
Deterministic Sensitivity Oracles for Diameter,
Eccentricities and All Pairs Distances
Davide Bilò #

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy

Keerti Choudhary #

Department of Computer Science and Engineering, Indian Institute of Technology Delhi, India

Sarel Cohen #

School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Tobias Friedrich #

Hasso Plattner Institute, University of Potsdam, Germany

Martin Schirneck #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
We construct data structures for extremal and pairwise distances in directed graphs in the presence of
transient edge failures. Henzinger et al. [ITCS 2017] initiated the study of fault-tolerant (sensitivity)
oracles for the diameter and vertex eccentricities. We extend this with a special focus on space
efficiency. We present several new data structures, among them the first fault-tolerant eccentricity
oracle for dual failures in subcubic space. We further prove lower bounds that show limits to
approximation vs. space and diameter vs. space trade-offs for fault-tolerant oracles. They highlight
key differences between data structures for undirected and directed graphs.

Initially, our oracles are randomized leaning on a sampling technique frequently used in sensitivity
analysis. Building on the work of Alon, Chechik, and Cohen [ICALP 2019] as well as Karthik
and Parter [SODA 2021], we develop a hierarchical framework to derandomize fault-tolerant data
structures. We first apply it to our own diameter and eccentricity oracles and then show its versatility
by derandomizing algorithms from the literature: the distance sensitivity oracle of Ren [JCSS 2022]
and the Single-Source Replacement Path algorithm of Chechik and Magen [ICALP 2020]. This way,
we obtain the first deterministic distance sensitivity oracle with subcubic preprocessing time.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Pseudorandomness and derandomization; Mathematics of computing →
Graph algorithms

Keywords and phrases derandomization, diameter, eccentricity, fault-tolerant data structure, sensi-
tivity oracle, space lower bound

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.68

Related Version Full Version: http://arxiv.org/abs/2204.10679

1 Introduction

The problems of computing shortest paths, graph diameter, and vertex eccentricities are
fundamental in many applications of both theoretical and applied computer science. We
address these problems in the setting of fault tolerance. The interest in this problem
setting stems from the fact that most real-world networks are prone to failures. These are
unpredictable but usually small in numbers and transient due to some simultaneous repair
process. However, in an error-prone network, it is not always practical to recompute distances
from scratch even if the number of edge failures is bounded. A commonly adopted solution
is that of designing f-edge fault-tolerant oracles, that is, compact data structures that can

© Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff; Article No. 68; pp. 68:1–68:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@univaq.it
https://orcid.org/0000-0003-3169-4300
mailto:keerti@iitd.ac.in
https://orcid.org/0000-0002-8289-5930
mailto:sarelco@mta.ac.il
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:martin.schirneck@hpi.de
https://orcid.org/0000-0001-7086-5577
https://doi.org/10.4230/LIPIcs.ICALP.2022.68
http://arxiv.org/abs/2204.10679
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


68:2 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

quickly report exact or approximate extremal and pairwise distances in the network after up
to f edges failed. These structures are also known as sensitivity oracles, where the sensitivity
is the maximum number f of supported failures.

Many known fault-tolerant data structures are randomized. The algorithm that prepro-
cesses the underlying network may depend on random bits or the correctness of the oracle’s
answers is only guaranteed with some probability. Besides the practical difficulties of working
with (true) randomness in computing, it is an interesting question to what extend randomness
as a resource is needed to obtain efficient fault-tolerant oracles. In this paper, we show
that for a wide range of applications randomness can be removed with only a slight loss of
performance, or even none at all in some cases. For this, we develop a novel derandomization
framework and combine it with known techniques to obtain the following results.

We present new deterministic f -edge fault-tolerant oracles that report the exact/approxi-
mate diameter and vertex eccentricities in directed graphs and we show lower bounds
charting the limits of approximation vs. space and diameter vs. space trade-offs.
We derandomize the single-failure distance sensitivity oracle (DSO) of Ren [32] that can
report exact distance for any pair of vertices in constant time. Our result gives the first
deterministic exact DSO with truly sub-cubic processing time and constant query time.
We derandomize the algorithm of Chechik and Magen [12] for the Single-Source Replace-
ment Paths (SSRP) problem on directed graphs, that is, the task of finding a shortest
path from a distinguished source vertex to every target, for every possible edge failure.

We believe that our techniques are of independent interest and can help derandomize also
other algorithms and data structures in the fault-tolerant domain. Throughout the paper,
the underlying network is modeled by a directed graph G = (V, E), possibly with weights on
its edges, where V is the set of n vertices and E the set of m edges.

1.1 Diameter and Eccentricity Oracles in Directed Graphs

In Section 3, we discuss fault-tolerant oracles for the diameter and vertex eccentricities of a
directed graph. We abbreviate f-edge fault-tolerant diameter oracle as f -FDO and f-edge
fault-tolerant eccentricity oracle as f -FEO. In case of a single failure, f = 1, we shorten this
to FDO and FEO, respectively. The problem of designing FDOs was originally raised by
Henzinger et al. [26] and recently received some renewed interest by Bilò et al. [6]. Although
the major focus of the latter work was on undirected graphs, the authors also showed that,
for directed graphs, one can compute, in Õ(mn + n2/ε) time,1 an oracle of size2 O(m) and
constant query time that guarantees a stretch of 1 + ε, that is, it reports an upper bound on
the value of the diameter within a factor of 1+ε, for any ε > 0.

Bilò et al. [6] also gave a complementary space lower bound showing that any fault-tolerant
diameter oracle with a sufficiently small stretch must take Ω(m) bits of space. However, this
is not the full picture in that their construction only holds for diameter 2. We show here that
in reality there is a transition happening: the larger the diameter, the more space we can
save, up to a point where even o(m)-space oracles become possible. We aim at pinpointing
this transition, starting with a generalization of the bound in [6] to diameter up to n/

√
m .

1 For a non-negative function g = g(n), we use Õ(g) to denote O(g · polylog(n)).
2 Unless stated otherwise, we measure the space in the number of O(log n)-bit machine words.



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:3

▶ Theorem 1. Let n, m, D ⩾ 3 be integers with D = O( n√
m

). Any FDO with stretch
σ < 3

2 −
1
D on n-vertex, m-edge unweighted directed graphs of diameter D requires Ω(m) bits

of space, regardless of the query time.

Given an oracle for the fault-tolerant eccentricities with query time q, one can emulate a
diameter oracle with query time nq by taking the maximum over all vertices. The information-
theoretic lower bound of Theorem 1 is independent of the query time and therefore every
FEO also must have size Ω(m).

Notably, Theorem 1 implies that, for any 0 < δ ⩽ 1 and all digraphs with n1+δ edges and
a relatively small diameter of O(

√
n1−δ ), an FDO of stretch essentially 3/2 takes Ω(n1+δ)

bits of space. As hinted above, this approximation vs. space trade-off no longer holds when
we consider directed graphs with large diameter of ω(n5/6), for which we can design FDOs
of quasi-linear (in n) space and negligible stretch.

▶ Theorem 2. Let G be a directed graph with n vertices, m edges, and diameter D = ω(n5/6)
and let ε = n5/6

D = o(1). There is an FDO for G with stretch 1 + ε, preprocessing time
Õ(mn), space O(n log2 n), and constant query time.

The gap between the stretch-size trade-offs provided in Theorem 1 and Theorem 2,
respectively, suggests that there must be a threshold between n/

√
m and n5/6 where low-

stretch FDOs of sub-linear size and constant query time become possible. We further narrow
this gap and aim to find the smallest value for the diameter for which one can design an
FDO with o(m) space and constant query time. We show that this is possible for directed
graphs with diameter ω((n4/3 log n)/

√
m ). We leave it as an open problem to determine the

smallest function g such that directed graphs with diameter g(n)/
√

m admit an FDO with
o(m) space. Our results show that g is of order ω(n) and O(n4/3 log n).

▶ Theorem 3. Let G be be a directed graph with n vertices, m edges, and diameter
ω((n4/3 log n)/(ε

√
m )). For any ε = ε(n, m) > 0, there is an FDO for G with stretch

1 + ε, preprocessing time Õ(mn), space o(m), and constant query time.

For the sake of readability, the FDOs in Section 3 are randomized. Later, in Section 4,
we describe our derandomization framework and show how to apply it to both FDOs.

We now move our attention to the case multiple edge failures and give bounds in terms
of f and n on the minimum space requirement of f -FDOs. Bilò et al. [6] designed an f -FDO
for undirected graphs of stretch f + 2 that takes space Õ(fn). The size of this oracle is
optimal up to polylogarithmic factors. In the next theorem, we show that such compact
oracles are impossible for directed graphs, even when allowing arbitrarily large stretch

▶ Theorem 4. Let n, f be positive integers such that 2f/2 = O(n). Any f-FDO with an
arbitrary finite stretch on n-vertex directed graphs requires Ω(2f/2 n) bits of space, regardless
of the query time.

The lower bound of Theorem 4 marks an exponential-in-f separation between the
undirected and directed setting. The directed graph used in the proof is inspired by the
lower-bound construction used by Baswana et al. [3] for the f -edge fault-tolerant Single-Source
Reachability problem. This problem asks to compute the sparsest subgraph H of a directed
graph G that preserves reachability from a designated source vertex s, that is, for every
vertex v and every set F of |F | ⩽ f edge failures, there is path from s to v in H that avoids
every edge in F if and only if there is such a path in G. Baswana et al. [3] provided a class of
directed graphs for which any subgraph preserving single-source reachability with sensitivity

ICALP 2022



68:4 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

f has Ω(2f n) edges. Our lower bound requires non-trivial extensions of their construction as
it needs to satisfy several additional properties. For example, the directed graph in [3] has
unbounded diameter, while any lower bound for FDOs requires strongly connected graphs.

We also consider the design of fault-tolerant eccentricity oracles for general directed
graphs as well as directed acyclic graphs (DAGs). For the single-failure case and exact
eccentricities, there is a folklore solution using the DSO of Bernstein and Karger [4] that
runs in Õ(n3) time. Henzinger et al. [26] showed how to trade stretch for running time and
presented an (1+ε)-approximate solution with preprocessing time Õ(mn + n3/2

√
Dm/ε ),

where D denotes the diameter of the underlying graph. Both oracles build a look-up table
of size O(n2) using the fact that, for any vertex v, only the failure of an edge on a shortest
path tree rooted in v can change the eccentricity of v. The table allows for a constant query
time but generalizing this to multiple failures f ⩾ 2 would take Ω(nf+1) space. We show
how to do better than that. We give a meta-theorem that turns any exact or approximate
DSO for pairwise distances into an FEO for eccentricities. Plugging in any compact DSO for
multiple failures then immediately gives a space improvement for the FEO. In the following,
with stretch σ = 1, we mean exact oracles.

▶ Theorem 5. Let G be a (undirected or directed and possibly edge-weighted) graph with
n vertices and m edges. Given access to a DSO for G with sensitivity f , stretch σ ⩾ 1,
preprocessing time P , space S, and query time Q, one can construct an f-FEO for G with
stretch 1 + σ, preprocessing time O(mn + P ), space O(n + S), and O(f ·Q) query time.

There are multiple distance oracles to choose from, all with different strengths and
weaknesses. When using the DSO for of Duan and Pettie [15], we get in polynomial time a
2-approximate 2-FEO with space O(n2 log3 n). To the best of our knowledge, this is the first
eccentricity oracle for dual failures in subcubic space. Van den Brand and Saranurak [8] gave
a DSO supporting an arbitrary number of failures f . On directed graphs with integer edge
weights in the range [−M, M ] it has polynomial space and preprocessing time, but a query
time that depends both on the sensitivity and the graph size. Let ω < 2.37286 be the matrix
multiplication exponent [1]. Plugging the DSO in [8] into our reduction gives an f -FEO with
stretch 2, O(Mn3) space3, and query time O(Mnfω+1). On undirected graphs, we can make
the query time independent of n by applying the very recent DSO by Duan and Ren [17] with
O(fn4) space and a query time of fO(f). However, the preprocessing of the latter is only
polynomial for constant f . Since our reduction also applies to approximate oracles, we get,
for any f = o(log n/ log log n) and ε > 0, an f -FEO in polynomial time with stretch (2 + ε),
space O(n2((log n)/ε)f f) and query time O(f6 log n) via the DSO by Chechik et al. [11].

As already mentioned above, the Ω(2f/2 n)-bits lower bound in Theorem 4 also holds for
FEOs. On DAGs, however, we can improve upon this and obtain a space requirement that is
reminiscent of the one Bilò et al. [6] gave for undirected graphs. Note that in a DAG at most
one vertex can have bounded eccentricity.

▶ Theorem 6. Let G be a directed acyclic graph with, m real-weighted edges, n vertices, and
a distinguished source vertex s. For any integer f , there is an f-FEO for G with stretch f ,
preprocessing time Õ(m), space O(nf), and O(f) query time.

All the results for f -FDOs and f -FEOs are presented for edge failures. However, they
also hold for vertex failures using well-known transformation techniques for directed graphs.4

3 In [8], the space of the DSO is phrased as O(Mn3 log n) bits.
4 Indeed, we can transform the directed graph G into some graph G′ with 2n vertices. We represent each



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:5

1.2 Derandomization Technique
We now turn to the derandomization of fault-tolerant data structures. In Section 4, we
develop the Hierarchical Double Pivots Hitting Sets (HDPH) algorithm as the center piece of a
framework to derandomize known replacement paths algorithms and oracles. The aim of the
HDPH algorithm is to compute a sequence of sets B1, . . . , Blog n ⊆ V (G) such that each Bi

has size Õ(n/2i) and hits a set Pi of (replacement) paths each of length Ω(2i). Unfortunately,
the paths Pi that need to be hit by Bi are not known in advance. Our algorithm fixes this
issue by iteratively computing the set of paths Pi using the previous sets B0, . . . , Bi−1. The
algorithm relies on the ability of the oracle we want to derandomize to be path-reporting,
that is, to report a path representing the exact or approximate distance between the queried
vertices for DSOs, the diameter for FDOs, or the vertex eccentricity for FEOs. We show
how to implement the HDPH algorithm to derandomize the FDOs in Theorems 2 and 3, the
DSO of Ren [32] for directed graphs with integer edge weights in the range [1, M ], and the
algorithm of Chechik and Magen [12] for the SSRP problem in directed graphs.

Distance Sensitivity Oracles. The concept of DSOs was introduced by Demetrescu et
al. [13] who showed how to compute an exact DSO of size O(n2 log n) and constant query
time in Õ(mn2) time. Later, Bernstein and Karger [4] improved the preprocessing time
to Õ(mn) and Duan and Zhang [18] reduced the space to O(n2), which is asymptotically
optimal. Algebraic algorithms are known to further improve the preprocessing times, if one
is willing to employ fast matrix multiplication, see [10, 23] and the references therein. For
more results on approximate DSOs for both single and multiple failures, see [11, 14, 15].

We combine the HDPH framework with a recent breakthrough result by Karthik and
Parter [28] to derandomize the path-reporting DSO of Ren [32] for directed graphs with
integer edge weights in the range [1, M ]. This was the first DSO that achieved a constant
query time with a randomized subcubic preprocessing time of O(Mn2.7233). On undirected
graphs, the preprocessing improves to Õ(Mn(ω+3)/2) = O(Mn2.6865). Our derandomization
of Ren’s DSOs in both settings incurs a slight loss of efficiency. Nevertheless, we obtain the
first deterministic DSO with constant query time and truly sub-cubic preprocessing. This
improves significantly over the result by Alon, Chechik, and Cohen [2] who designed a DSO
with O(mn4−α) preprocessing time and Õ(n2α) query time, for any α ∈ (0, 1).

▶ Theorem 7. For any n-vertex directed graph G with integer edge weights in the range
[1, M ], there exists a deterministic path-reporting DSO with O(Mn2.8068) preprocessing
time and constant query time. If G is undirected, the preprocessing time decreases to
Õ(Mn(ω+6)/3) = O(Mn2.7910).

Recently, Gu and Ren [23] presented a new randomized DSO with a preprocessing time
of O(Mn2.5794). Unfortunately, our HDHP algorithm cannot be used to derandomize it for
the following two reasons. First, the DSO of Gu and Ren is not path-reporting. Secondly,
it internally relies on probabilistic polynomial identity testing. It is a long-standing open
question how to derandomize this, far beyond the field of fault-tolerant data structures.

Single Source Replacement Paths Problem. In the SSRP problem we want to compute
replacement paths from a designated source to each destination vertex, under each possible

vertex v of G with an edge (v−, v+) in G′, and replace each edge (u, v) of G with the edge (u+, v−)
in G′. For edge-weighted G, the weight of the new vertex-edge is set to 0 keeping eccentricities. For
unweighted G, the eccentricity of v in any subgraph H of G is half the eccentricity of v− in H ′ ⊆ G′.

ICALP 2022



68:6 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

edge failure. Grandoni and Vassilevska Williams [21, 22] first developed an algorithm for
both directed and undirected graphs with integer edge weights in the range [1, M ] that uses
fast matrix multiplication and runs in Õ(Mnω) time. Chechik and Cohen [9] presented an
Õ(m

√
n + n2) time SSRP algorithm for undirected graphs that was later simplified and

generalized to deal with multiple sources by Gupta et al. [24]. In this paper we use our
HDPH framework to derandomize the recent Õ(m

√
n + n2) time randomized algorithm

for directed graphs developed by Chechik and Magen [12], without any loss in the time
complexity. Specifically, we prove the following result.

▶ Theorem 8. There exists a deterministic algorithm for the Single Source Replacement
Path problem in unweighted directed graphs running in time Õ(m

√
n + n2).

2 Preliminaries

We let G = (V, E) denote a directed graph on n vertices and m edges, potentially edge-
weighted by some function w : E → R. We tacitly assume that G is strongly connected, in
particular, m = Ω(n). For any (weighted) directed graph H (possibly different from G),
we denote by V (H) and E(H) the set of its vertices and edges, respectively. Let P be a
path in H from s ∈ V (H) to t ∈ V (H), we say that P is an s-t-path in H. We denote by
|P | =

∑
e∈E(P ) w(e) the length of P , that is, its total weight. If H is unweighted, we let

|P | = |E(P )| denote the number of its edges. For u, v ∈ V (P ), we let P [u..v] denote the
subpath of P from u to v. For s, t ∈ V (H), the distance dH(s, t) is the minimum length
of any s-t-path in H; if s and t are disconnected, we set dH(s, t) = +∞. When talking
about the base graph G, we drop the subscripts if this does not create any ambiguities.
The eccentricity of a vertex s ∈ V (H) is eccH(s) = maxt∈V (H) dH(s, t), the diameter is
diam(H) = maxs∈V (H) eccH(s). For a set F ⊆ E(H) of edges, let H − F be the graph
obtained from H by removing all edges in F . A replacement path PH(s, t, F ) is a shortest
path from s to t in H − F . Its length dH(s, t, F ) = |PH(s, t, F )| is the replacement distance.
The fault-tolerant eccentricity of a vertex s ∈ V of the base graph with respect to F is
eccG − F (s), the fault-tolerant diameter is diam(G− F ).

For a positive integer f , an f -edge fault-tolerant eccentricity oracle (f -FEO) for G reports,
upon query (s, F ) with |F | ⩽ f , the value eccG−F (s). An f-edge fault-tolerant diameter
oracle returns diam(G−F ) upon query F . For a single edge failure, we write FEO for 1-FEO
and abbreviate F = {e} to e. For any real number σ = σ(n, m, f) ⩾ 1, an f -FEO is said to
have stretch σ, or be σ-approximate, if the returned value êcc(s, F ) on query (s, F ) satisfies
eccG−F (s) ⩽ êcc(s, F ) ⩽ σ · eccG−F (s), analogously for f -FDOs. The preprocessing time is
the time needed to compute the data structure, its query time is the time needed to return
an answer. For weighted graphs, we assume the weight function being such that all distances
can be stored in a single word on O(log n) bits. Unless stated otherwise, we measure the
space of the oracles in the number of words. The oracles cannot access features of graph G

except those stored during preprocessing. The size of the input does not count against the
space of the data structures.

3 Diameter and Eccentricity Oracles

This section discusses fault-tolerant oracles for the diameter and vertex eccentricity in directed
graphs. We start by presenting space lower bounds for FDOs that guarantee a certain stretch
when supporting single or multiple edge failures, respectively. In the single-failure case, the
bound depends on the diameter of the graph. Roughly speaking, if the base graph has low



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:7

diameter, we cannot save much space over just storing all edges. The picture changes if the
diameter grows larger. We show that then we can obtain FDOs with o(m) space, or even
Õ(n). We then turn the discussing to eccentricity oracles for dual and multiple failures. Note
that there we need to report not only one value per graph G− F , but one per vertex in each
of those, so special techniques are needed to handle the space increase.

3.1 Space Lower Bounds for Diameter Oracles
Bilò et al. [6] showed that any FDO with a stretch σ < 3/2 on undirected m-edge graphs
must take Ω(m) bits of space. In particular, any data structure that can distinguish between
a fault-tolerant diameter of 2 and 3 has this size. Their construction transfers to directed
graphs (by merely doubling each undirected edge into two directed ones). However, they do
not parameterize the graphs by their diameter, namely, if the FDO has to distinguishing
between diameter D and 3D/2 for some D ⩾ 3. We generalize their result by showing that
there is an intermediate range of D where the Ω(m)-bit bound still applies. However, here the
situation is more intricate in that large values of D do allow for significant space reductions.

The construction5 by Bilò et al. [6] cannot be extended to D ⩾ 3. The proof of the next
lemma had to be to the full version due to space reasons.

▶ Lemma 9. Let n, m, D be integers such that n2 ⩾ m ⩾ n ⩾ 4, and n/
√

m > D ⩾ 3. There
exists a family G of n-vertex directed graphs with diameter D and Θ(m) edges such that any
data structure for graphs in G that decides whether the fault-tolerant diameter remains at D

or increases to (3D−1)/2 for odd D (or (3D/2)− 1 for even D) requires Ω(m) bits of space.

It is now easy to obtain the Ω(m)-bit lower bound of Theorem 1 since any FDO of stretch
σ < 3

2 −
1
D must tell the two cases apart.

We now turn to diameter oracles that support more than one edge failure, f > 1. Theorem 4
states that they require space that is exponential in f , even if we allow the stretch and query
time to be arbitrarily large (but finite). It follows from the next lemma together with the
observation that such f -FDOs have to detect whether the edge failures disconnect the graph.

▶ Lemma 10. Any data structure for n-vertex digraphs that decides for at most 2f = O(log n)
edge failures whether the fault-tolerant diameter is finite requires Ω(2f n) bits of space.

3.2 Improved Upper Bounds
The above discussion shows that for graphs with small diameter, there is no hope to obtain
an FDO whose space is much smaller than what is needed to store the full graph. At least
not while retaining good stretch at the same time. The lower bound in Theorem 1, however,
breaks down for a large diameter. Indeed, we show next that in this regime we can do much
better in terms of space, without sacrificing stretch or query time.

Theorems 2 and 3 will follow from the same construction. The initial way we present it
in Lemma 12 uses randomization in the form of a well-known sampling lemma, see [22, 33].
We will later discuss how to derandomize the oracles.

▶ Lemma 11 (Sampling Lemma). Let H be a n-vertex directed graph, c > 0 a positive
constant, and L ⩾ c ln n. Define a random set B ⊆ V (H) by sampling each vertex of H

5 The graph used in the proof of [6, Lemma 12] has the property that failing any edge can increase the
diameter by at most 1.

ICALP 2022



68:8 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

independently with probability (c ln n)/L. With probability at least 1− 1
nc , the cardinality of

B is O((n log n)/L). Let further P be a set of ℓ simple paths in H, each of which spans L

vertices. With probability at least 1− ℓ
nc , we have V (P ) ∩B ̸= ∅ for every P ∈ P.

▶ Lemma 12. For any n-vertex, m-edge unweighted directed graph G with diameter D =
ω(log n) and any ε = ε(n, m, D) > 0, we can compute in time Õ(mn + n4/(ε3D3)) an FDO
with 1 + ε stretch, O(n + (n8/3 log2 n)/(ε2D2)) space, and constant query time.

Proof. Let D = diam(G), b = n/(εD), and c > 0 a sufficiently large constant. We sample
a set B ⊆ V of pivots by including each vertex independently with probability (2bc ln n)/n.
By Lemma 11 with L = n/2b = εD/2, there are O(b log n) many pivots w.h.p.

For the graph G, compute in Õ(mn) time the O(1)-query time distance sensitivity oracle
of Bernstein and Karger [4]. We further compute a subgraph H of G that is just the union
of |B| shortest-path trees, one rooted at each pivot. We iterate over the edges of H and
compute the collection X of all those e ∈ E(H) such that d(b1, b2, e) > d(b1, b2) for some
pair (b1, b2) ∈ B ×B. The time to compute X is O(n|B|3) = Õ(n4/(ε3D3)) since processing
an edge in H requires |B|2 calls to the DSO. Observe that any subgraph of G that exactly
preserves distances between all pairs in B ×B must contain all the edges of X . Bodwin [7]
showed that there are distance-preserving subgraphs with respect to B × B with at most
O(n + n2/3|B|2) edges. Thus, the size of X is bounded by O(n + n2/3|B|2).

Next, we build a dictionary DX in which we store the the edges in X together with the
maximum distance between any pair of pivots if the edge fails (or diam(G) if this is larger).
In other words, for each e ∈ X , we store ϕ(e) = max{maxb1,b2∈B d(b1, b2, e), diam(G)}. Let
Y be the set of all edges in E such that G−e is no longer strongly connected. We build a
dictionary DY in which we store information about the edges Y. It is well-known that Y
contains O(n) edges and can be computed in time O(m) [27].

Recall that b = n/(ε diam(G)). The oracle’s output D̂(e) is defined as follows: if
e ∈ Y, then D̂(e) = ∞; if e ∈ X , D̂(e) = ϕ(e) + n/b; otherwise, the oracle outputs
D̂(e) = diam(G) + n/b = (1 + ε) diam(G).

Evidently, the oracle is correct for all e ∈ Y . It is also easy to verify that all outputs are at
most ϕ(e) + n/b ⩽ diam(G− e) + n/b = diam(G− e) + ε diam(G) ⩽ (1 + ε) diam(G− e). To
prove that they are also at least diam(G− e), consider a vertex pair (u, v) ∈ V ×V such that
d(u, v, e) = diam(G− e) <∞. With high probability6 by Lemma 11, there exists a shortest
u-v-path in G− e and two pivots bu, bv ∈ B on that path such that d(u, bu, e), d(bv, v, e) ⩽
L = n/2b. We have diam(G−e) = d(u, bu, e)+d(bu, bv, e)+d(bv, v, e). Suppose e /∈ X . Then,
d(bu, bv, e) = d(bu, bv) ⩽ diam(G) holds and therefore diam(G− e) ⩽ diam(G) + n/b = D̂(e).
If e ∈ X , then d(bu, bv, e) ⩽ ϕ(e) and diam(G− e) ⩽ ϕ(e) + n/b = D̂(e).

There are k-element dictionaries of size O(k) and O(1) query time computable in time
Õ(k) [25]. The dictionaries have total size O(n+n2/3|B|2) = O(n+(n8/3 log2 n)/(ε2D2)). ◀

The oracle in Lemma 12 can also be extended to handle vertex failures. The only
modification required is to add to set X those vertices v ∈ V that satisfy d(b1, b2, v) > d(b1, b2)
for some (b1, b2) ∈ B × B, and to add to Y to be those vertices v for which G − v is not
strongly connected. Suppose D = ω(n5/6), inserting any ε ⩾ n5/6/D = o(1) above gives an
FDO with near linear space and 1 + o(1) stretch that is computable in time Õ(mn), which
proves Theorem 2. Furthermore, for graphs with diameter ω((n4/3 log n)/(ε

√
m )), we obtain

in Õ(mn) time an FDO with constant query time and o(m) space (Theorem 3).

6 We say an event occurs with high probability (w.h.p.) if it has success probability 1 − n−c for some
constant c > 0 that can be made arbitrarily large.



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:9

3.3 Eccentricity Oracles
We now prove Theorem 5 that constructs an f -edge fault-tolerant eccentricity oracle from a
DSO supporting f failures. The improved f -FEO for DAGs can be found in the full version.

Let D be a DSO with sensitivity f and stretch σ that, on (un-)directed possibly weighted
graphs, can be computed in time P , uses S space, and has a query time of Q. For any given
source s ∈ V and query set F of |F | ⩽ f edges, our oracle reports an (1+σ)-approximation of
the eccentricity of s in G−F . We simply store D and, for each x ∈ V , the value eccG(x). All
eccentricities in the base graph G can be obtained with a BFS from each vertex in O(mn).

Upon query (s, F = {(x1, y1), . . . , (xf , yf )}), we use D to compute d(s, yi, F ), for all
1 ⩽ i ⩽ f . Our estimate is êccG−F (s) = eccG(s) + max1⩽i⩽f d(s, yi, F ). The time taken to
compute êccG−F (s) is O(f ·Q) and the space requirement of the oracle is O(n + S).

Now we show that êccG−F (s) is a (1 + σ)-approximation of eccG−F (s). Let F0 be the
subset of F consisting of those edges in F that lie on some shortest-path tree T rooted
in s. If F0 is empty, we immediately get eccG−F (s) = eccG(s) ⩽ êccG−F (s). Otherwise,
for any v ∈ V , either d(s, v) = d(s, v, F ) or there exists an (x, y) ∈ F0 such that y is an
ancestor of v in T . In this latter case d(y, v, F ) ⩽ eccG(s). This proves that d(s, v, F ) ⩽
d(s, y, F ) + d(y, v, F ) ⩽ d(s, y, F ) + eccG(s) ⩽ êccG−F (s). Thus, eccG−F (s) ⩽ êccG−F (s).
Next observe that eccG(s) ⩽ eccG−F (s) and max1⩽i⩽f d(s, yi, F ) ⩽ σ · eccG−F (s), which
proves that êccG−F (s) ⩽ (1 + σ) · eccG−F (s).

4 Derandomization Framework

The fault-tolerant diameter oracles in Theorems 2 and 3 are randomized. They both follow
from Lemma 12 which in turn relies on a random hitting set to intersect all replacement paths
of a certain length. In fact, many more data structures and algorithms in the fault-tolerant
setting follow a sampling-based approach similar to Lemma 11, see e.g. [9, 12, 22, 32, 33, 35]. It
is an interesting question whether these algorithms can be derandomized efficiently. Currently
there is no single approach to derandomize Lemma 11 in the same O(n) time it uses to go
through all vertices. Therefore, the literature focuses on the specific applications. The goal
is to replace the sampling step by a deterministic construction of the hitting set that, while
taking ω(n) time, does not (or only marginally) increase the asymptotic running time of the
whole algorithm. Recently, there was some progress on notable special cases. Karthik and
Parter [28] gave a derandomization for the algebraic version of the distance sensitivity oracle
of Weimann and Yuster [35] with a slightly higher running time (for a detailed discussion
see Lemma 15 below). Bilò et al. [5] derandomized the SSRP algorithms of Grandoni and
Vassilevska Williams [22] as well as Chechik and Cohen [9]. Their derandomization succeeds
in the same time bounds as the original randomized algorithm, but the technique only works
for undirected graphs. Here, we develop a framework for directed graphs. We first apply it
to our own FDOs and then show its versatility by also derandomizing the DSO of Ren [32]
and the SSRP algorithm of Chechik and Magen [12].

We build on the work of Alon, Chechik, and Cohen [2]. We first review some technical
details of their result and then describe our additions. For now, we assume the base graph G

to be unweighted and only later (in Section 5) incorporate positive integer edge weights. For
concreteness, consider the task in Lemma 12 of finding a set B ⊆ V , the pivots, such that
for all s, t ∈ V and edge e ∈ E with replacement distance d(s, t, e) at least L = ε diam(G)/2,
there exists some replacement path P (s, t, e) that contains a pivot x ∈ B. Other fault-tolerant
algorithms pose similar requirements on B. The technique in [2] consists of computing a
small set of critical paths, much smaller than the set of all O(mn2) replacement paths. Once

ICALP 2022



68:10 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

we have those, a hitting set can be computed with the folklore greedy algorithm, called
GreedyPivotSelection in [2], that always selects a vertex that is contained in the most unhit
paths.7 Alternatively, one can use the blocker set algorithm of King [29].

▶ Lemma 13 (Alon, Chechik, and Cohen [2]). Let 1 ⩽ L ⩽ n and 1 ⩽ q = poly(n) be
two integers. Let P1, . . . , Pq ⊆ V be sets of vertices that, for every 1 ⩽ k ⩽ q, satisfy
|Pk| ⩾ L. The algorithm GreedyPivotSelection computes in time Õ(qL + n2/L) a set B ⊆ V

of |B| = O((n log q)/L) = Õ(n/L) pivots such that, for every index k, it holds that B∩Pk ̸= ∅.

The crucial part is to quickly find the paths Pk such that hitting them is sufficient to
hit all long replacement path. Of course, this could be done by computing all-pairs shortest
paths in each graph G−e in total time Õ(m2n) using Dijkstra’s algorithm (or Õ(mn2.5302)
if one is willing to use fast rectangular matrix multiplication [20, 36]). However, this is
much more than the Õ(mn + n4/(ε3 diam(G)3)) time bound we had in Lemma 12. For the
applications in [2], a single set of paths and therefore a single hitting set was sufficient. Bilò
et al. [5] (with slightly different requirements on the set B) were able to make do with three
sets, exploiting the undirectedness of the underlying graph.

We extend this to directed graphs using a hierarchical approach to find the critical paths.
Observe how the length parameter L in Lemma 13 serves two roles. The longer the paths, the
longer it takes to compute B, but the fewer vertices suffice to intersect all paths. Additionally,
we have to compute the set of critical paths which takes (at least) linear time in their length.
So L has to fall just in the right range for the computation to be fast. To achieve this, we
use an exponentially growing sequence of lengths L1, L2, . . . , LO(log n) and, instead of a single
set, compute a sequence B1, B2, . . . of exponentially shrinking sets such that, in the i-th
stage, Bi hits, again for all s, t ∈ V and e ∈ E, some replacement path of length at least Li.
However, this poses some new difficulties because now the collection of critical paths has
to be computed step by step. Imagine in the i-th stage, we have already obtained the all
the subsets Pj , j < i, of paths with respective lengths Lj . The key observation is that the
hitting sets Bj from the previous rounds carry valuable information that can be harnessed
to find the new set Pi faster, this then offsets the run time penalty incurred by the greater
length of the new paths.

The HDPH Algorithm. We now describe the Hierarchical Double Pivots Hitting Sets
(HDPH) algorithm that makes these ideas concrete. It can be seen as a “reference implemen-
tation” of the framework. For a specific application, one still has to adapt the details. The
algorithm is more general than what is needed for diameter oracles in Theorems 2 and 3.
For example, it also pertains to vertex failures. Later, in Section 5, we show an example how
to modify the algorithm for other problems (more are found in the full version).

Let C ⩾ 3/2 be a constant. The aim of the HDPH algorithm is to compute a sequence
of sets B1, . . . , B⌈logC n⌉ ⊆ V of size |Bi| = Õ(n/Ci) such that for all vertices s, t ∈ V and
failure f ∈ E ∪ V with d(s, t, f) ∈ (Ci, Ci+1] there exists a replacement path P (s, t, f) that
contains a pivot z ∈ Bi. It assumes access to the “APSP data” of the original graph G, that
is, the distance d(s, t) for all s, t and a corresponding shortest path P (s, t). Also, it requires
a deterministic path-reporting distance sensitivity oracle with constant query time (both for
the distance and each reported edge) as a black box.

7 To achieve the performance of Lemma 13, one has to truncate all paths by selecting L vertices arbitrarily
from each P ∈ P. This is non-issue for us as, by construction, all our paths will have length Θ(L).



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:11

Algorithm 1 Hierarchical Double Pivots Hitting Sets (HDPH) Algorithm

Input: APSP data and a deterministic path-reporting DSO with O(1) query time.
Output: The hitting sets B0, . . . , B⌈logC n⌉.

1 for i ∈ [0, 2] do
2 Bi ← V

3 for i ∈ [3, ⌈logC n⌉] do
4 Let Pi = {P (x, y) | x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 such that d(x, y) ∈ (Ci−6, Ci+1]}
5 for x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 do
6 if d(x, y) ⩽ Ci+1 then
7 for f ∈ E(P (x, y)) ∪ V (P (x, y)) do
8 query the DSO for d(x, y, f)
9 if d(x, y, f) ∈ (Ci−6, Ci+1] then

10 query the DSO for P (x, y, f)
11 Pi ← Pi ∪ {P (x, y, f)}

12 Bi ← GreedyPivotSelection(Pi)
13 return B0, . . . , B⌈logC n⌉

The HDPH algorithm is sketched in Algorithm 1. In lines 1 and 2 it initializes Bi = V for
i ⩽ 2. In lines 3-12, for 3 ⩽ i ⩽ ⌈logC n⌉, we iteratively compute the hitting sets Bi by using
the hitting sets from the previous 3 iterations to obtain a set of shortest and replacement
paths Pi of length Θ(n/Ci) that one needs to hit, and then use the greedy algorithm
GreedyPivotSelection to compute the set of pivots Bi which hits this set of paths Pi. The
paths are defined as follows. First, in line 4 we add to Pi shortest paths P (x, y) whose length is
in the range (Ci, Ci+1] such that x, y ∈ Bi−3∪Bi−2∪Bi−1 are pivots from the last 3 iterations.
Then, in lines 5-11, for every pair of pivots x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 whose shortest path
P (x, y) is of length at most Ci+1, and for every edge or every f ∈ E(P (x, y))∪V (P (x, y)) we
query the DSO with (x, y, f) to compute the distance d(x, y, f). If d(x, y, f) ∈ (Ci−6, Ci+1]
then we use the DSO to also report a replacement path P (x, y, f) and add it to Pi.

The next lemma proves the properties of the resulting hitting sets and the run time.

▶ Lemma 14. Given the APSP data and a deterministic path-reporting DSO with O(1)
query time, the HDPH algorithm deterministically computes, in Õ(n2) time, all the hitting
sets Bi, with 0 ⩽ i ⩽ ⌈logC n⌉. For every 0 ⩽ i ⩽ ⌈logC n⌉, it holds that |Bi| = Õ(n/Ci).
For every pair of vertices s, t ∈ V and for every failing edge or vertex f ∈ E ∪ V such that
d(s, t, f) ∈ (Ci, Ci+1] there exists a pivot z ∈ Bi such that d(s, t, f) = d(s, z, f) + d(z, t, f).
Finally, for every pair of vertices s, t ∈ V such that d(s, t) ∈ (Ci, Ci+1], there exists a pivot
z ∈ Bi such that d(s, t) = d(s, z) + d(z, t).

Proof. We first prove by induction that for every i ∈ [0, ⌈logC n⌉] it holds that |Bi| =
Õ(n/Ci). The claim trivially holds for i ⩽ 2 as B0 = B1 = B2 = V . For the inductive
step, we assume that |Bj | = Õ(n/Cj) for every j < i. We show that the set of paths Pi

contains Õ(n2/Ci) paths, each of length Θ(Ci), and thus the result of the greedy algorithm
Bi ← GreedyPivotSelection(Pi) contains, by Lemma 13, at most Õ(n/Ci) vertices. Moreover,
the runtime of the GreedyPivotSelection procedure is Õ(n2).

For every s, t ∈ V , let P (s, t) denote the shortest s-t-path in the APSP data. There
are two places where paths are added to Pi. In line 4, the algorithm adds shortest paths

ICALP 2022



68:12 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

between vertices x, y ∈ Bi−3 ∪ Bi−2 ∪ Bi−1 whenever d(x, y) = |P (x, y)| ∈ (Ci−6, Ci+1],
and by the induction hypothesis there are Õ(n2/C2(i−1)) = Õ(n2/Ci) such pairs of vertices
(since |Bj | = Õ(n/Cj) for every j < i). Thus, the claim holds for the paths in line 4. In
line 11, the algorithm adds paths P (x, y, f) to Pi only for pairs x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1
and edges or vertices f ∈ E(P (x, y)) ∪ V (P (x, y)) with d(x, y) ⩽ Ci+1, there are Õ(Ci+1 ·
(n2/C2(i−1))) = Õ(n2/Ci) such triples (x, y, f). The only paths added there are such that
d(x, y, f) ∈ (Ci−6, Ci+1] (due to the condition in line 9) and thus the length of P (x, y, f) is
Θ(Ci). So the claim holds here as well.

Next, we prove that the runtime of the algorithm is Õ(n2). We show that a single
iteration of the for loop in lines 4-16 takes Õ(n2) time, and as there are O(log n) iterations
for i ∈ [3, ⌈logC n⌉]. The number of pairs x, y ∈ Bi−3 ∪Bi−2 ∪Bi−1 is Õ(n2/C2(i−1)). The
inner loop in lines 7-11 is executed only if d(x, y) ⩽ Ci+1, therefore the number of edges
e ∈ P (x, y) is bounded by Ci+1 and hence the loop is executed at most O(Ci) times. Each
iteration of this loop uses the black-box DSO to compute d(x, y, f) in O(1), and only if
d(x, y, f) ∈ (Ci−6, Ci+1] then we use the DSO to actually obtain the path P (x, y, f) in
O(|P (x, y, f)|) = O(Ci) time. This gives Õ(n2) for the second-most outer loop. We have
already seen that computing GreedyPivotSelection(Pi) in line 12 takes Õ(n2) time as well.

We claim that for all s, t ∈ V and every edge or vertex f ∈ E ∪ V such that d(s, t, f) ∈
(Ci, Ci+1], there exists a pivot z ∈ Bi such that d(s, t, f) = d(s, z, f) + d(z, t, f). That
means, there is some s-t-replacement path that contains z. This is clear for i ⩽ 2. Let
3 ⩽ i ⩽ ⌈logC n⌉ and suppose the claim holds for every j < i. Let P (s, t, f) = (v0 =
s, v1, . . . , vk = t) be an replacement path with k = d(s, t, f) ∈ (Ci, Ci+1]. We define the
prefix P1 = P (s, t, f)[s..v⌈k/C3⌉] and suffix P2 = P (s, t, f)[v⌈(1−1/C3)k⌉..t]. Both subpaths
have length in (Ci−3, Ci−2]. It follows that there are pivots x1, x2 ∈ Bi−3 with x1 ∈ V (P1),
x2 ∈ V (P2). (Strictly speaking, we are merely guaranteed some s-v⌈k/C3⌉-replacement path
that contains x1, but we can choose P (s, t, f) so that its prefix is that path; same with P2.)

Let P (x1, x2, f) be the replacement paths returned by the DSO on query (x1, x2, f).
We claim that it is added to Pi. Observe that d(x1, x2, f) ⩾ d(s, t, f) − |P1| − |P2| ⩾
(1− 2

C2 )Ci > Ci−6, where we used the assumption C ⩾ 3/2 and thus 1− 2
C2 > C−6. Also,

we have d(x1, x2) ⩽ d(x1, x2, f) ⩽ d(s, t, f) ⩽ Ci+1. If d(x1, x2, f) = d(x1, x2), we may
assume P (x1, x2, f) = P (x1, x2), whence it was added in line 4. Otherwise, the failure
f ∈ V (P (x1, x2)) is on the path. Since x1, x2 ∈ Bi−3 ∪ Bi−2 ∪ Bi−1, d(x1, x2) ⩽ Ci+1,
and d(x1, x2, f) ∈ (Ci−6, Ci+1] the path P (x1, x2, f) is indeed added to Pi in line 11. Due
to Bi ← GreedyPivotSelection(Pi), there exists a vertex z ∈ Bi such that z is on the path
P (x1, x2, f) ⊆ P (s, t, f) and thus d(s, t, f) = d(s, z, f) + d(z, t, f).

The proof that for all s, t ∈ V with d(s, t) ∈ (Ci, Ci+1], there exists a pivot z ∈ Bi such
that d(s, t) = d(s, z) + d(z, t) follows the same argument but is somewhat simpler because
the subpaths P1 and P2 are guaranteed to be added in line 4. ◀

Derandomizing Theorems 2 and 3. Recall that the oracle in Lemma 12 has preprocessing
time Õ(mn + n4/(ε3 diam(G)3)). For its derandomization, and that of Theorems 2 and 3, it
is enough to choose C = 2, compute APSP only in the original graph G, and preprocess the
DSO of Bernstein and Karger8 [4], which takes Õ(mn) time. Let i∗ be the largest integer
i such that 2i < L = ε diam(G)/2. The set Bi∗ then hits, for all s, t ∈ V and e ∈ E with
d(s, t, e) = Θ(L), some replacement path P (s, t, e), and it has the desired cardinality Õ(n/L).

8 Bernstein and Karger [4] derandomized their own DSO using a technique by King [29].



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:13

5 Derandomizing Existing Sensitivity Oracles and Algorithms

We now show how the HDPH algorithm can be adapted to derandomize existing sensitivity
oracles. In addition to our own technique, we also extensively use a recent breakthrough by
Karthik and Parter [28] in the derandomization of fault-tolerant algorithms. We combine
both tools and apply them to the distance sensitivity oracle of Ren [32] and the SSRP
algorithm of Chechik and Magen [12] In the main part, we concentrate on the DSO because
we think that it is a good illustration of the combination of our work and that of Karthik
and Parter [28]. The treatment of the SSRP algorithm had to be deferred to the full version.

5.1 The Distance Sensitivity Oracle of Ren
We start with the oracle of Ren [32]. Recall that, for any two vertices s, t ∈ V and edge e ∈ E,
the replacement distance d(s, t, e) is the length of a shortest s-t-path in G− e. A distance
sensitivity oracle (DSO) is a data structure that answers query (s, t, e) with d(s, t, e). Ren [32]
presented an algebraic DSO with a randomized preprocessing time of O(Mn2.7233) on graphs
with positive integer edge weights in the range [1, M ] and Õ(Mn(ω+3)/2) = O(Mn2.6865)
time on undirected graphs. Notably, this was the first DSO with both constant query time
and subcubic preprocessing, improving over previous work [2, 4, 22, 35]. We derandomize it
with a slight increase in running time and obtain a deterministic DSO in time O(Mn2.8068)
on directed graphs and Õ(Mn(ω+6)/3) = O(Mn2.7910) on undirected graphs.

The construction starts with a Core oracle that only reports very small distances, this is
then grown iteratively to cover longer paths until the distance between all pairs of vertices
are correctly determined. More formally, for a positive real r, let an r-truncated DSO report,
upon query (s, t, e), the value d(s, t, e) if it is at most r, and +∞ otherwise. The Core is an
nα-truncated DSO for some carefully chosen exponent α ∈ (0, 1). Each iteration invokes the
procedure Extend to turn an r-truncated DSO into an (3/2)r-truncated DSO. Note that we
can assume M = Õ(n(3−ω)/2) as otherwise the deterministic oracle in [4] with an Õ(mn)
preprocessing time already achieves Õ(Mn(ω+3)/2), even on directed weighted graphs. Hence,
log3/2(Mn) = O(log n) rounds of growing suffice to built the full oracle.

The iterative approach has the advantage that r-truncated DSOs for small r can be
computed fast. A bridging-set idea, see [36], is used for the extension. This significantly
increases the query time as the oracle has to cycle through the whole bridging set to compute
the distance. Ren [32] uses a clever observation, there attributed to Bernstein and Karger [4],
to reduce the query time of the extended DSO back to a constant, called the Fast procedure.

Randomness is employed at two points. First, the Core uses a series random subgraphs
of G. Secondly, Extend randomly samples a set of pivots to hit all replacement paths of
length between r and (3/2)r. The subsequent reduction in query time is deterministic.9 The
Core can be derandomized using a recent result by Karthik and Parter [28]. To derandomize
Extend, we adapt our technique introduced above. The key differences are that we now have
to take care of the edge weights, that is, the number of vertices of a path may be much
smaller than its length. Also, due to the iterative approach of not only the derandomization
but the actual construction via truncated DSOs, we cannot assume to have access to all
relevant paths right from the beginning. Instead, we have to make sure that all intermediary
oracles are path-reporting and that for the construction of the current hitting set we only use
paths of length at most r. The deterministic Core oracle hinges on the following lemma.

9 The relevant [32, Section 3] is phrased as randomized, but based on the derandomizable algorithm in [4].

ICALP 2022



68:14 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

▶ Lemma 15 (Karthik and Parter [28]). Given a (possibly weighted) graph G on n vertices
and a positive real r = nα for some α ∈ (0, 1), there is a deterministic algorithm computing
k = O(r2) spanning subgraphs G1, . . . , Gk of G in time Õ(kn2) such that for any pair of
vertices s, t ∈ V , edge e ∈ E, and replacement path P (s, t, e) on at most r edges, there exists
an index i such that Gi does not contain the edge e but all edges of P (s, t, e).

This derandomizes a construction by Weimann and Yuster [35] with the crucial difference
that the latter is only required to produce subgraphs such that for all pairs of vertices s, t

and edges e that admit possibly multiple replacement paths on at most r edges at least
one (instead of all) of them survives in one of the graphs Gi in which e was removed. This
relaxed condition is actually enough to build an r-truncated DSO and allows one to make
do with only Õ(r) random subgraphs, while we have O(r2) deterministic graphs. See also
the discussion in Section 1.3 of [28]. This is the sole reason for the increased running time
compared to the original result of Ren [32].

Given a graph G with integer edge weights in the range [1, M ], we invoke Lemma 15 to
obtain the subgraphs Gi. Recall that r = nα and let ω(1−α) be the infimum over all w such
that rectangular integer matrices with dimensions n× n1−α and n1−α × n can be multiplied
using O(nw) arithmetic operations, ω = ω(1) is the usual square matrix multiplication
coefficient. Using a variant of Zwick’s algorithm [36],10 we compute APSP restricted to paths
on at most r edges in time Õ(Mnω(1−α)r) per subgraph. If G is undirected, then this can
be done faster, namely, in Õ(Mnω) per graph with the algorithm of Shoshan and Zwick [34].
Both algorithms in [34, 36] can be adjusted to also compute the actual paths, represented as
predecessor trees, which increases the running time only by logarithmic factors.

To answer a query (s, t, e) we cycle through the Gi and, in case the edge e is missing,
retrieve the distance dGi(s, t). By Lemma 15, the minimum over all retrieved distances is the
correct replacement distance d(s, t, e). If this minimum is larger than r or no distance has
been retrieved at all (as the paths take more than r edges), we return +∞. Since the edge
weights are positive integers, every path of length at most r uses at most r edges, so we indeed
obtain an r-truncated DSO. If an actual replacement path is requested, we return a shortest
s-t-path in one of the Gi that attain the minimum. The resulting oracle has query time Õ(r2)
and a Õ(n2r2 +Mnω(1−α)r3) = Õ(Mnω(1−α)r3) preprocessing time on directed graphs (using
ω(1− α) ⩾ 2). On undirected graphs, this improves to Õ(n2r2 + Mnωr2) = Õ(Mnωr2).

As a technical subtlety, the Fast procedure needed to reduce the query time requires unique
shortest paths11 of the original graph G. They can be computed in time Õ(M1/2 n(ω+3)/2) [16,
32]. We will see later that this is not the bottleneck of the preprocessing.

▶ Lemma 16 (Ren [32]). From a directed graph G with integer edge weights in [1, M ], unique
shortest paths, and an r-truncated DSO with preprocessing time P and query time Q, one
can built in deterministic time P + Õ(n2) ·Q a r-truncated DSO for G with O(1) query time.

Without access to unique paths, the running time increases to P + Õ(Mn2) ·Q, see [31]. If
the oracle with query time Q (for the distance) is path-reporting (in O(1) time per edge),
then the new oracle is path-reporting with O(1) query time (for distances and edges) [32].

We now turn to the main part, where we derandomize the Extend procedure that turns
an r-truncated DSOs into (3/2)r-truncated DSOs. We adapt our technique to the iterative

10 The algorithm in [36] is also phrased as randomized, in the same work it is explained how to derandomize
it, increasing the running time only by polylogarithmic factors. The same holds for [34].

11 By unique shortest paths, we mean a collection P containing one shortest path for each pair of vertices
such that, for all s, t ∈ V , if P (s, t) ∈ P is the shortest path from s to t, then for every vertex u on
P (s, t), the path P (s, u) ∈ P is the prefix P (s, t)[s..u] and P (u, t) ∈ P is the suffix P (s, t)[u..t].



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:15

manner of construction and to the integer weights on the edges. In each stage, we only
have access to a truncated DSO. Still, we show how to deterministically compute a sequence
B1, B2, . . . of smaller and smaller sets, where Bi is used to derandomize the i-th application
of Extend. Again, the construction of Bi depends on the previous sets of pivots, namely,
on Bi−2. We first describe how to obtain the Bi satisfying certain useful properties and
afterwards verify that these properties indeed suffice to make Extend deterministic.

▶ Lemma 17. Let r1 ⩾ 1 be a real number and define ri+1 = (3/2)ri. For a graph G with
integer edge weights in [1, M ], let {Bi}i⩾1 be a family of subsets of V , such that, for each i,
(i) |Bi| = Õ(Mn/ri); (ii) for every pair of s, t ∈ V and e ∈ E with ri/2−M ⩽ d(s, t, e) ⩽ ri,
there exists a replacement path P (s, t, e) that contains a vertex of Bi. With access to the
shortest paths, a path-reporting ri-truncated DSO with O(1) query time, and the sets Bj with
j < i, one can compute each Bi deterministically in time Õ(M2 n2 + n2r2

1).

Proof. The proof is by induction over i. For the construction of Bi, we use the previous set
Bi−2. We set B−1 = B0 = V to unify notation. Following the outline of the derandomization
technique, we first assemble a set P of paths and then greedily compute a hitting set.

For each pair of vertices x, y ∈ Bi−2, we check whether the x-y-distance in the base graph
G is at most ri and, if so, retrieve a shortest path P (x, y). If P (x, y) additionally has length
at least ri/18, we add it to P . For each edge e on P (x, y) (regardless of the path being added
to P), we query the ri-truncated DSO whether the replacement distance is d(x, y, e) ∈ [ ri

18 , ri].
If so, we request a corresponding replacement path P (x, y, e) to add it to P.

Due to the positive weights, those paths have at most ri edges and can be obtained in
time O(ri). Assembling P thus takes time O(|Bi−2|2 r2

i ). If i ⩽ 2, this is O(n2 r2
1) since

r2 = (3/2)r1. For i ⩾ 3, we get Õ((Mn/ri−2)2 · r2
i ) = Õ(M2 n2) instead.

We deterministically compute a hitting set Bi for P. Since P contains at most |Bi−2|2 ·
ri paths with at least ri/(18M) edges each, whence Ω(ri/M) vertices, the set Bi has
Õ(n/(ri/M)) = Õ(Mn/ri) vertices and is computable in time Õ(|P| · (ri/M)). As before, for
i ⩽ 2, this is Õ(n2r2

1/M); and Õ(Mn2) otherwise. We get a running time of Õ(M2 n2 +n2r2
1).

It is left to prove that Bi indeed hits at least one replacement path for all s, t ∈ V and
e ∈ E that satisfy d(s, t, e) ∈ [ ri

2 −M, ri]. Let P (s, t, e) be such a path and define u to be the
first vertex on P (s, t, e) (starting from s) such that d(s, u, e) ⩾ (2/9)ri −M . If i ⩾ 3, then
ri−2 = (4/9)ri, whence d(s, u, e) ∈ [ ri−2

2 −M, ri−2
2 ) and the induction hypothesis implies

that there is some replacement path P ′ from s to u avoiding the edge e such that Bi−2
contains one vertex of P ′. Otherwise, if i ⩽ 2, the same fact simply follows from Bi−2 = V .

The path P ′ is not necessarily equal to the prefix of P (s, t, e)[s..u] (but they have the
same length d(s, u, e)). Replacing P (s, t, e)[s..u] with P ′ gives a new replacement path that
now has a pivot x ∈ Bi−2 on its prefix. Slightly abusing notation, we use P (s, t, e) to denote
also the updated path. Let v be the last vertex on P (s, t, e) with d(v, t, e) ⩾ (2/9)ri−M . By
the same argument, we can assume that the suffix of P (s, t, e)[v..t] contains a pivot y ∈ Bi−2.
In the remainder, we show that there is some replacement path P (x, y, e) that is hit by a
vertex in Bi. If so, replacing the middle part P (s, t, e)[x..y] with P (x, y, e) finally proves the
existence of a replacement path from s to t avoiding e and containing a vertex of Bi.

By the choice of the pivots x, y and the assumption d(s, t, e) ∈ [ ri

2 −M, ri], the replacement
distance d(x, y, e) satisfies

ri ⩾ d(s, t, e) ⩾ d(x, y, e) ⩾ d(s, t, e)− d(s, u, e)− d(v, t, e) ⩾ d(s, t, e)− 2
(

2ri

9 −M

)
⩾

ri

18 .

First, assume that the shortest path P (x, y) in the base graph G does not contain the edge e.
Then, P (x, y) can serve as the replacement path. It has length d(x, y) = d(x, y, e) between

ICALP 2022



68:16 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

ri/18 and ri, and we added it to P. Otherwise, it holds that e ∈ P (x, y). Observe that
d(x, y) ⩽ d(x, y, e) ⩽ ri remains true. Therefore, we have queried the ri-truncated DSO
with the triple (x, y, e). Due to d(x, y, e) ⩾ ri/18, we received a replacement path P (x, y, e),
which we added to P. In both cases, some replacement path is hit by Bi, as desired. ◀

At first glance, it looks like the quadratic dependence on M is too high to be used in the
derandomization. However, recall that we can assume M = Õ(n(3−ω)/2). Over the O(log n)
rounds with i ⩾ 3 and with access to the appropriately truncated DSOs, we can compute
the sets B3, B4, . . . in total time Õ(M2 n2) = Õ(Mn(7−ω)/2) = Õ(Mn2.5) even if ω = 2.

The next lemma is the last tool we need to construct the deterministic DSO.

▶ Lemma 18. Let G be a graph with integer edge weights in the range [1, M ], r ⩾ 1 a real
number, and B ⊆ V a set of Õ(Mn/r) vertices such that for every pair of s, t ∈ V and
e ∈ E with r/2−M ⩽ d(s, t, e) ⩽ r, there exists a replacement path P (s, t, e) that contains a
vertex of B. Given an r-truncated DSO for G with O(1) query time and the set B, one can,
without further preprocessing, construct an (3/2)r-truncated DSO with query time Õ(Mn/r).
Moreover, if the r-truncated DSO is path-reporting, so is the (3/2)r-truncated one.

Proof. For any query (s, t, e), let D(s, t, e) denote the returned value by the r-truncated DSO.
If D(s, t, e) ̸= +∞, we also take this as the answer of the (3/2)r-truncated DSO. Otherwise,
define ℓ = minz∈B{D(s, z, e) + D(z, t, e)}. If ℓ ⩽ (3/2)r, we return ℓ, and +∞ else. Path
queries are handled in the same fashion. In the case of D(s, t, e) ̸= +∞, we pass on the path
P (s, t, e) returned by the r-truncated DSO. If ℓ ⩽ (3/2)r, we return the concatenation of
P (s, z, e) and P (z, t, e) for some pivot z ∈ B that attains the minimum ℓ. The query time is
O(|B|) = Õ(Mn/r) for the distance, after which the path can be returned in O(1) per edge.

It is clear that the query algorithm is correct whenever d(s, t, e) ⩽ r as those queries are
entirely handled by the given truncated DSO. Moreover, even if d(s, t, e) > r, then ℓ is an
upper bound for d(s, t, e) because all sums D(s, z, e) + D(z, t, e) correspond to some path
from s to t avoiding e, but not necessarily a shortest path.

Let P = P (s, t, e) be a replacement path of length between r and (3/2)r, u the first
vertex on P (seen from s) with d(u, t, e) ⩽ r, and v the last vertex on P with d(s, v, e) ⩽ r.
Note that v lies between u and t on the path, whence d(u, v, e) ⩽ r. We further have

d(u, v, e) ⩾ d(s, t, e)−d(s, u, e)−d(v, t, e) = d(u, t, e)+d(s, v, e)−d(s, t, e) ⩾ 2r− 3
2r = r

2 .

By the properties of B, there exists some replacement path from u to v avoiding e that
contains a pivot z ∈ B. With the usual argument of swapping parts of the path, we can
assume z lies on the middle section of P (s, t, e) between u and v. By construction, we
have max{d(s, z, e), d(z, t, e)} ⩽ r so both distances (and corresponding paths) are correctly
determined by the r-truncated DSO. In summary, we get ℓ ⩽ d(s, z, e) + d(z, t, e) = d(s, t, e)
and the returned value ℓ is indeed the correct replacement distance. ◀

We are left to prove the final running time of the construction. Let r = nα be the cut-off
point for the distances at which we start the iterative growing. We build the Core DSO using
the O(r2) subgraphs, compute unique shortest paths in G, followed by O(log n) iterations of
Extend and Fast invocations, including the computation of the Bi. First, suppose the graph



Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:17

G is undirected. The total time is then

Õ(Mnωr2) + Õ(M1/2n(ω+3)/2) + Õ(Mn2.5 + n2r2) + Õ(n2) ·
O(log n)∑

i=1
Õ

(
Mn

(3/2)i r

)
= Õ

(
M1/2 n(ω+3)/2 + Mn2.5 + Mnωr2 + Mn3

r

)
= Õ

(
M1/2 n(ω+3)/2 + Mnmax{2.5, ω+2α, 3−α}

)
.

This is minimum for α = 1− (ω/3), where we get a running time of Õ(Mn(ω+6)/3).
For directed graphs, determining the best α is a bit more involved. Recall that O(nω(1−α))

is the time needed to multiply a n×n1−α matrix with an n1−α×n matrix. Computing the Core
oracle takes time Õ(Mnω(1−α) r3) = Õ(Mnω(1−α)+3α). With a similar calculation as above,
we obtain a total preprocessing time of Õ

(
M1/2 n(ω+3)/2 + Mnmax{2.5, ω(1−α)+3α, 3−α})

.
This is minimized if α solves the equation ω(1−α) = 3− 4α. Le Gall and Urrutia [19] gave
the current-best estimates for the values of the function ω. This shows that 1−α is between
0.8 and 0.85, and we have ω(0.8) ⩽ 2.222256 as well as ω(0.85) ⩽ 2.258317. We exploit the
fact that ω is convex [30], giving

ω(1− α) ⩽ (α− 0.15)ω(0.8) + (0.2− α)ω(0.85)
0.85− 0.8 ⩽ 2.3665− 0.72122α

Equating the latter with 3− 4α yields the estimate α ⩽ 0.193212, which in turn implies a
preprocessing time of Õ(Mn2.806788).

References
1 Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and Faster Matrix

Multiplication. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
522–539, 2021. doi:10.1137/1.9781611976465.32.

2 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

3 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant subgraph for single-
source reachability: General and optimal. SIAM Journal on Computing, 47:80–95, 2018.
doi:10.1137/16M1087643.

4 Aaron Bernstein and David R. Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices
and Edges. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

5 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Near-Optimal Deterministic
Single-Source Distance Sensitivity Oracles. In Proceedings of the 29th European Symposium
on Algorithms (ESA), pages 18:1–18:17, 2021. doi:10.4230/LIPIcs.ESA.2021.18.

6 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Space-Efficient Fault-
Tolerant Diameter Oracles. In Proceedings of the 46th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS), pages 18:1–18:16, 2021. doi:10.4230/LIPIcs.
MFCS.2021.18.

7 Greg Bodwin. Linear Size Distance Preservers. In Proceedings of the 28th Symposium on
Discrete Algorithms (SODA), pages 600–615, 2017. URL: http://dl.acm.org/citation.cfm?
id=3039686.3039725.

8 Jan van den Brand and Thatchaphol Saranurak. Sensitive Distance and Reachability Oracles
for Large Batch Updates. In Proceedings of the 60th Symposium on Foundations of Computer
Science (FOCS), pages 424–435, 2019. doi:10.1109/FOCS.2019.00034.

ICALP 2022

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1137/16M1087643
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
http://dl.acm.org/citation.cfm?id=3039686.3039725
http://dl.acm.org/citation.cfm?id=3039686.3039725
https://doi.org/10.1109/FOCS.2019.00034


68:18 Deterministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances

9 Shiri Chechik and Sarel Cohen. Near Optimal Algorithms for the Single Source Replacement
Paths Problem. In Proceedings of the 30th Symposium on Discrete Algorithms (SODA), pages
2090–2109, 2019. doi:10.1137/1.9781611975482.126.

10 Shiri Chechik and Sarel Cohen. Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In Proccedings of the 52nd Symposium on Theory of Computing
(STOC), pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

11 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ϵ)-Approximate f -Sensitive
Distance Oracles. In Proceedings of the 28th Symposium on Discrete Algorithms (SODA),
pages 1479–1496, 2017. doi:10.1137/1.9781611974782.96.

12 Shiri Chechik and Ofer Magen. Near Optimal Algorithm for the Directed Single Source
Replacement Paths Problem. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 81:1–81:17, 2020. doi:10.4230/LIPIcs.ICALP.
2020.81.

13 Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachandran. Oracles
for Distances Avoiding a Failed Node or Link. SIAM Journal on Computing, 37:1299–1318,
2008. doi:10.1137/S0097539705429847.

14 Ran Duan, Yong Gu, and Hanlin Ren. Approximate Distance Oracles Subject to Multiple
Vertex Failures. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
2497–2516, 2021. doi:10.1137/1.9781611976465.148.

15 Ran Duan and Seth Pettie. Dual-Failure Distance and Connectivity Oracles. In Proceedings
of the 20th Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. URL: https:
//dl.acm.org/citation.cfm?id=1496770.1496826.

16 Ran Duan and Seth Pettie. Fast Algorithms for (max,min)-Matrix Multiplication and Bottle-
neck Shortest Paths. In Proceedings of the 20th Symposium on Discrete Algorithms (SODA),
pages 384–391, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496813.

17 Ran Duan and Hanlin Ren. Maintaining Exact Distances under Multiple Edge Failures. In
Proceedings of the 54th Symposium on Theory of Computing (STOC), 2022. To appear.

18 Ran Duan and Tianyi Zhang. Improved Distance Sensitivity Oracles via Tree Partitioning. In
Proceedings of the 15th International Symposium on Algorithms and Data Structures (WADS),
pages 349–360, 2017. doi:10.1007/978-3-319-62127-2_30.

19 François Le Gall and Florent Urrutia. Improved Rectangular Matrix Multiplication using
Powers of the Coppersmith-Winograd Tensor. In Proceedings of the 29th Symposium on
Discrete Algorithms (SODA), pages 1029–1046, 2018. doi:10.1137/1.9781611975031.67.

20 François Le Gall. Faster Algorithms for Rectangular Matrix Multiplication. In Proceedings
of the 53rd Symposium on Foundations of Computer Science (FOCS), pages 514–523, 2012.
doi:10.1109/FOCS.2012.80.

21 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths. In Proceedings of the 53rd Symposium on Foundations
of Computer Science (FOCS), pages 748–757, 2012. doi:10.1109/FOCS.2012.17.

22 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms, 16:15:1–15:25, 2020. doi:10.1145/
3365835.

23 Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 76:1–76:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.76.

24 Manoj Gupta, Rahul Jain, and Nitiksha Modi. Multiple Source Replacement Path Problem.
In Proceedings of the 39th Symposium on Principles of Distributed Computing (PODC), pages
339–348, 2020. doi:10.1145/3382734.3405714.

25 Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic Dictionaries. Journal
of Algorithms, 41:69–85, 2001. doi:10.1006/jagm.2001.1171.

26 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional Hardness for Sensitivity Problems. In Proceedings of the 8th Conference on

https://doi.org/10.1137/1.9781611975482.126
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/1.9781611976465.148
https://dl.acm.org/citation.cfm?id=1496770.1496826
https://dl.acm.org/citation.cfm?id=1496770.1496826
http://dl.acm.org/citation.cfm?id=1496770.1496813
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1109/FOCS.2012.80
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.1145/3382734.3405714
https://doi.org/10.1006/jagm.2001.1171


Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck 68:19

Innovations in Theoretical Computer Science (ITCS), pages 26:1–26:31, 2017. doi:10.4230/
LIPIcs.ITCS.2017.26.

27 Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Finding Strong Bridges and
Strong Articulation Points in Linear Time. Theoretical Computer Science, 447:74–84, 2012.
doi:10.1016/j.tcs.2011.11.011.

28 Karthik C.S. and Merav Parter. Deterministic Replacement Path Covering. In Proceedings of
the 32nd Symposium on Discrete Algorithms (SODA), pages 704–723, 2021. doi:10.1137/1.
9781611976465.44.

29 Valerie King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In Proceedings of the 40th Symposium on Foundations of
Computer Science (FOCS), pages 81–91, 1999. doi:10.1109/SFFCS.1999.814580.

30 Grazia Lotti and Francesco Romani. On the Asymptotic Complexity of Rectangular Matrix
Multiplication. Theoretical Computer Science, 23:171–185, 1983. doi:10.1016/0304-3975(83)
90054-3.

31 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. In
Proceedings of the 28th European Symposium on Algorithms (ESA), pages 79:1–79:13, 2020.
doi:10.4230/LIPIcs.ESA.2020.79.

32 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time.
Journal of Computer and System Sciences, 123:159–170, 2022. Journal version of [31]. doi:
10.1016/j.jcss.2021.08.005.

33 Liam Roditty and Uri Zwick. Replacement Paths and k Simple Shortest Paths in Unweighted
Directed Graphs. ACM Transaction on Algorithms, 8:33:1–33:11, 2012. doi:10.1145/2344422.
2344423.

34 Avi Shoshan and Uri Zwick. All Pairs Shortest Paths in Undirected Graphs with Integer
Weights. In Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
pages 605–615, 1999. doi:10.1109/SFFCS.1999.814635.

35 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms, 9:14:1–14:13, 2013. doi:
10.1145/2438645.2438646.

36 Uri Zwick. All Pairs Shortest Paths Using Bridging Sets and Rectangular Matrix Multiplication.
Journal of the ACM, 49:289–317, 2002. doi:10.1145/567112.567114.

ICALP 2022

https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.4230/LIPIcs.ESA.2020.79
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1109/SFFCS.1999.814635
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/567112.567114

	1 Introduction
	1.1 Diameter and Eccentricity Oracles in Directed Graphs
	1.2 Derandomization Technique

	2 Preliminaries
	3 Diameter and Eccentricity Oracles
	3.1 Space Lower Bounds for Diameter Oracles
	3.2 Improved Upper Bounds
	3.3 Eccentricity Oracles

	4 Derandomization Framework
	5 Derandomizing Existing Sensitivity Oracles and Algorithms
	5.1 The Distance Sensitivity Oracle of Ren


