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Abstract

Greedy routing computes paths between nodes in a network

by successively moving to the neighbor closest to the target

with respect to coordinates given by an embedding into some

metric space. Its advantage is that only local information is

used for routing decisions. We present different algorithms

for generating graph embeddings into the hyperbolic plane

that are well suited for greedy routing. In particular our

embeddings guarantee that greedy routing always succeeds

in reaching the target and we try to minimize the lengths of

the resulting greedy paths. We evaluate our algorithm on

multiple generated and real wold networks. For networks

that are generally assumed to have a hidden underlying

hyperbolic geometry, such as the Internet graph [2], we

achieve near-optimal results, i.e., the resulting greedy paths

are only slightly longer than the corresponding shortest

paths. In the case of the Internet graph, they are only

6% longer when using our best algorithm, which greatly

improves upon the previous best known embedding, whose

creation required substantial manual intervention.

1 Introduction.

The Internet is the largest computer network in the
world. At its core, it relies on one simple process:
forwarding information from one participant of the
network to another. This is done by storing a part of the
network topology in each node, for example in the form
of forwarding tables. On its way to the destination, data
is then passed from node to node using this information.
With increasing network size this method becomes
infeasible due to the vast amounts of information each
node needs to successfully route messages. In their
seminal paper, Boguná, Papadopoulos, and Krioukov [2]
propose to use greedy routing in the hyperbolic plane to
solve this issue: They embedded the Internet into the
hyperbolic plane by assigning a hyperbolic coordinate
to every autonomous system. A message is then routed
by always sending it to the neighbor of the current node
closest to the destination (with respect to the hyperbolic
distance). They achieve a success ratio of 97% (i.e.,
for 97% of all vertex pairs, greedy routing finds a path
without getting stuck in a dead end) and a stretch of

∗Hasso Plattner Institute, Potsdam, Germany
. firstname.lastname@hpi.de

10% (i.e., the resulting paths are on average 10% longer
than the shortest paths).

As the method used by Boguná et al [2] to cre-
ate their hyperbolic embedding “require[d] substantial
manual intervention and do[es] not scale to large net-
works” [9], there have been multiple attempts to recre-
ate comparable results purely algorithmically [11, 10, 1].
These approaches are based on the assumption that the
input graph has a hidden underlying hyperbolic geom-
etry that has to be rediscovered. Though these algo-
rithms achieve this task fairly well, the success ratio
for greedy routing on the Internet graph does not come
close to the 97% of Boguná et al [2]. In fact, recent
experiments indicate that even a perfect recovery of the
“lost” hyperbolic coordinates would only lead to success
ratios of 80% [1].

Instead of trying to rediscover hidden information,
we propose to use algorithms tailored towards greedy
routing. As shown by Kleinberg [8], every graph has an
embedding in the hyperbolic plane with 100% success
ratio (but potentially high stretch). The idea of Klein-
berg’s algorithm is to embed a spanning tree such that
greedy routing on this tree is always successful. This
property then extends to the whole graph. Kleinberg’s
approach has been extended in two ways. Eppstein and
Goodrich [5] address the issues of coordinates becoming
too large. Cvetkovski and Crovella [4] show how to com-
pute greedy embeddings that allow for changes in a dy-
namic network without having to recompute the whole
embedding. Though Kleinberg [8] as well as Cvetkovski
and Crovella [4] ran experiments on small test instances,
the algorithms have neither been evaluated with the fo-
cus on achieving a good stretch nor have they been ap-
plied to large networks like the Internet graph.

In this paper, we identify the main degrees of free-
dom in Kleinberg’s embedding method (actually we use
a slight variation that is more space efficient), provide
strategies of how to fill them to achieve a good stretch,
and evaluate the different methods on generated graphs
and on real-world networks from different areas, such as
biological networks, social networks, and infrastructural
networks. For the above-mentioned Internet graph, our
algorithm generates hyperbolic coordinates that enable
greedy routing with 100% success ratio and 6% stretch.
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Figure 1: (a) An ideal triangle (black) and an ideal 5-gon (gray) centered at the origin of the Poincaré Disk. All
sides have equal distance to the origin. (b) The first five levels of an {∞, 3}-tiling of the hyperbolic plane (gray)
and its dual (black).

Outline. Section 2 provides a brief overview of the
hyperbolic plane and the tools that are necessary to cre-
ate greedy embeddings. Afterwards, Section 3 explains
how these tools are applied to obtain greedy embed-
dings algorithmically, while Section 4 discusses how the
degrees of freedom of this algorithmic approach can be
filled in order to improve the quality of the embedding.
Thereafter, an experimental evaluation of our algorithm
is given in Section 5, followed by a discussion on poten-
tial numerical difficulties in Section 6.

2 Preliminaries.

The Poincaré disk is a model that represents the
hyperbolic plane by mapping it to the interior of a
Euclidean unit disk. As all illustrations in this paper
use the Poincaré disk, we introduce its basic properties
in the following.

The center of the Poincaré disk represents an arbi-
trarily chosen origin of the hyperbolic plane. The circle
bounding it is called boundary circle. The closer a point
lies to the boundary circle, the larger is its distance
from the origin. The points on the boundary circle (not
actually belonging to the hyperbolic plane) can be in-
terpreted as having infinite distance to the origin. They
are called ideal points. Straight lines in the hyperbolic
plane map to circular arcs perpendicular to the bound-
ary circle. Thus, each straight line connects two ideal
points.

Let ι0, . . . , ιk−1 be k ideal points appearing in this

cyclic order around the boundary circle. The ideal k-
gon for these points consists of k lines, each connecting
two consecutive ideal points ιi and ιi+1 (mod k). These
lines are the sides of the ideal k-gon. Figure 1a shows
an ideal triangle. The ideal k-gons we consider are
typically regular, which means that they have a center
that has equal distance to all sides of the k-gon. This
is equivalent to requiring the ideal points to be evenly
distributed on the boundary circle of the Poincaré disk
when using the center of the k-gon as origin.

Note that the sides of an ideal k-gon are parallel
lines as they do not actually intersect (the ideal points
are not part of the hyperbolic plane). Thus, the ideal
triangle in Figure 1a separates the hyperbolic plane
into an interior part (which has actually constant area
π) and three non-intersecting half-planes (note that it
is impossible to have three non-intersecting half-planes
in the Euclidean plane). For each of the three half-
planes, we can use its boundary line as one side of
another ideal triangle that separates the half-plane into
another interior and two more non-intersecting half
planes. Applying this step recursively to all newly
appearing half planes leads to a so-called {∞, 3}-tiling,
which divides the hyperbolic plane uniformly into ideal
triangles. Every triangle shares each of its sides with
another triangle and every corner is part of infinitely
many ideal triangles. To get a symmetric tiling, the
ideal triangles are chosen in such a way that the line
separating two triangles is the perpendicular bisector of
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their centers. Figure 1b shows a {∞, 3}-tiling in the
Poincaré Disk. Connecting the centers of every pair of
adjacent ideal triangles yields the dual of the {∞, 3}-
tiling: an embedding of the infinite complete binary
tree in which each edge has the same length. These
statements directly extend to k-gons and {∞, k}-tilings
of higher order than 3.

Though the Poincaré disk is well suited to get an
intuition, our computations are typically done in the
native representation. In the native representation, we
use an arbitrarily chosen origin together with a ray
starting in the origin as reference. Then every point
p is identified by its radial coordinates (r, ϕ), where r is
the distance between p and the origin and ϕ is the angle
between the reference ray and the ray from the origin
through p.

3 Greedy Embedding.

Let G = (V,E) be a graph together with an embedding
E into a metric space (i.e., E is a function that maps
V into the metric space). Given a source s ∈ V and
a target t ∈ V , greedy routing aims to find a path
from s to t with only local knowledge. Starting at s,
in each step the next vertex on the path is chosen to
be the neighbor of the current vertex that is closest to
t, where the embedding into the metric space is used
to determine the distance between two vertices. Greedy
routing is successful if the target t is reached without
getting stuck in a dead end. A necessary and sufficient
requirement for successful greedy routing is that every
vertex v has a neighbor that is closer to t than v itself
(with respect to the metric). Thus, greedy routing fails
at vertex v if v has no neighbor that is closer to the
target than v. We say that the embedding E is suitable
for greedy routing, if greedy routing (with respect to E)
is successful for every pair of vertices. Assume we have
a spanning tree T of G together with an embedding that
is suitable for greedy routing in T . Then this property
extends to the whole graph, i.e., the embedding is also
suitable for greedy routing in G [8, Observation II.1].
In the remainder of this section, we thus only consider
greedy embeddings of trees.

3.1 Characterizing all Greedy Embeddings of
a Tree. In the following theorem we characterize what
makes an embedding of a tree into a (hyperbolic or
Euclidean) space suitable for greedy routing. It is
a generalization of Kleinberg’s proof of correctness
[8, Section II-C] and extends the sufficient condition
presented by Cvetkovski and Crovella [4, Lemma 2] to a
complete characterization. Given a tree T = (V,E), we
use Tu and Tv to denote the two connected components
in T−{u, v}, obtained by removing the edge {u, v} from

T , where Tu contains u and Tv contains v.

Theorem 3.1. Let E be an embedding of a tree T =
(V,E) into an Euclidean or hyperbolic space. Then E is
suitable for greedy routing if and only if for every edge
{u, v} ∈ E, the perpendicular bisector of uv separates
Tu from Tv.

Proof. To prove that E is suitable for greedy routing, we
need to show the necessary and sufficient requirement
that, given a target vertex t ∈ V , at every vertex
s ∈ V there is a vertex v ∈ V that is closer to t
than s. Therefore, let s 6= t be any two vertices in
V . Furthermore, let πst = s, v, . . . , t be the unique path
from s to t in T . It suffices to show that d(v, t) <
d(s, t). We know that the perpendicular bisector g of
the geodesic sv separates T into the two components Ts
and Tv of T −{s, v}, such that s is on one side of g, and
v and t are on the other. Using the triangle inequality
we can conclude that all points that are on v’s side of g
are closer to v than to s. It follows that d(v, t) < d(s, t).

Conversely, let {s, v} ∈ E be the edge whose
perpendicular bisector g does not separate T into the
two connected components Ts and Tv. Assume without
loss of generality that there exists a node t ∈ Tv that is
on the same side of g as s. Then t is closer to s than v,
and thus d(s, t) < d(v, t) holds. When navigating from
s to t, the distance to the target is increased by going
to v. Therefore, greedy routing will fail at s.

3.2 Adaptive Tree Embedding Recall from Sec-
tion 2 that a line separating two adjacent ideal k-gons
in a regular {∞, k}-tiling is the perpendicular bisector
of the line segment connecting the centers of these k-
gons. Thus, the corresponding embedding of the infi-
nite k-regular tree (obtained by taking the dual of the
regular {∞, k}-tiling) satisfies Theorem 3.1 and is thus
suited for greedy routing. This observation forms the
basis of Kleinberg’s embedding algorithm, which works
as follows: The spanning tree T is mapped into the in-
finite k-regular tree, where k is the maximum degree
of T . The dual of the uniform {∞, k}-tiling then gives
an embedding of the infinite k-regular tree, inducing an
embedding of T , which is greedy due to the above ob-
servation.

Note that a large maximum degree k has two effects
on the coordinates in this embedding procedure. In
each layer of the tiling, the currently available angle
is separated into k − 1 sectors. Thus, for larger k,
the differences between angular coordinates of distinct
vertices decrease quickly, making it necessary to use
coordinates with high precision. Similarly, the distance
between the center and the sides of a regular k-gon
increases with growing k, which leads to large radial
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Figure 2: (a) An ideal 13-gon Pu and an ideal triangle Pv are sharing the side h. Their perpendicular bisector
g does not seperate the tree into two connected components. (b) The distance between Pu and Pv is increased
such that the perpendicular bisector g lies on the side h of the larger polygon Pu.

coordinates. Thus, setting k to the maximum degree
of T seems to be a waste of space, in particular if
most vertices of T have much smaller degree. In order
to decrease the size of the coordinates we propose the
adaptive embedding, a variation of Kleinberg’s method
that adapts the size of the ideal polygons to the actual
vertex degrees.

To explain the adaptive embedding, consider the
tree T = (V,E) with two adjacent vertices u, v ∈ V .
The vertex u is placed at the center of an ideal deg(u)-
gon Pu while v is placed at the center of an ideal deg(v)-
gon Pv and (for now) assume that both polygons share
a side. This situation is depicted in Figure 2a, where h
is the side shared by Pu and Pv. Observe that there is
an important difference compared to a regular {∞, k}-
tiling: as the distance between the center and the sides
of an ideal k-gon increases with growing k, the line
h is not the perpendicular bisector of the edge {u, v}.
Figure 2a also shows the actual perpendicular bisector
g. Thus, if the difference between deg(u) and deg(v) is
large enough, the perpendicular bisector of {u, v} does
not separate T into Tu and Tv (again, see Figure 2a).
Thus, the embedding does not satisfy Theorem 3.1 and
is not suitable for greedy routing. However, this issue
can be easily fixed by introducing a gap between Pu

and Pv such that the side of the larger polygon actually
is the perpendicular bisector; in Figure 2b, the gap
ensures that the side h of the polygon Pu equals the
perpendicular bisector g of {u, v}.

To actually implement the adaptive embedding, we
need to know how large the gap between two ideal

polygons of different size has to be chosen. Thus, we
need to know the distance `(k) between the center and
the sides of an ideal k-gon, which we determine in the
following lemma. We note that for k →∞ the distance
`(k) behaves like log(k).

Lemma 3.1. The distance `(k) between the center and
the sides of an ideal k-gon is given by

`(k) = 2 · arctanh (sec(π/k)− tan(π/k)).

Proof. By taking advantage of the representation of the
Poincaré disk as the unit circle in the Euclidean plane,
we can determine the desired distance using the Eu-
clidean geometry and convert it into the hyperbolic ge-
ometry afterwards. Let ι0, . . . , ιk−1 be the ideal points
of an ideal k-gon that, without loss of generality, is cen-
tered at the origin of the disk. Recall from Section 2
that the ideal points are therefore evenly distributed
on the boundary circle, meaning the angle between the
rays from the origin O through two consecutive points is
2π/k. Additionally, it suffices to consider the geodesic
of any two consecutive ideal points ιi and ιi+1 (mod
k). Again, without loss of generality we can assume
that ιi is placed at (1, 0) and that ιi+1 is its counter-
clockwise successor; see Figure 3. Since the geodesic
connecting ιi and ιi+1 (mod k) is a circular arc that
meets the boundary perpendicularly, it remains to de-
termine the distance between the circular arc and the
origin O of the disk. Now the center C of the corre-
sponding circle lies on the angle bisector of the rays
through ιi and ιi+1 (mod k) and thus its distance to
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Figure 3: Determining the distance between a side of an
ideal k-gon and its center. An excerpt of the Poincaré
disk is shown.

the origin is given by sec(π/k); see Figure 3. Addition-
ally, the radius r of the circle is tan(π/k). The distance
between the origin O and the geodesic is thus given by
sec(π/k)− tan(π/k). Finally, we convert this Euclidean
distance in the Poincaré disk to the hyperbolic distance
and obtain the above equation.

Now we describe the adaptive embedding algorithm.
Given a tree T = (V,E), we choose an arbitrary root
r and place it at the origin, in the center of an ideal
deg(r)-gon Pr. Afterwards we proceed with each child
independently. When processing a vertex v, we know
the coordinates of its parent u and we know a side h of
the deg(u)-gon Pu with center u that should separate
u from v; see Figure 2b. Then we place v onto the
line perpendicular to h such that v has distance `u,v =
2 max{`(deg(u)), `(deg(v))} from u and lies on the other
side of h than u. Recall that `(k) denotes the distance
between the center and the sides of an ideal k-gon; see
Lemma 3.1. Now that we know the coordinates of v, we
add the ideal deg(v)-gon Pv with center v. Afterwards
we recursively proceed with the children of v.

Note that the choice of the distance `u,v makes sure
that the two ideal polygons Pu and Pv do not intersect
and that in fact the perpendicular bisector of {u, v} is
a side of Pu or of Pv (depending on whether deg(u) or
deg(v) is larger). Thus, the resulting embedding of the
tree satisfies Theorem 3.1 and we obtain the following
theorem.

Theorem 3.2. The adaptive embedding of a tree is
suitable for greedy routing.

4 Degrees of Freedom.

Our adaptive embedding leaves two degrees of freedom:
the choice of the spanning tree that is embedded, and
the ordering of the children around each node. In
the following we discuss these degrees of freedom more

closely and propose different strategies of how to fill
them.

4.1 Choice of the Spanning Tree. The first degree
of freedom is the choice of the spanning tree that is
embedded. When choosing a spanning tree as the basis
for the embedding, we aim for two desirable properties.
First, the stretch of the resulting embedding should be
as low as possible, and second the height of the spanning
tree should be small in order to prevent numerical
problems. The first type of trees we consider are
trees obtained from a breadth first search starting at
a random node in the graph. The resulting BFS-trees
have a small height (achieving our second goal). They
are, however, not optimized for achieving a good stretch.
In the following we thus propose a different choice for
the tree focusing on the stretch.

Since the stretch is the ratio between the length of
the shortest paths and the routes obtained when routing
the network greedily, using a spanning tree that contains
edges that are part of many shortest paths should result
in a good stretch. Therefore, we aim to find a tree
that maximizes the edge betweenness centrality, which
measures how many shortest paths go through an edge.
Given a graph G = (V,E) the betweenness centrality of
an edge e ∈ E is defined as

bc(e) =
∑
v∈V

∑
w∈V

σvw(e)

σvw
,

where σvw is the number of shortest paths between v
and w and σvw(e) is the number of shortest paths be-
tween the two vertices that also contains edge e. Good
approximations for the betweenness centralities of the
edges in a graph can be obtained quickly using the al-
gorithm KADABRA [3]. We then use the betweenness
centrality values as edge weights and compute a max-
imum spanning tree. That way, edges that are crucial
for information flow in the network are more likely to
be part of the tree than other edges.

4.2 Ordering Children. When embedding a tree
the order of the children of a node defines the relative
positions between their subtrees. Consequently, the
node order influences the geometric length of non-tree
edges in the embedded graph. Intuitively, having short
edges (and long non-edges) leads to geometric distances
more similar to the graph-theoretic distances, which
decreases the chances of a detour on the greedy path.
Thus, we want adjacent vertices to be close and non-
adjacent vertices to be farther apart.

The first strategy we propose to achieve this is to
reorder the subtrees at each vertex in the spanning
tree, such that subtrees that are connected by more
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edges are placed closer to each other. This problem
can be modelled using a weighted conflict graph, in
which each node represents a subtree and weighted
edges represent how many edges (of the original graph)
connect the corresponding subtrees. For this conflict
graph, we then have to solve the problem Optimal
Cyclic Arrangement (OCA). Formally, the input of
OCA is a weighted, undirected graph G = (V,E) with
weight-function w : E → N. Given a cyclic ordering
(i.e., a bijection that maps the vertices V to a cycle of
length n), the cost of an edge {u, v} ∈ E is the distance
between u and v in the cyclic ordering multiplied with
its weight w({u, v}). The cost of the ordering is the sum
of all edge costs. The goal of OCA is to find a cyclic
ordering with minimum cost. Unfortunately, OCA is
NP-hard, as the NP-hard problem Optimum Linear
Arrangement [7] can be easily reduced to it. In our
experiments, we therefore use a heuristic that iteratively
improves the order greedily.

In our second strategy, to obtain short edges and
distant non-edges, we make use of the fact that em-
beddings into the hyperbolic plane with these proper-
ties have been studied before, typically under the name
maximum likelihood embedding (MLE) [11, 10, 1]. As
already mentioned in the introduction, maximum like-
lihood embeddings do typically not lead to successful
greedy routing. However, such an embedding deter-
mines for each vertex a cyclic order of all its neighbors,
which we can copy to order the children of vertices in the
tree. The intuition behind this is that these orderings
led to short edges in the maximum likelihood embedding
and thus probably also lead to short non-tree edges in
our embedding. In our experiments, we use the current
state-of-the-art maximum likelihood embedder [1].

5 Experimental Evaluation.

With our experimental evaluation, we want to answer
the following main questions, where the last question
refers to the fact that our implementation1 prevents
numerical difficulties by utilizing the multiple-precision
library MPFR [6].

• How do different spanning trees and different child
orders impact the stretch?

• How well does greedy routing perform on certain
real-world networks, e.g., the Internet?

• Can we obtain good greedy embeddings using
double coordinates (which represent less informa-

1The implementation was done in C++ and our

code is available at https://hpi.de/friedrich/research/

hyperbolicgreedyroutings

tion stored in each vertex compared to multiple-
precision coordinates)?

Experimental Setup. To evaluate the impact
of the different degrees of freedom on the stretch,
we implemented the adaptive embedding described in
Section 3 as well as the different strategies of filling the
degrees of freedom discussed in Section 4. Recall that
these choices are as follows. For the spanning tree, we
either choose a BFS-tree or a tree that maximizes the
betweenness centrality, which we abbreviate with BC-
tree. For the node order, we either heuristically solve an
instance of Optimal Cyclic Arrangement (OCA)
for each vertex of the tree to determine an order of its
children or we derive the orders from a single maximum
likelihood embedding (MLE). To have a baseline to
which we can compare these strategies, we also ran
experiments with random spanning trees and a random
child order. As the spanning tree appears to have a high
impact on the stretch, we generated 10 random spanning
trees and used the mean of the resulting stretch values.
Note that the strategies for choosing a spanning tree and
node orders can be combined arbitrarily. Thus, with the
three choices for the spanning tree (BFS, BC, Rand.),
and the three choices for the node orders (OCA, MLE,
Rand.), we obtain nine combinations in total.

The instances we consider are a combination of real-
world networks of different types and generated hyper-
bolic random graphs [9]. More precisely, we chose 22
real-world networks from The Network Repository [12]
coming from different domains such as social networks,
biological networks, or infrastructural networks. We
also included networks with a naturally underlying Eu-
clidean geometry (such as road networks) for which we
expected greedy routing to perform poorly. In addition
to that, we used the Internet graph that was consid-
ered for greedy routing before [2]. Moreover, we ran
our experiments on nine generated hyperbolic random
graphs with varying power-law exponents (2.1, 2.5, and
2.9) and temperatures (0.1, 0.5, and 0.9). For all these
graphs, we only embedded the largest connected com-
ponent.

After embedding these networks, we computed the
stretch values by sampling 10 000 vertex pairs uni-
formly at random and compared the shortest path be-
tween them to the route obtained by greedily navigating
through the network. Moreover, we considered the em-
beddings obtained by rounding all coordinates to dou-
ble values (we note that the computation still uses the
multiple-precision library). For the resulting embed-
dings, we evaluated the stretch as well as the success
rate (which is sometimes below 100% due to the round-
ing to double values).
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Figure 4: (a) Using different kinds of spanning trees as the basis of an embedding has an impact on the
stretch. Varying the node order influences the stretch only marginally. (b) In the embeddings rounded to
double coordinates, the success rate potentially drops below 100%. In contrast to the stretch values, the success
rate heavily depends on the child orders (with OCA being the best strategy).

Evaluation. Concerning the first question (how
filling the different degrees of freedom impacts the
stretch), Figure 4a shows for different combinations of
strategies the resulting stretch values (using high preci-
sion coordinates). The x-axis shows the different kinds
of spanning trees with the node orders in parentheses
and the y-axis denotes the stretch. Boxes show the me-
dian value at the center and extend to the 25th and 75th
percentile, while the whiskers denote the 10th and 90th
percentile.

One can clearly see that the choice of the spanning
tree has a significant impact while the child order
appears to be irrelevant. On average using random
spanning trees results in a stretch of about 37.7%. Using
a BFS-tree improves this value to about 20.9%. This
can be reduced even further by using spanning trees
that maximize the betweenness centrality, resulting in
an average stretch of 13.7%.

In Table 1, we list for each graph the technique
that led to the best stretch values together with these
stretch values. On the one hand, this shows that for
93.75% of the graphs, using the BC-tree leads to the
best stretch. Although the child order does not make
a huge difference, using the combination of BC-tree
together with OCA-order was the most successful. On
the other hand, the table shows for which networks
greedy routing is well suited. Besides the Internet graph
with a stretch of 7% it is worth noting that there are
other networks with very low stretch values. With
1.4%, the smallest value is obtained for the biological
network bn-fly-drosophila-medulla-1. We note that very
low stretch values are not surprising for graphs that

are almost trees. However, bn-fly-drosophila-medulla-1
with an average degree of above 10 is far away from
being a tree. On the other hand, there are graphs with
small average degree that lead to a high stretch, e.g.,
inf-euroroad has an average degree of 2.5 and a stretch
value of 20.7%. Note that this indicates that the metric
of inf-euroroad is (non-surprisingly for a road network)
rather different from the metric of the hyperbolic plane.

To obtain embeddings with small coordinates, we
rounded each coordinate (computed with the multiple-
precision library) to double values. With the resulting
embeddings, greedy routing may lead to different paths,
resulting in different stretch values. In fact, some of
the resulting embeddings do not yield a success ratio
of 100%. Table 1 thus includes for each graph the
technique leading to the best success ratio, using the
stretch values as tiebreakers. One can see that for most
graphs, at least one of our embeddings resulted in 100%
success rate (for all others the success rates are still
very high). Moreover, the stretch values do not change
much. For some graphs, they actually go down, e.g., for
the internet graph, we obtain an embedding with double
coordinates with 6.2% stretch (and 100% success rate).

To see whether some of our strategies are more sus-
ceptible to numerical difficulties than others, we plotted
the success rates for the embeddings with double coor-
dinates depending on the used strategy in Figure 4b.
One can see that in this situation the different node
orders actually matter, which was not the case for the
stretch values; see Figure 4a. Especially the OCA order-
ing appears to be more robust than the other ordering
strategies.
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Table 1: Stretch values and success rates for all graphs. For embeddings using the multiple-precision library
MPFR, the technique leading to the best stretch value together with the stretch value itself is shown. The success
rates for these embeddings are 100%. For the embeddings rounded to double coordinates, the table shows the
technique resulting in the best success rate, using the stretch values as tiebreakers, together with the corresponding
success rates and stretch values. All values refer to the largest connected component in the graph.

Network Name Nodes Avg.
Deg.

Stretch
(MPFR)

Technique
(MPFR)

Success
(dou-
ble)

Stretch
(dou-
ble)

Technique
(dou-
ble)

bio-celegans 453 8.9 4.4% BC OCA 1.0000 4.7% BC OCA

bio-celegans-dir 453 9.0 4.3% BC OCA 1.0000 4.5% BC OCA

bn-fly-drosophila-

medulla-1
1770 10.1 1.4% BC OCA 1.0000 1.5% BC OCA

bn-mouse-retina-1 1076 168.8 14.7% BC MLE 1.0000 16.6% BFS MLE

chem-ENZYMES-

g123
90 2.8 42.7% BC MLE 1.0000 40.5% BC MLE

chem-ENZYMES-

g118
95 2.5 18.9% BC OCA 1.0000 18.9% BC Rand

ca-CSphd 1025 2.0 7.4% BC MLE 1.0000 7.9% BC OCA

ca-Erdos992 4991 3.0 26.0% BC Rand 1.0000 25.5% BC OCA

ca-GrQc 4158 6.5 36.5 % BC MLE 0.9974 44.3% BFS OCA

soc-advogato 5054 16.1 15.7 % BC OCA 1.0000 16.3% BC OCA

soc-anybeat 12645 7.8 3.7% BC OCA 1.0000 4.3% BC Rand

soc-gplus 23613 3.3 8.3% BC Rand 0.9574 8.7% BC OCA

soc-hamsterster 2000 16.1 21.6% BC OCA 1.0000 25.5% BFS MLE

soc-wiki-Vote 889 6.6 15.4% BC OCA 1.0000 15.0% BC Rand

ia-email-EU 32430 3.4 13.6% BC OCA 0.9983 13.5% BC OCA

ia-email-univ 1133 9.6 36.5 % BC Rand 1.0000 36.2% BFS OCA

ia-reality 6809 2.3 8.1% BC OCA 1.0000 8.5% BC OCA

inf-euroroad 1039 2.5 20.7% BC OCA 1.0000 22.2% BFS Rand

inf-power 4941 2.7 13.4% BC Rand 0.9893 13.6% BC OCA

infOpenFlights 2905 10.8 11.9% BC OCA 1.0000 11.0% BFS OCA

internet 13204 6.8 7.0% BC OCA 1.0000 6.2% BC OCA

as-caida 26475 4.0 8.0% BC MLE 0.8974 7.9% BC OCA

lp-afiro 51 4.0 27.0% BFS MLE 1.0000 27.1% BFS MLE

HRG(0.1, 2.1) 4932 4.5 1.2% BFS OCA 1.0000 1.9% BC OCA

HRG(0.1, 2.5) 9527 8.0 2.9% BC OCA 1.0000 2.1% BFS OCA

HRG(0.1, 2.9) 9747 8.5 2.5% BC OCA 0.9998 2.6% BC OCA

HRG(0.5, 2.1) 4567 3.9 2.2% BC OCA 1.0000 2.1% BC OCA

HRG(0.5, 2.5) 9712 7.8 3.3% BC OCA 1.0000 3.2% BC OCA

HRG(0.5, 2.9) 9863 6.7 10.0% BC OCA 1.0000 10.2% BC OCA

HRG(0.9, 2.1) 3592 3.0 3.2% BC MLE 1.0000 3.2% BC Rand

HRG(0.9, 2.5) 8254 3.7 9.8% BC Rand 0.9998 10.5% BC OCA

HRG(0.9, 2.9) 8456 3.4 16.7% BC OCA 0.9767 17.0% BC OCA
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Overall, one can conclude that using spanning trees
that maximize the betweenness centrality lead to very
good stretch values. Moreover, combining it with the
OCA heuristic makes it very robust when rounding to
double coordinates.

6 Precision of the Coordinates

Recall from the previous section that we use a multiple-
precision library to compute greedy embeddings. This
is rather unsatisfying for the following reason. The
benefit of using greedy routing instead of other routing
techniques is that each vertex has to know only a small
amount of information (namely the coordinates) to be
able to route successfully. If, however, these coordinates
need to be very precise, then the amount of information
that is stored at each vertex is not that small after all.
For this reason, we evaluated our greedy embeddings
not only with the precise coordinates but also with
coordinates rounded to double values.

Our experiments (see Table 1) showed that we
were actually able to obtain embeddings with double
coordinates, 100% success ratio, and good stretch values
for most networks. Nonetheless, each of our algorithms
had problems with some graphs (see Figure 4b), and
thus it would be good to have guarantees for how
precise the coordinates have to be to ensure successful
greedy routing. To resolve this question, Eppstein
and Goodrich [5] gave an algorithm that generates
succinct greedy embeddings in which vertex positions
are represented with only O(log n) bits per vertex.
Unfortunately, our implementation of their algorithm
failed to produce embeddings with 100% success rate
and we in fact believe that the proof is flawed, as briefly
argued in the following.

The embedding algorithm [5] first embeds a span-
ning tree T into a so-called dyadic tree metric which
is then embedded into the hyperbolic plane. One main
idea behind the dyadic tree metric is to contract certain
paths in the tree T such that the height of the resulting
tree is logarithmic. In the following, we call the result-
ing tree T ′. Then the routing between vertices in T is
done based on their positions in T ′. To make this work,
one needs to use tie-breakers to distinguish vertices of T
that were contracted to the same node in T ′. These tie-
breakers are basically given by an in-order of T (think of
ordering the vertices of T from left to right). Now con-
sider the following situation. Let u, s, and v be vertices
of T that lie on a path π that was contracted to a single
node in T ′. Assume that u < s < v according to the left-
to-right order. When routing from s to another node t
that does not belong to π, then the tiebreakers decide
in which direction to move on π: if t < s, the routing
walks towards u, if s < t, the routing walks towards v.

However, it is not hard to construct an example that
includes vertices u′ and v′ with u′ < u < v < v′ such
that both u′ and v′ are successors of predecessors of all
vertices on π. This means that one reaches u′ and v′

from s by walking upwards on π. However, when rout-
ing from s to u′, the tie-breaker lets us walk towards
u, and when routing from s to v′, the tie-breaker lets
us walk towards v, which cannot both be upwards on
π. Thus, at least one of these two routing queries fails.
Though it might be possible to resolve this issue by us-
ing a different tie-breaking method, we failed to come
up with one that breaks all ties correctly.

7 Conclusion

We presented the first practical evaluation of hyperbolic
embedders that are tailored towards greedy routing. To
that end, we proposed the adaptive embedding as an
extension of Kleinberg’s algorithm [8] that is more space
efficient. Moreover, we proposed several methods to
fill its degrees of freedom and evaluated their impact
on the stretch. It turned out that a careful choice for
the spanning tree greatly improved the quality of the
resulting embeddings.

Although, our algorithms generated embeddings
with 100% success rate for most graphs, even when
rounding the coordinates to double values, numerical
difficulties are a major issue. As can be seen in
Figure 4b, the child orders had a big impact on these
difficulties. It would thus be interesting to explore
which types of orderings prevent numerical problems.
From a theoretical point of view, a proof that small
coordinates (e.g., with log n bits) are sufficient would
be very interesting. As noted in Section 6, we believe
that this is an open problem.
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