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Abstract. Most biobjective evolutionary algorithms maintain a popula-
tion of fixed size μ and return the final population at termination. During
the optimization process many solutions are considered, but most are dis-
carded. We present two generic postprocessing algorithms which utilize
the archive of all non-dominated solutions evaluated during the search.
We choose the best μ solutions from the archive such that the hypervol-
ume or ε-indicator is maximized. This postprocessing costs no additional
fitness function evaluations and has negligible runtime compared to most
EMOAs.

We experimentally examine our postprocessing for four standard al-
gorithms (NSGA-II, SPEA2, SMS-EMOA, IBEA) on ten standard test
functions (DTLZ 1–2,7, ZDT 1–3, WFG 3–6) and measure the average
quality improvement. The median decrease of the distance to the optimal
ε-indicator is 95%, the median decrease of the distance to the optimal hy-
pervolume value is 86%. We observe similar performance on a real-world
problem (wind turbine placement).

1 Introduction

Biobjective optimization aims at minimizing (or maximizing) a two-dimensional
fitness function f : X → R2. As the two objectives f1 and f2 are typically con-
tradicting, the outcome of the optimization is a set of incomparable solutions
describing a Pareto front. Multiobjective evolutionary algorithms (MOEA) typ-
ically maintain a set of solutions called population during the optimization. The
simplest MOEAs (like SEMO [13, 15, 16]) keep all non-dominated solutions in
the population. As the Pareto front of a biobjective fitness function can be ex-
ponential in the input size [11], this results in exponential runtimes of SEMO for
such fitness functions [7, 14]. More advanced MOEAs therefore avoid keeping all
non-dominated solutions in the population and assume some upper limit on the
size of the population.
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With a population of fixed maximum size, MOEAs have to decide in each step
which solutions to keep in the population and which solutions to remove. This
can be done based on various measures like the hypervolume contribution [24],
ε-approximation, crowding distance, or many others. Independent of the specific
measure, the archiving algorithm of a MOEA has to solve an online problem: It
has do decide which solutions to remove without knowing what new solutions
will be generated in the future. While the MOEA has to decide ‘online’ which
solutions to keep, an ‘offline’ algorithm would have access to all points generated
during the optimization process and would just choose the best set from this
archive. It is known that a MOEA which in each iteration keeps these μ solutions
in the population that maximize the hypervolume, can still only reach a final
hypervolume which is a factor μ smaller than achieved by the optimal choice of
μ solutions from the whole archive (in the worst case) [3].

This shows that MOEAs potentially lose a lot of information by dropping
solutions during the optimization. We suggest to make best use of the accumu-
lated information by collecting all search points seen during the optimization
in an archive. After the MOEA has stopped, we suggest to do a postprocess-
ing that selects the best subset (of size μ) from the whole archive. This costs
no additional fitness evaluations and should not reduce the quality of the re-
ported final population. Depending on the ultimate aim of the optimization,
the problem solved by this postprocessing is known as the Hypervolume Subset
Selection Problem (hypSSP) [1, 6, 17] or ε-Indicator Subset Selection Problem
(epsSSP) [6, 19, 21]. Until recently the best known runtimes for these subset
selection problems were quadratic in the archive size n. As a single run of a
MOEA can easily produce n = 105 or more non-dominated search points, a
runtime of O(n2) is prohibitively large. The postprocessing therefore only be-
comes tractable due to two recently published quasi-linear algorithms by the
authors [6], specifically, an algorithm for hypSSP with runtime O(n (μ+ logn))
and one for epsSSP with runtime O(n logn).

In this paper, we are going to investigate the effect of these two postprocessing
algorithms for four standard algorithms on 10 common multi-objective optimiza-
tion test functions and one real-world problem of optimizing the placement of
wind turbines [20, 22].

Quality Measures. There are several ways to measure the quality of solution
sets. We focus on two measures. Our first metric is the hypervolume indicator.
It measures the volume of the objective space dominated by the set of solutions
relative to a reference point. Its main disadvantage is its high computational
complexity in higher dimensions [2, 4]. Our second metric is the ε-indicator.
For measuring how well a set P approximates another set R, the (additive) ε-
indicator returns the minimal ε by which we have to increase all points in P
in all coordinates so that every point in R is dominated by some point in P .
The disadvantage of this notion is that its computation requires knowing the
Pareto front, as we would like to plug in the Pareto front for R. In contrast to
the hypervolume indicator, it can therefore not directly be used to guide the
search [5].
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2 Preliminaries

We consider biobjective minimization problems, where a vector-valued function
f = (f1, f2) : X → R2 is minimized with respect to the weak Pareto dominance
relation �. We will mainly work in the objective space f(X ) and say that a point
p = (p1, p2) ∈ R2 weakly dominates another point q = (q1, q2) ∈ R2 (denoted as
p � q) iff p1 ≤ q1 and p2 ≤ q2. The aim of most MOEAs is to approximate the
Pareto front F = {f(x) | x ∈ X : �y ∈ X : f(y) � f(x) ∧ f(x) �� f(y)}.
Hypervolume Indicator. For a set of points P ⊂ R2, the hypervolume indi-
cator is defined as the volume of the set of points that are weakly dominated
by solutions in P and at the same time weakly dominate a given reference point
r ∈ R2, that is, Ihyp(P ) := Ihyp(P, r) := λ({z ∈ R2 | ∃a ∈ P : a � z � r}),
where λ is the Lebesgue measure.

The Hypervolume Subset Selection Problem (hypSSP) is then defined as fol-
lows: Given a set P ⊂ R2 of size n, r ∈ R2, and μ ∈ N, compute a subset
P ∗ ⊆ P of size at most μ that maximizes Ihyp(P ∗, r). We write the result of this
problem as hypSSP(P, r, μ).

ε-Indicator. How well a point p = (p1, p2) ∈ R2 approximates another point r =
(r1, r2) ∈ R2 in the objective space can be measured by the minimal number ε
by which we have to decrease p in both coordinates so that it dominates q. More
formally, we set Ieps(p, r) := max{p1 − r1, p2 − r2}. This can be used to define
how well a set P ⊂ R2 approximates a set R ⊂ R2: The ε-indicator is defined
as Ieps(P,R) := maxr∈R minp∈P Ieps(p, r). This denotes the minimal number ε
by which we have to decrease all points in P in both coordinates so that every
point in R is dominated by some point in P .

The ε-Indicator Subset Selection Problem (epsSSP) is defined as follows:
Given a set P ⊂ Rd of size n, R ⊂ Rd of size m, and μ ∈ N, compute a
subset P ∗ ⊆ P of size at most μ that minimizes Ieps(P ∗, R). We write the result
of this problem as epsSSP(P,R, μ).

3 Postprocessing

Consider any EMOA with population size μ running until it performed n fitness
evaluations. Let P be the final population after n fitness evaluations and A be
the archive of all n solutions that were evaluated during the run. We describe
our postprocessing in the objective space, i.e., we let P,A ⊂ R2.

Hypervolume. For Ihyp we may pick any reference point r ∈ R2. The general
optimization goal is then to find a population P ∗ of μ Pareto optimal points
that maximize the hypervolume, i.e., P ∗ = hypSSP(F , r, μ). Unfortunately, the
Pareto front is unknown. To overcome this problem, we introduce the assumption
that the archive converges to the Pareto front (as has been done in AGE [5] and is
implicit in the design of most EMOAs). Thus, our Ihyp-postprocessing computes
the set of μ points maximizing the hypervolume among all points in the archive,

PPhyp(A, μ) := hypSSP(A, r, μ).
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Typically the hypervolume of PPhyp(A, μ) should be larger than the hypervol-
ume of P , so that our postprocessing improves the quality. In Section 5 we
will see an experimental evaluation of this claim. In any case, since P ⊆ A we
have Ihyp(PPhyp(A, μ)) ≥ Ihyp(P ), so our postprocessing does not decrease the
quality of the result.

ε-Indicator. In case of Ieps the general optimization goal is to find a popu-
lation P ∗ of μ Pareto optimal points that optimally approximate the Pareto
front, i.e., P ∗ = epsSSP(F ,F , μ). Again, F is unknown and we assume that the
archive converges to the Pareto front. Thus, our Ieps-postprocessing computes
the set of μ points among all points in the archive that best approximate the
archive,

PPeps(A, μ) := epsSSP′(A,A, μ).

Here, the prime in epsSSP′ hides a minor modification that improves the ex-
perimental results, namely that we choose a population P among all μ-subsets
of A that include the leftmost point of A and the bottommost point of A, i.e.,
the single-objective optima. Intuitively, this is necessary since these extrema are
needed to cover the boundaries of the Pareto front. We remark that one can
compute epsSSP′(A,A, μ) with a minor modification of [6].

Again, typically Ieps(PPeps(A, μ),F) should be smaller than Ieps(P,F), so
that our postprocessing improves the quality, and we will examine this claim ex-
perimentally. A noteworthydifference to the hypervolume case is that our postpro-
cessing for Ieps does not come with the guarantee that quality cannot deteriorate,
in fact, we will see in Section 5 that worsenings can happen but are rare.

Complexity. For a population size of μ and n fitness evaluations, NSGA-II,
SPEA2, and IBEA have a running time of O(nμ logμ), while SMS-EMOA has
a running time of O(nμ2). Our postprocessing takes time O(n (μ + logn)) for
Ihyp and O(n log n) for Ieps [6], which is comparable to the runtime of typical
EMOAs. In our experiments, the postprocessing tends to be even faster, since
we only have to store the non-dominated points of the archive, which are much
less than n.

4 Experimental Setup

Implementation and Hardware. All presented algorithms have been imple-
mented in Java using the jMetal framework [10] and run on a compute cluster
with 128 nodes, each having two Intel Xeon E5620 @ 2.40GHz. The code is
available at http://docs.theinf.uni-jena.de/code/ssp.zip.

Benchmark Problems and EMOAs. We compared the improvement gained
by the postprocessing for the well established EMOAs NSGA-II [8], SPEA2 [26],
SMS-EMOA [12], and IBEA [23]. As test functions we used DTLZ1, DTLZ2,
DTLZ7 from DTLZ [9] with 7 variables, ZDT1–3 from ZDT [25] with 30 vari-
ables, and WFG3–6 from the [18] with 4 variables. We chose these benchmarks,
because explicit expressions for their Pareto fronts are readily available. For
measuring the hypervolume, we choose the reference point r = (11, 11).

http://docs.theinf.uni-jena.de/code/ssp.zip


522 K. Bringmann, T. Friedrich, and P. Klitzke

Additionally to the standard test functions, we used a simulation of a wind
turbine placement function [20], which optimizes for the maximum power and
the minimum perimeter of the convex hull formed by the turbine positions with
30 turbines on a discrete area of size 3000× 3000.

All experimental results (medians, quartiles, . . . ) that we will report in the
next section are based on 700 independent runs for the benchmark problems and
100 independent runs for the turbine. As population size we used 100 for the
benchmark problems and 10 for the turbine.

Quality Evaluation. We want to compare the quality Ihyp(P, r) of a pop-
ulation P with the optimal hypervolume OPThyp := hypSSP(F , μ) of any μ
points on the Pareto front. For measuring the proximity to the front, we measure
IΔ
hyp(P, r) := OPThyp −Ihyp(P, r) in our experiments. However, as F is infinite

it seems impossible to compute OPThyp. Instead of F we therefore consider a set
F ′ ⊆ F of m points placed equidistantly along the front, which we can compute
because we know an explicit expression for F for the chosen benchmark prob-
lems. Now we simply replace F by F ′ in the definition of OPThyp to obtain an
approximation. In case of Ieps, for the same reasons we cannot directly compute
OPTeps := epsSSP(F ,F , μ). Moreover, we have the additional difficulty that
we cannot evaluate the quality Ieps(P,F) of a population P . Again, we replace
F by its finite approximation F ′ and obtain approximations for the optimum
and the quality of a population. We use IΔ

eps(P,F) := OPTeps − Ieps(P,F) as
quality measure.

In our experiments we choose m = 106, which makes the error smaller than
any of our reported values, and we ignore this error from now on. Note that
it is infeasible to make m much larger, since the runtime for computing the
approximation of, e.g., OPThyp is O(m (μ+ logm)).

Statistics. Additionally to calculating the (median) quality with and without
postprocessing, we also perform a non-parametric test on the significance of the
observed behavior. For this, we use the Wilcoxon-Mann-Whitney two-sample
rank-sum test at the 95% confidence level.

5 Experimental Results

Test functions. The results of our experimental study on standard test func-
tions are presented in Figure 1. The tables show the median of the indicators
IΔ
hyp and IΔ

eps after 100 000 fitness evaluations. Our postprocessing improves (or
does not worsen) the hypervolume and ε-indicator for all functions and algo-
rithms. In all but six (out of 80 combinations) the improvement is statistically
significant at the 95% confidence level. In fact, the median hypervolume is always
increased and the distance to the optimal hypervolume IΔ

hyp therefore decreased.

In 37 out of 40 cases the median IΔ
hyp decreases by more than 0.01%. The median

reduction of IΔ
hyp for all 40 combinations of algorithms and functions is −85.6%

(mean −60.5%). On the other hand, the median IΔ
eps could be decreased by more

than 0.01% in 36 out of 40 cases. The median reduction of IΔ
eps is −95.2% (mean

−73.4%).
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Function NSGA-II IBEA SPEA2 SMS-EMOA

DTLZ1 4.7 · 10−4 −→ 7.1 · 10−5 (−85.0%) 8.1 · 10−2 −→ 3.1 · 10−4 (−99.6%) 2.0 · 10−1 −→ 5.4 · 10−5 (−99.9%) 3.1 · 10−5 −→ 2.8 · 10−5 (−10.1%)

DTLZ2 1.9 · 10−3 −→ 1.3 · 10−5 (−99.3%) 1.3 · 10−2 −→ 1.1 · 10−5 (−99.9%) 1.7 · 10−1 −→ 1.2 · 10−5 (−99.9%) 1.9 · 10−5 −→ 1.1 · 10−5 (−41.3%)

DTLZ7 2.1 · 10 −→ 2.1 · 10 (±0%) 3.4 · 10 −→ 3.4 · 10 (−0.04%) 2.2 · 10 −→ 2.1 · 10 (−0.6%) 2.1 · 10 −→ 2.1 · 10 (±0%)

ZDT1 1.9 · 10−3 −→ 1.8 · 10−5 (−99.1%) 5.4 · 10−2 −→ 8.2 · 10−5 (−99.8%) 6.0 · 10−2 −→ 2.3 · 10−5 (−99.9%) 2.7 · 10−5 −→ 1.4 · 10−5 (−46.9%)

ZDT2 1.7 · 10−3 −→ 1.4 · 10−5 (−99.2%) 1.6 · 10−2 −→ 1.1 · 10−5 (−99.9%) 1.8 · 10−1 −→ 2.9 · 10−5 (−99.9%) 3.7 · 10−5 −→ 1.9 · 10−5 (−47.3%)

ZDT3 1.1 · 10−3 −→ 6.1 · 10−6 (−99.4%) 3.5 · 10−2 −→ 3.3 · 10−5 (−99.9%) 5.7 · 10−2 −→ 9.2 · 10−6 (−99.9%) 1.3 · 10−5 −→ 5.1 · 10−6 (−59.3%)

WFG3 2.9 · 10−2 −→ 1.2 · 10−2 (−60.1%) 2.9 · 10−1 −→ 7.7 · 10−3 (−97.4%) 8.1 · 10−1 −→ 1.2 · 10−2 (−98.5%) 7.3 · 10−3 −→ 7.2 · 10−3 (−2.1%)

WFG4 1.8 · 10−2 −→ 1.7 · 10−3 (−90.5%) 9.5 · 10−2 −→ 3.8 · 10−5 (−99.9%) 1.2 −→ 1.2 · 10−2 (−99.0%) 1.2 · 10−2 −→ 1.2 · 10−2 (−0.4%)

WFG5 1.7 −→ 1.6 (−0.8%) 1.7 −→ 1.6 (−2.7%) 2.8 −→ 1.7 (−40.3%) 1.8 −→ 1.8 (±0%)

WFG6 1.9 · 10−1 −→ 1.8 · 10−1 (−7.2%) 4.0 · 10−1 −→ 2.0 · 10−1 (−49.0%) 1.3 −→ 1.9 · 10−1 (−86.2%) 2.3 · 10−1 −→ 2.3 · 10−1 (−0.03%)

(a) Distance to optimal hypervolume: IΔ
hyp(P ) = OPThyp − Ihyp(P ).

Function NSGA-II IBEA SPEA2 SMS-EMOA

DTLZ1 4.1 · 10−3 −→ 2.3 · 10−4 (−94.3%) 2.0 · 10−1 −→ 7.5 · 10−3 (−96.2%) 2.5 · 10−2 −→ 2.2 · 10−4 (−99.1%) 3.5 · 10−4 −→ 1.7 · 10−4 (−50.4%)

DTLZ2 8.2 · 10−3 −→ 1.7 · 10−4 (−97.9%) 4.0 · 10−2 −→ 1.2 · 10−4 (−99.7%) 2.4 · 10−2 −→ 1.4 · 10−4 (−99.4%) 6.7 · 10−4 −→ 1.2 · 10−4 (−82.3%)

DTLZ7 2.3 −→ 2.3 (±0%) 3.6 −→ 3.6 (−0.03%) 2.3 −→ 2.3 (−0.2%) 2.3 −→ 2.3 (±0%)

ZDT1 8.3 · 10−3 −→ 1.7 · 10−4 (−98.0%) 4.0 · 10−2 −→ 1.0 · 10−4 (−99.7%) 2.2 · 10−2 −→ 1.5 · 10−4 (−99.3%) 5.7 · 10−4 −→ 1.2 · 10−4 (−79.7%)

ZDT2 8.1 · 10−3 −→ 1.5 · 10−4 (−98.1%) 4.1 · 10−2 −→ 1.8 · 10−4 (−99.6%) 2.5 · 10−2 −→ 1.5 · 10−4 (−99.4%) 5.5 · 10−4 −→ 1.3 · 10−4 (−76.1%)

ZDT3 6.0 · 10−3 −→ 1.0 · 10−4 (−98.3%) 2.4 · 10−2 −→ 3.8 · 10−4 (−98.4%) 2.5 · 10−2 −→ 1.2 · 10−4 (−99.5%) 1.3 · 10−3 −→ 6.6 · 10−5 (−94.9%)

WFG3 2.5 · 10−2 −→ 1.1 · 10−3 (−95.5%) 1.1 · 10−1 −→ 6.5 · 10−4 (−99.4%) 8.3 · 10−2 −→ 1.1 · 10−3 (−98.7%) 1.9 · 10−3 −→ 6.2 · 10−4 (−66.7%)

WFG4 2.4 · 10−2 −→ 5.2 · 10−4 (−97.8%) 8.7 · 10−2 −→ 2.3 · 10−4 (−99.7%) 1.0 · 10−1 −→ 5.0 · 10−4 (−99.5%) 2.2 · 10−3 −→ 1.7 · 10−4 (−92.4%)

WFG5 1.2 · 10−1 −→ 1.2 · 10−1 (±0%) 1.3 · 10−1 −→ 1.2 · 10−1 (−10.3%) 2.1 · 10−1 −→ 1.2 · 10−1 (−41.0%) 1.4 · 10−1 −→ 1.4 · 10−1 (±0%)

WFG6 3.3 · 10−2 −→ 8.7 · 10−3 (−73.8%) 1.2 · 10−1 −→ 9.8 · 10−3 (−91.9%) 1.1 · 10−1 −→ 8.7 · 10−3 (−92.3%) 1.2 · 10−2 −→ 1.0 · 10−2 (−16.2%)

(b) Distance to optimal ε-Indicator: IΔ
eps(P ) = OPTeps − Ieps(P,F).

Fig. 1. Medians after 100 000 evaluations. We show the value of the respective indicator
before and after the postprocessing. We also give the factor by which the indicator got
smaller (=better). Improvements of less than 0.01% are treated as equal and marked
±0%. For each test function we marked the best indicator values before and after
postprocessing in blue.

Figure 2 gives a more detailed view on how the indicators IΔ
hyp and Ieps de-

crease over time for some exemplary combinations of MOEAs and test functions.
Shown are box-and-whisker plots that specify the median, quartiles, and whiskers
from minimum to maximum. Figures 2a and 2b show the typical behaviour of
our postprocessing for NSGA-II. It is interesting to compare Figure 2b with Fig-
ure 3a, which shows the size of the population and of the archive over time. This
shows that our postprocessing starts to “kick in” at the time we are starting to
throw away points, where the archive size diverges from the population size.

Figure 2c shows the visually largest improvement that our Ihyp-postprocessing
was able to achieve for any benchmark problem and MOEA. Note that SPEA2
without postprocessing converges to a suboptimal hypervolume, but our Ihyp-
postprocessing is able to correct this. Figure 2d shows a similar profitable situ-
ation for Ieps-postprocessing.

Since SMS-EMOA is hypervolume driven, one expects that Ihyp-
postprocessing is less effective for this algorithm compared to other EMOAs.
Indeed, Figure 1 confirms this expectation, specifically, the median improve-
ment of IΔ

hyp for SMS-EMOA is only −6.1% (mean −20.8%). However, Figure 2e
shows that even the hypervolume driven SMS-EMOA can benefit a lot from our
Ihyp-postprocessing in some situations.
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Fig. 2. Quality measures as a function of time (evaluations) before (in red) and after (in
green) postprocessing for some exemplary combinations of MOEAs and test functions.
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(a) Population size (in red) and archive
size (in green) as a function of time (eval-
uations) for NSGA-II on WFG3.
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(b) Runtime (in milliseconds) of NSGA-II
(in red) on WFG3 compared to runtime of
postprocessing for Ihyp (in blue) and Ieps

(in green).

Fig. 3. Population size and runtime of NSGA-II on WFG3
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In contrast to the Ihyp-postprocessing, the Ieps-postprocessing can (at least
theoretically) make Ieps worse. However, Figure 2f shows the only case where
we observed that the Ieps-postprocessing visually worsens the algorithm at some
time, namely in a thin region from 2500 to 5000 fitness evaluations. After that
point, the Ieps-postprocessing gives again a huge improvement.

Figure 3b shows the total runtime up to n fitness evaluations of NSGA-II, the
runtime of the other algorithms is similar (with SMS-EMOA being somewhat
slower). Moreover, the runtime of the postprocessing when started after n fit-
ness evaluations is plotted. This shows that the runtime of both postprocessing
algorithms is negligible compared to the runtime of the MOEA.

101 102 103 104 105

0

0.2

0.4

0.6

0.8

Fig. 4. Experimental results for turbine:
Ihyp (not IΔ

hyp!) over time (evaluations)
for SMS-EMOA before (in red) and after
(in green) postprocessing

Additionally, we examined whether
a hypervolume-based algorithm (like
SMS-EMOA) achieves more hypervol-
ume than a non-hypervolume-based al-
gorithms (like NSGA-II, SPEA2) with
Ihyp-postprocessing. To this end, we
compared SMS-EMOA without post-
processing to the other three algorithms
with postprocessing. The Wilcoxon-
Mann-Whitney U-test at 95% confi-
dence level showed that NSGA-II with
Ihyp-postprocessing outperforms SMS-
EMOA without postprocessing on 7 out
of 10 test functions. The same holds for SPEA2, but not for IBEA. This shows
that our Ihyp-postprocessing makes algorithms that do not aim at maximizing
Ihyp very competitive, even compared to algorithms that directly optimize Ihyp.
As one might expect, we no longer observe this behavior if SMS-EMOA is also
allowed postprocessing: SMS-EMOA with Ihyp-postprocessing achieves higher
hypervolumes than all other algorithms with Ihyp-postprocessing (on more than
half of the test functions).

Figure 4 shows an exemplary result for the turbine problem for SMS-EMOA.
Note that we cannot plot IΔ

hyp as OPThyp is not known. We observe a signif-
icant improvement also for this real-world problem. Specifically, after 300 000
evaluations our Ihyp-postprocessing increased Ihyp by 14%.

6 Conclusion

We studied two generic postprocessing methods which have the potential to
improve the final output of any EMOA on any biobjective optimization prob-
lem. These methods choose the optimal subset of μ solutions from the archive
of all solutions seen during the run of an EMOA such that the hypervolume
or ε-indicator is optimized. This requires no additional fitness evaluations and
therefore zero additional ‘optimization time’. Moreover, the computation time of
our postprocessing methods is negligible compared to the computation time of
typical EMOAs. We experimentally evaluated the quality of our postprocessing
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on four standard EMOAs and ten standard test functions and one real-world
problem. This showed that our postprocessing typically returns a set of solu-
tions which is about 90% closer to the optimum than the regular outcome of the
EMOAs.
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