2019



5:4 From Graph Algorithms to Network Science

at random (as in the Erdős-Rényi model). On the downside, this model also leads to a
homogeneous degree distribution.

2 Combining heterogeneity and interdependency.

None of the aforementioned models fulfill both properties (heterogeneity and interdependency)
at the same time. A natural model that leads to graphs with both features are hyperbolic
random graphs as introduced by Krioukov et al. [44]. We strongly believe that hyperbolic
random graphs are an excellent model to describe and study real-world networks. This
believe is supported by an empirical analysis of a few hundred real-world networks [14]. In
the following we briefly describe the model, discuss previous results establishing additional
desirable properties and thereby debate why we believe that hyperbolic random graphs are
well suited for representing large real-world networks.

Definition and basic properties.

Hyperbolic random graphs are generated in the same way as geometric random graphs,
replacing the Euclidean with the hyperbolic plane, i.e., the vertices are assigned to random
positions within a disk of the hyperbolic plane and two vertices are connected if and only
if their hyperbolic distance is small. As in the Euclidean case, the geometry leads to a
non-vanishing clustering coefficient [44, 39, 25]. However, the hyperbolic plane expands
exponentially, i.e., the area and the circumference of a disk grows exponentially in its radius.
Thus, when distributing the vertices evenly within a disk in the hyperbolic plane, most
vertices will end up close to the boundary of the disk; see Figure 1a. As distances are much
larger between vertices close to the boundary, these vertices have low degree, while the few
vertices close to the center have high degree. In fact, this way of distributing the vertices
leads to a power-law degree distribution with power-law exponent β = 3 [44, 39]. Moreover,
one can obtain arbitrary exponents β, with β > 2, by assuming a hyperbolic space with
different negative curvature when sampling the radial coordinates of the vertices [18]. Thus,
the power-law exponent is a parameter of the model. Similarly, the expected average degree
of the vertices can be controlled by changing the threshold distance, below which vertices
are still connected.

Beyond these two fundamental properties of a heterogeneous degree distribution and
interdependency between edges, hyperbolic random graphs show other desirable properties.
In contrast to the Euclidean plane, the exponential expansion of hyperbolic space makes it
possible to have a graph with low average degree and only logarithmic diameter (intuitively
speaking, spreading the vertices over a region with linear area no longer implies that this
region has polynomial diameter as in the Euclidean plane). In fact, hyperbolic random
graphs have polylogarithmic diameter [35, 36, 43] and the average distance between pairs of
vertices is Θ(log logn) [1].

Such a more realistic random graph model now opens up the possibility to explain why
real-world instances tend to be algorithmically well-behaved, by performing an average-case
analysis. There is not much work in this direction. One particular example is bidirectional
breadth-first search. Borassi and Natale [22] observed that bidirectional search performs
sublinear in practice. This was the motivation for Bläsius et al. [12], who proved that the
runtime of bidirectional search is sublinear runtime with high probability for hyperbolic
random graphs.
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(a) Due to the exponential expansion of
the hyperbolic plane, most vertices lie
close to the disk’s boundary. Nodes close
to the center are rare, but highly con-
nected, leading to the power-law degree
distribution.

(b) The embedding of the Internet by Boguná et al. [20]
into the hyperbolic plane enables greedy routing with
high success ratio and low stretch, i.e., for 97% of the
vertex pairs, greedy routing succeeds and resulting paths
are on average only 10% longer than the shortest paths.

Figure 1 A hyperbolic random graph (a) and an embedding of the Internet into the hyperbolic
plane (b).

Component structure and connectivity.

Note that there is no explicit mechanism ensuring that a hyperbolic random graph is
connected, and in fact, it usually consists of multiple connected components. As some
applications are only interested in connected graphs, it is good to know that hyperbolic
random graphs (at least for 2 < β < 3) have a so-called giant component [17], i.e., a
connected component with a linear number of vertices, while all other components have only
polylogarithmic size [43].

Related to the component structure is the question of how densely connected each
component is. Despite the fact that we assume real-world networks to have constant average
degree, we still expect to find large highly connected subgraphs forming communities. For
hyperbolic random graphs with power-law exponent 2 < β < 3, it has been shown that the
largest clique has polynomial size Θ(

√
n3−β) and that there are

√
n(3−β)k ·Θ(k)−k cliques

of size k [34, 15]. On the other hand, different parts of the graph are loosely connected
in the sense that hyperbolic random graphs have small balanced separators. To be more
precise, if 2 < β < 3, there exists a hierarchy of balanced separators each having size
Θ(
√
n3−β) [10], leading to sublinear treewidth of Θ(

√
n3−β) (which is tight due to the

matching bound for the clique size). On the one hand, this result enables faster algorithms
by using dynamic programming on the tree decomposition. On the other hand, it gives
structural insights distinguishing hyperbolic random graphs further from the Barabási-Albert
model having linear treewidth [37]. We note that real-world networks typically have rather
small treewidth [2, Tables I and V], which gives another indication that hyperbolic random
graphs are well suited for representing large real-world networks.

STACS 2019
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Generating algorithms and related models.
Algorithmically, hyperbolic random graphs can naively be generated in Θ(n2) time [7], which
has been improved to O(n1.5 logn) [55] and even down to linear [24, 54, 50, 23] by using
geometric data structures. The algorithm of Bringmann et al. [24, 23] additionally makes use
of the relationship between hyperbolic random graphs and so-called geometric inhomogeneous
random graphs (GIRGs), which can be seen as a combination of the Chung-Lu model with a
geometry. In a similar way, hyperbolic random graphs have been related to Barabási-Albert
graphs additionally equipped with a geometry [32].

The hyperbolic metric of real-world networks.
Beyond the very promising hyperbolic random graph model (showing properties that one
expects in large real-world networks of many domains), the metric defined by most networks
appears to be very similar to the metric of the hyperbolic plane. To support this observation,
we name three examples. Boguná [20] embedded the Internet network into the hyperbolic
plane by assigning a hyperbolic coordinate to every autonomous system; see Figure 1b. They
observed that greedy routing solely based on these coordinates is almost maximally efficient,
i.e., it finds short paths between almost any two pairs of vertices. Verbeek and Suri [53]
show that graphs with low quasi-cyclicity (which appears to be low for many networks)
admit a metric embedding into a hyperbolic space of constant dimension with constant
additive distortion. Finally, Albert et al. [6] computed the so-called Gromov hyperbolicity
(which basically measures how close a graph metric is to the metric of the hyperbolic plane)
for several biological and social networks. They found out that these networks are indeed
hyperbolic in this sense, i.e., their Gromov hyperbolicity is small. Though all three results
relate networks to hyperbolic geometry in different ways, they all support the above claim
that the metric of networks is similar to the hyperbolic metric.

Embeddings in the hyperbolic plane.
A common application of a random model describing real-world instances reasonably well
is the possibility to perform a meaningful average-case analysis. However, acknowledging
hyperbolic random graphs as a reasonable model for real-world networks opens up another
line of research: viewing a given real-world network as a hyperbolic random graph but
without known coordinates. It is then a natural question, whether we can retrieve the missing
geometric information, i.e., whether we can embed the graph into the hyperbolic plane such
that most edges are short and most non-adjacent vertices are far apart. There are a number
of algorithms for embedding a network into the hyperbolic space. Algorithms with quasilinear
runtime are known for maximum likelihood embeddings [11, 16] and for optimizing greedy
routing [13].
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