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a b s t r a c t

It is widely assumed that evolutionary algorithms for multi-objective optimization prob-
lems should use certain mechanisms to achieve a good spread over the Pareto front. In this
paper, we examine such mechanisms from a theoretical point of view and analyze sim-
ple algorithms incorporating the concept of fairness. This mechanism tries to balance the
number of offspring of all individuals in the current population. We rigorously analyze the
runtime behavior of different fairness mechanisms and present illustrative examples to
point out situations, where the right mechanism can speed up the optimization process
significantly. We also indicate drawbacks for the use of fairness by presenting instances,
where the optimization process is slowed down drastically.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In multi-objective optimization several often conflicting objective functions have to be optimized at the same time.
Hence, one usually does not search for a single optimal solution but a set of solutions representing all possible trade-
offs. Evolutionary Algorithms (EAs) constitute a versatile optimization paradigm from computational intelligence. Since
EAs evolve a set of solutions called population during the optimization process, it is quite natural to apply a certain kind of
EA called Multi-Objective Evolutionary Algorithm (MOEA) to approach the mentioned problems. MOEAs are applicable in
the so-called black box scenario [7] and have proven their usefulness in a plethora of applications. Although MOEAs seldom
constitute the most efficient algorithms for a given problem, their ability to produce good solutions for many problems
makes them a useful tool as well as an interesting topic for research.

Many MOEAs give priority to regions in the decision or objective space that have been rarely explored. This leads to the
use of fairness in evolutionary multi-objective optimization. The idea behind using fairness is that the number of offspring
generated by individuals with certain properties should be balanced. Different mechanisms for spreading the individuals in
the population over the Pareto front have been proposed. In NSGA-II [5] a uniform spread over the Pareto front should be
achieved by using a crowded comparison operator that gives individuals in less crowded regions a higher priority. SPEA2 [23]
uses a density estimator such that the fitness of an individual is given by its objective vector and a density value which
depends on the other individuals in the population. The goal of the density estimator is also to give individuals in less
crowded regions a higher priority. Our aim is to get a theoretical understanding how such fairness mechanisms influence
the optimization process.

✩ A preliminary version (Friedrich et al., 2008) [10] of this article appeared partially in the Proceedings of the 10th International Conference on Parallel
Problem Solving from Nature (PPSN 2008).
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Algorithm 1 Global SEMO
choose x ∈ Bn uniformly at random
set P := {x}
repeat

choose x ∈ P uniformly at random
create an offspring x′ by flipping each bit of xwith probability 1/n
if there is no y ∈ P with f (y) ≻ f (x′) then
set P :=


P \ {y ∈ P | f (x′) ≽ f (y)}


∪ {x′

}

end if
until some stopping criterion is met

The theoretical understanding of the runtime behavior of MOEAs is far behind their practical success. The first rigorous
runtime analyses of such algorithms have been carried out by Laumanns et al. [17] on some pseudo-Boolean functions.
They have investigated amutation-basedMOEA called Simple EvolutionaryMulti-objective Optimizer (SEMO) that searches
locally by flipping in each mutation step a single bit. In addition, they have considered a MOEA called Fair Evolutionary
Multi-objective Optimizer (FEMO) and shown that this algorithm slightly outperforms SEMO on a particular pseudo-
Boolean function called LOTZ (Leading Ones, Trailing Zeroes). Giel [12] has investigated SEMO with a mutation operator
that searches globally and called the algorithm Global SEMO. Global SEMO has also been considered for some well-known
combinatorial optimization problems [8,18,21]. On the other hand, different popular diversity mechanisms such as the use
of the hypervolume indicator [1–4,11], the ε-dominance approach [13,16,19,20] or the use of a density estimator [14] have
been studied from a theoretical point of view.

In this paper, we want to put forward the runtime analysis of MOEAs and consider how the use of fairness can influence
the runtime behavior (see also [10]). We investigate the concept of fairness introduced by Laumanns et al. [17]. The
implementation of this concept relies on several counters, where each individual in the population corresponds to one
of these counters. The counters measure the number of offspring that the corresponding group of individuals has created.
Fairness means to balance these counters to achieve that all groups have been granted the same chance to create a better
individual. There are twobasic ideas to link individualswith counters. The first idea is that individualswith the samedecision
vector share a counter and the second idea is that individuals with the same objective vector share a counter. Our goal is to
compare the runtime behavior of these two variants. Additionally, we consider Global SEMO for our comparisons to examine
situations, where the use of fairness in evolutionary multi-objective optimization is helpful.

The outline of this paper is as follows. A short introduction to multi-objective optimization and the algorithms that are
subject of our analyses are presented in Section 2. The differences between the two variants of fairness are worked out in
Sections 3 and 4. Section 5 points out situations, where both variants using fairness are not successful within polynomial
time with high probability, while Global SEMO is highly efficient. Finally, we finish with some concluding remarks.

2. Algorithms

We start with some basic notations and definitions that will be used throughout the paper. We denote the set of all
Boolean values by B and the set of all real numbers by R and investigate themaximization of functions f : Bn

→ Rm. We call
f objective function, Bn decision space, and Rm objective space. The elements of Bn are called decision vectors and the elements
ofRm objective vectors.We define that yweakly dominates y′, denoted by y ≽ y′, if and only if yi ≥ y′

i for all i ∈ {1, . . . ,m}, and
y dominates y′, denoted by y ≻ y′, if and only if y ≽ y′ and y ≠ y′, where y = (y1, . . . , ym) ∈ Rm and y′

= (y′

1, . . . , y
′
m) ∈ Rm

are two objective vectors.
The set Ff := {y ∈ f (Bn) | @y′

∈ f (Bn) : y′
≻ y} is called the Pareto front of f and the set Pf := f −1(Ff ) = {x ∈ Bn

|

@x′
∈ Bn

: f (x′) ≻ f (x)} the Pareto set of f . The elements of Ff and Pf are called Pareto optimal. The set {(x, f (x)) | x ∈ Pf }

constitutes the canonical solution of an optimization problemof the considered kind. In the literature a set {(x, f (x)) | x ∈ X}

with X ⊆ Pf is also considered as a valid solution if f (X) = Ff . This means that it is sufficient to determine for all Pareto-
optimal objective vectors y ∈ Ff at least one decision vector x ∈ Bn with f (x) = y.

We first consider Algorithm 1 called Global Simple Evolutionary Multi-objective Optimizer (Global SEMO). It has already
been discussed for the optimization of pseudo-Boolean functions [12] and different kinds of spanning tree problems [18,
21]. Global SEMO starts with an initial individual that is chosen uniformly at random from the underlying decision space.
In each generation an individual x is chosen randomly from the population P to produce an offspring x′ by mutation. In the
mutation step each bit of x is flipped with probability 1/n to produce x′. After that, x′ is added to P if it is not dominated by
any individual in P . If x′ is added to P , all individuals in P that are dominated by x′ or have the same objective vector as x′

are removed from P .
Laumanns et al. [17] argue that it can be beneficial when all individuals in the population have created roughly the

same number of offspring and introduced an algorithm called Fair Evolutionary Multi-objective Optimizer (FEMO). This
algorithm works with a local mutation operator and uses a counter for each individual in the population to measure the
number of offspring the corresponding individual has created. We investigate generalized variants of FEMO. Our algorithms
apply a global mutation operator and additionally accept individuals with the same objective vector as an individual in
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Algorithm 2 Global FEMOds

choose x ∈ Bn uniformly at random
set c(x) := 0
set P := {x}
repeat

choose x ∈ {y ∈ P | c(z) ≥ c(y) for all z ∈ P} uniformly at random
set c(x) := c(x) + 1
create an offspring x′ by flipping each bit of xwith probability 1/n
if there is no y ∈ P with f (y) ≻ f (x′) then

if x′ /∈ P then set c(x′) := 0 end if
set P :=


P \ {y ∈ P | f (x′) ≽ f (y)}


∪ {x′

}

end if
until some stopping criterion is met

Algorithm 3 Global FEMOos

choose x ∈ Bn uniformly at random
set c(f (x)) := 0
set P := {x}
repeat

choose x ∈ {y ∈ P | c(f (z)) ≥ c(f (y)) for all z ∈ P} uniformly at rand.
set c(f (x)) := c(f (x)) + 1
create an offspring x′ by flipping each bit of xwith probability 1/n
if there is no y ∈ P with f (y) ≻ f (x′) then

if f (x′) /∈ f (P) then set c(f (x′)) := 0 end if
set P :=


P \ {y ∈ P | f (x′) ≽ f (y)}


∪ {x′

}

end if
until some stopping criterion is met

the population. The use of a global mutation operator seems more appropriate as the ability to flip two or more bits in
a single mutation step is essential to escape from a local optimum. The relaxed acceptance rule also tends to improve the
optimization, since it allows the exploration of plateaus, i.e., regions in the decision spacewhose decision vectors aremapped
to the same objective vector. We distinguish two kinds of fairness depending on whether the fairness is ensured in the
decision or objective space.

The algorithmGlobal FEMOds (see Algorithm 2)maintains fairness with respect to the decision space. Resetting a counter
to 0 in the algorithm depends on the individuals in the current population. This implies that the algorithm forgets about
counter values for decision vectors that have been seen during the optimization process but are not part of the current
population. This phenomenon is of relevance if a decision vector re-enters the population which has been replaced in the
meantime by another decision vector which is mapped to the same objective vector. However, we think that this is a natural
way of implementing this idea of fairness as EAs are usually limited to the knowledge of the individuals that are contained
in the current population. Note that Global FEMOds coincides with Global SEMO [8,21], when the counter values do not
influence the search process, i.e., c(x) = 0 holds for each search point at each time step.

Consider a multi-objective optimization problem f : Bn
→ Rm. In this paper, we are interested in finding a collection of

decision vectors that represents all Pareto-optimal objective vectors. To bemore precise,we are interested in finding a subset
of the decision space that is mapped on the Pareto front of f . Thus the question arises whether it might be more beneficial
to associate each counter with an objective vector rather than a decision vector, since the latter approach emphasizes the
exploration of the objective space. The algorithmcalledGlobal FEMOos (seeAlgorithm3) implements fairness in the objective
space.

For our theoretical investigations carried out in the following sections, we count the number of iterations until a desired
goal has been achieved. Since we are interested in the discovery of all Pareto-optimal objective vectors, we count the
number of iterations until an individual for each objective vector of Ff has been included into the population and call it
the optimization time of the algorithm. The expectation of this value is called the expected optimization time.

3. Advantages of fairness in the decision space

The goal of the next two sections is to point out the differences that the use of different fairness mechanismsmight have.
Therefore, we examine situations, where the runtime behavior of the two variants differs significantly. To ease the notation
in the following sections wewill refer to the number of 0- and 1-bits in a decision vector x ∈ Bn as |x|0 and |x|1, respectively.

We start with the examination of a situation, where Global FEMOds is efficient while Global FEMOos is inefficient, and
therefore investigate the bi-objective function PL (PLateau) [9]. The function is similar to the well-known single-objective
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(a) Decision space. (b) Objective space.

Fig. 1. An illustration of the explored function PL. The left picture shows the decision space and the right picture shows the corresponding objective vectors.

function SPC (Short Path with Constant values) [15]. The function PL is illustrated in Fig. 1 and defined as follows:

PL(x) :=


(|x|0, 1) x /∈ {1i0n−i

| 1 ≤ i ≤ n},
(n + 1, 0) x ∈ {1i0n−i

| 1 ≤ i < n},
(n + 2, 0) x = 1n.

The function features the following properties. The decision space is partitioned into a short path SP := {1i0n−i
| 1 ≤ i ≤ n}

and its complementBn
\SP. The second objective of the function ensures that decision vectors fromone of thementioned sets

are comparablewhile decision vectors fromdifferent sets are incomparable. The Pareto front of PL isFPL = {(n, 1), (n+2, 0)}
and the Pareto set of PL is PPL = {0n, 1n

}. The set SP \ {1n
} constitutes a plateau, since all decision vectors are mapped to the

objective vector (n + 1, 0), while Bn
\ SP features a richer structure. Since PL(x) ≻ PL(x′) for x, x′

∈ Bn
\ SP iff |x|0 > |x′

|0,
the algorithms are directed to the Pareto-optimal decision vector 0n. This function has already been considered by Friedrich
et al. [9] who have shown that Global SEMO is inefficient on PL. The next theorem shows that Global FEMOos is also not
efficient on this function.

Theorem 1. The optimization time of the algorithm Global FEMOos on PL is 2Ω(n1/4) with probability 1 − 2−Ω(n1/3).

Proof. We show that the decision vector 1n is not created with probability 1 − 2−Ω(n1/3) within a phase of 2Ω(n1/4) steps.
The initial individual x ∈ Bn is not in SP with probability 1 − |SP|/2n

= 1 − 2−Ω(n), as it is chosen uniformly at random. In
addition, |x|1 ≤ (2/3)n holds with probability 1− 2−Ω(n) using Chernoff bounds. In the remainder of the proof we consider
a typical run consisting of phases of length n3/2.

Claim 1.1. Within the first n3/2 steps with probability 1 − 2−Ω(n1/3), the population P never contains 1n and at one time the
population P = {0n, 10n−1

} is reached.

Proof of Claim 1.1. The probability that a mutation flips at least i bits is upper bounded by
n
i


·


1
n

i

≤

 en
i

i
·


1
n

i

=

 e
i

i
.

Therefore, the probability that amutation flips at least n1/3 bits is upper bounded by (e/n1/3)n
1/3

= 2−Ω(n1/3 log n). This implies
that none of the first n3/2 mutations flips more than n1/3 bits with probability 1 − 2−Ω(n1/3 log n).

The probability to create and accept an offspring x′ with more 1-bits than its parent is at most 1/n, since x is required
to be in SP. Hence, the expected number of such steps is upper bounded by n1/2. Due to Chernoff bounds this happens at
most 2n1/2 times with probability 1− 2−Ω(n1/2). Hence, the number of 1-bits increases by at most 2n1/2

· n1/3
= o(n) which

implies that the decision vector 1n has not been found.
As atmost (1/2)n3/2 mutation trials are allocated to c((n+1, 0)), the individuals fromBn

\SP are chosen at least (1/2)n3/2

times for mutation. We consider the first (1/4)n3/2 of these mutation steps and show that the search point 0n is included
into the population. The probability that an offspring x′ of an individual x ∈ Bn

\ SP contains less 1-bits than x and is not
in SP is lower bounded by (|x|1 − 1)/en if |x|1 ≥ 2 and 1/en if |x|1 = 1. Therefore, the decision vector 0n is found after an
expected number of

en +

n−1−
i=2

en
i − 1

≤ en + en(ln(n − 2) + 1) ≤ en(ln n + 2)



1550 T. Friedrich et al. / Theoretical Computer Science 412 (2011) 1546–1556

individuals from Bn
\ SP have been chosen for mutation. Using Markov’s inequality the probability to discover the decision

vector 0n within 2en(ln n+2) steps is at least 1/2. Dividing (1/4)n3/2 steps into (1/(8en(ln n+2)))n3/2
= Ω(n1/3) phases of

length 2en(ln n+2) the decision vector 0n is reachedwith probability at least 1−2−Ω(n1/3). The remaining (1/4)n3/2 of these
mutation steps affect 0n. Therefore, the search point 10n−1 is included into the population with probability 1 − 2−Ω(n1/2)

using similar arguments. �

After having proven Claim 1.1, we now consider an additional phase of length n3/2. Within this phase a search point with
more than n/2 1-bits is not included into the population using previous arguments. Additionally, a situation is reached,
where c(n, 1) = c(n+1, 0) holds. From this point of time the two individuals with the objective vectors (n, 1) and (n+1, 0)
are alternately selected for mutation.We consider the situationwhen c(n, 1) = c(n+1, 0) holds for the first time and show
the following invariant to complete the proof.

Claim 1.2. Assume that 0n
∈ P andmaxx∈P |x|1 ≤ (n/2). Consider a non-empty phase of atmost n3/2 steps. Thenwith probability

1− 2−Ω(n1/3), the population never contains 1n and at one time a population P with 0n
∈ P andmaxx∈P |x|1 ≤ (n/2) is reached.

Proof of Claim 1.2. The search point 0n will not be removed from the population once it has been included. From the proof of
the previous claim,we already known that the decision vector 1n is not obtainedwithin a phase of n3/2 stepswith probability
1− 2−Ω(n1/3). The decision vector 0n is selected at least (1/2)n3/2

− 1 times for mutation within the considered phase. With
probability at least 1/(en) such a mutation produces the search point 10n−1. Hence, within the considered phase of length
n3/2 this holds with probability 1− 2−Ω(n1/2). Having produced the search point 10n−1, it replaces the previous search point
of SP in the population. Hence, the assumption of the claim is fulfilled again. �

We are now well equipped to finish the proof of Theorem 1. Considering the invariant of Claim 1.2 at most 2n1/4 times,
Global FEMOos does not create the decision vector 1n with probability 1 − 2−Ω(n1/3). This proves Theorem 1 as all failure
probabilities are bounded by 1 − 2−Ω(n1/3). �

Wewill see that Global FEMOds performsmuch better on PL than its counterpart Global FEMOos. The main reason for this
is that after a while the Pareto-optimal decision vector 0n is prevented from generating additional offspring that can stop
the random walk on the plateau.

Theorem 2. The expected optimization time of the algorithm Global FEMOds on PL is O(n3 log n).

Proof. Before showing that Global FEMOds quickly creates the decision vectors 0n and 1n we summarize some results
concerning PL. On the one hand, the decision vector 0n is created with probability at least 1/2 if at least γ n log n individuals
not from SP are chosen formutation, where γ > 0 is a constant (see the proof of Theorem 1). On the other hand, the decision
vector 1n is created with probability at least 1/2 if at least δn3 individuals from SP are chosen for mutation and all offspring
of individuals not contained in SP do not belong to SP, where δ > 0 is an appropriate constant (see [15]).

We show that the expected time until one decision vector of {0n, 1n
} is introduced into the population is O(n3 log n). We

observe a phase of length

ℓ := (2γ log n + 1) · (δn3
+ γ n log n) = O(n3 log n)

and distinguish two cases. If at least γ n log n individuals not from SP are chosen for mutation, the probability to find the
decision vector 0n is lower bounded by 1/2 according to the first statement. The probability that an offspring of an individual
not from SP belongs to SP is upper bounded by 1/n. Therefore, otherwise atmost 2γ log n offspring of individuals not from SP
belong to SP with probability at least 1/2 according to Markov’s inequality. Assuming that this has happened and applying
the pigeonhole principle we can be sure that the phase contains a sub-phase of length

δn3
+ γ n log n,

where no offspring of an individual not contained in SP belongs to SP. Thementioned sub-phase fulfills the second statement,
since at least δn3 individuals from SP are selected for mutation. Hence, the decision vector 1n is created with probability at
least 1/4. Since the probability to create the decision vector 0n or 1n in a phase of length ℓ is lower bounded by 1/4, an
expected number of at most 4ℓ = O(n3 log n) steps suffices.

We now consider the situation, where the decision vector 0n has been found and the decision vector 1n is still missing.
Observe a phase of length

ℓ′
:= (2e ln(2δn3) + 1) · (δn3

+ en ln(2δn3)) = O(n3 log n).

If 0n is selected at most en ln(2δn3) times, then the probability that at most 2e ln(2δn3) offspring of 0n are from SP is lower
bounded by 1/2 using Markov’s inequality. Assuming that this has happened the phase contains a sub-phase of length

δn3
+ en ln(2δn3)

in which at least δn3 individuals from SP are chosen for mutation and all offspring of the individual 0n do not belong to SP.
Hence, the probability that the missing decision vector 1n is found or the counter value c(0n) exceeds en ln(2δn3) is lower
bounded by 1/4. One of the mentioned events occurs after an expected number of at most 4ℓ′

= O(n3 log n) steps. If the
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(a) Decision space. (b) Objective space.

Fig. 2. An illustration of the explored function PLG. The left picture shows the decision space and the right picture shows the corresponding objective
vectors.

individual 1n still has not been found, we observe a phase of length 2en2
+ δn3. The probability to add a new individual

from SP to the population is lower bounded by 1/(en2) as at most 2 specific bits have to flip. This worst case occurs if 0n is
selected for mutation and 10n−1 is already contained in the population. Hence, the probability that in the first 2en2 steps of
the phase a new individual from SPwith an initial counter value of 0 is added to the population is lower bounded by 1/2 due
to Markov’s inequality. Assuming that this has happened the probability that the individual 0n is selected in the following
δn3 steps can be upper bounded as follows. The probability to reset the counter of the individual from SP is lower bounded
by 1/en. The probability that this does not happen in en ln(2δn3) consecutive steps is upper bounded by

1 −
1
en

en ln(2δn3)

≤ e− ln(2δn3)
=

1
2δn3

.

The probability that this does not happen in a phase of length δn3 is upper bounded by δn3
· 1/(2δn3) ≤ 1/2. We conclude

that the counter value of the actual individual from SP does not exceed en ln(2δn3)with probability at least 1/2 and therefore
the individual 0n is not chosen for mutation. Assuming that this has happened the probability that the decision vector 1n is
found is lower bounded by 1/2. Hence, the decision vector 1n is found in an expected number of 8 · (2en2

+ δn3) = O(n3)
steps.

We also have to examine the situation that the decision vector 1n has been found and the decision vector 0n is still
missing. Wewait until the population contains an additional individual not contained in SP and the counter value c(1n) is at
least as big as the counter value of this individual. Afterwards we observe a phase of length 2γ n log n. We can be sure that
at least γ n log n steps are allocated to individuals not from SP as c(1n) is never set to 0. Hence, after an expected number of
O(n log n) additional steps the decision vector 0n is added to the population. �

4. Advantages of fairness in the objective space

In this section, we point out situations, where the use of fairness in the objective space favors over fairness in the decision
space. We have already seen that the latter fairness mechanism enables a random walk on a plateau of constant fitness,
where the former fairness mechanism does not allow this kind of exploration. During the random walk the counter of the
individual on the plateau is set to 0 whenever a new individual on the plateau is created. This can also be a drawback of
fairness in the decision space as it might prevent the algorithm from improvements that are harder to obtain than finding a
new individual on the plateau.

The function that is used to point out the mentioned behavior is similar to the function PL that has been examined in
Section 3. To ease the following definition we assume that n = 8m,m ∈ N, and define

SP1 := {1i0n−i
| 1 ≤ i < 3n/4} and SP2 := {13n/4+2i0n/4−2i

| 0 ≤ i ≤ n/8}.

The function PLG (PLateau and Gaps) is illustrated in Fig. 2 and defined as follows:

PLG(x) :=


(|x|0, 1) x /∈ SP1 ∪ SP2,
(n + 1, 1) x ∈ SP1,
(n + 2 + i, 0) x = 13n/4+2i0n/4−2i.

Note that FPLG = {(n + 1, 1), (9n/8 + 2, 0)} and PPLG = SP1 ∪ {1n
}. The short path SP is divided into a plateau and a short

path with little gaps that leads to the second Pareto-optimal objective vector (9n/8 + 2, 0).
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The next theorem shows that Global FEMOos performs well on PLG.

Theorem 3. The expected optimization time of the algorithm Global FEMOos on PLG is O(n3).

Proof. An individual of SP1 ∪ SP2 is added to the population after an expected number of O(n log n) steps, since before the
achievement of such a situation the population contains one individual and the algorithmbehaves like (1+1) EA onOneMax
(see [6]).

We first consider the situationwhere this individual belongs to SP1. After an expectednumber ofO(n3) steps an individual
of SP2 is introduced into the population (see [15]). The probability to find a better individual of SP2 under the condition that
the individual of SP2 has been selected for mutation is lower bounded by (1/n)2(1− 1/n)n−2

≥ 1/(en2), as it suffices to flip
its two leftmost 0-bits. Hence, in expectation at most en2 attempts per non-optimal individual of SP2 are needed to improve
it. The counter of the Pareto-optimal individual of SP1 is never reset. Hence, the individual of SP2 is chosen at least once in
two consecutive iterations. Therefore, an expected number of at most 2 · n/8 · en2

= O(n3) steps is needed to obtain the
missing decision vector 1n.

In the case that the first individual of SP1 ∪ SP2 belongs to SP2 an individual of Bn
\ SP2 is created with probability at least

1/e in a mutation step as it suffices to flip a single bit. Hence, after an expected number of e = O(1) steps the population
contains besides a solution of SP2 an additional solution of Bn

\ SP2. A decision vector of SP1 is reached by allocating an
expected number of O(n log n) mutation trials to the individuals of Bn

\ SP2. We already know that O(n3) mutation trials
allocated to the individuals of SP2 are enough to reach the decision vector 1n which completes the proof. �

The next theorem states that Global FEMOds is inefficient on PLG. We will see that the random walk on the plateau
prevents the algorithm from following the short path to the second Pareto-optimal decision vector 1n.

Theorem 4. The optimization time of the algorithm Global FEMOds on PLG is 2Ω(n1/2) with probability 1 − 2−Ω(n1/2).

Proof. For the initial individual x holds |x|1 > 5n/8 with probability e−Ω(n) due to Chernoff bounds. One of the first 2n1/2

mutations flipsmore than n1/2 bits with probability 2−Ω(n1/2 log n) (cf. proof of Theorem 1).We assume that these events have
not happened and show that 1n is not found within a phase of length 2n1/2 with high probability.

We wait until the algorithm has generated for the first time an individual x ∈ SP2 with |x|1 ≥ 3n/4 + n1/2
− 1. As at

most n1/2 bits flip per mutation, we can be sure that |x|1 ≤ 3n/4 + 2n1/2
− 2 holds in the next step and that the population

contains an additional individual of SP1. The probability to generate a better individual of SP2 under the condition that the
individual of SP2 has been selected for mutation is upper bounded by 1/n2 since at least the two leftmost 0-bits of x have to
be flipped. The probability that n2

− 1 trials to find a better individual of SP2 fail is lower bounded by (1− 1/n2)n
2
−1

≥ 1/e.
As at most n1/2 bits flip per mutation, the algorithm is at least

n/4 − 2n1/2
+ 2

n1/2
=

n1/2

4
− 2 +

2
n1/2

≥
n1/2

8

times in the above situation. Hence, the probability that there is an individual x∗
∈ SP2 for which the first n2

− 1 trials to
find a better individual of SP2 fail is at least

1 −


1 −

1
e

n1/2/8

≥ 1 − 2−Ω(n1/2).

We upper bound the counter value of the individual of SP1 which shows that the algorithm is not able to find an individual
with more 1-bits than x∗. Note that there is at least one Hamming neighbor for the individual of SP1 that is mapped to the
same objective vector. Hence, the probability to reset the counter value of the individual of P ∩ SP1 is lower bounded by
1/en. Therefore, the probability that the counter value of an individual of SP1 reaches n2 is upper bounded by

1 −
1
en

n2−1

=


1 −

1
en

en·n/e

·
en

en − 1
≤ e−n/e

·
en

en − 1
= 2−Ω(n).

As the probability that this happens in the observed phase is upper bounded by 2n1/2
·2−Ω(n)

= 2−Ω(n), the statement of the
theorem follows. �

5. Drawbacks of fairness

The goal of this section is to point out the drawbacks that our fair selection mechanisms might have in comparison
to uniform selection. In particular, we are interested in describing a situation, where the use of fairness slows down the
optimization process significantly.

The function that is used to point out such situations is based on paths through the Boolean hypercube. The main idea is
that two paths lead to the Pareto front: a long one and a short one with little gaps. Global SEMO is able to follow the short
path and reaches the Pareto front in expected polynomial time. Due to their fairness mechanisms Global FEMOds and Global



T. Friedrich et al. / Theoretical Computer Science 412 (2011) 1546–1556 1553

FEMOos are not able to follow the short path. Hence, the last-mentioned algorithms have to follow the long path to reach
the Pareto front which requires an exponential number of steps.

Before we can define the function DP (Dual Path), we have to define long paths through the Boolean hypercube based on
a similar definition that can be found in [22]. These paths have been used to construct a unimodal function that serves as an
example on which (1 + 1) EA needs an exponential number of steps to find the global optimum [6].

Definition 1. Let n ∈ N and k ∈ N with n/k ∈ N. The long k-path Pn
k of dimension n is a finite sequence of bit-strings of

length n. The long k-path Pk
k of dimension k is defined as

(0k, 0k−111, . . . , 011k−1, 1k).

Let P ik
k = (p1, . . . , pℓ). The long k-path P (i+1)k

k of dimension (i + 1)k is defined as

(0kp1, . . . , 0kpℓ, 0k−111pℓ, . . . , 011k−1pℓ, 1kpℓ, . . . , 1kp1).

To illustrate the last definition we present the long 2-path P4
2 of dimension 4:

P4
2 = (0000, 0001, 0011, 0111, 1111, 1101, 1100).

The long k-path Pn
k = (p1, . . . , pℓ) of dimension n features the following basic properties. By definition all points on the

path are different. The length ℓ of Pn
k is given by

ℓ = (2n/k
− 1)k + 1.

The last statement can be proven by induction on k. The following statement highlights the neighborhood structure of the
points on Pn

k with respect to the Hamming distance H(·, ·). Let pi ∈ Pn
k and pj ∈ Pn

k be two points on Pn
k . The Hamming

distance of pi and pj holds H(pi, pj) = |i − j| if |i − j| < k and H(pi, pj) ≥ k if |i − j| ≥ k. The last statement which can also
be proven by induction on k implicates that following the path by flipping less than k bits per step it is impossible to take
shortcuts.

In addition, we define a short path with little gaps.

Definition 2. Let n ∈ N with n/2 ∈ N. The short path Q n of dimension n is a finite sequence of bit-strings of length n. The
short path Q n of dimension n is defined as

(0n, 120n−2, . . . , 1n−202, 1n).

To illustrate the last definition, we present the short path Q 4 of dimension 4:

Q 4
= (0000, 1100, 1111).

In the following, we assume that n = 2(2m)2, m ∈ N. We partition the bit-string x = (x1, . . . , xn) ∈ Bn into 2 blocks
(x1, . . . , xn/2) and (xn/2+1, . . . , xn) of length n/2 and use the symbol ◦ to denote the concatenation of bit-strings. In the
function definition we resort to the long

√
n/2-path

Pn/2
√
n/2 = (p1, . . . , pℓ)

of dimension n/2, the short path

Q n/2
= (q1, . . . , qℓ′)

of dimension n/2, and a weighted ZeroMax function

z(x) := n3
− n2

√
n/2−

i=1

xi −
n/2−

i=
√
n/2+1

xi − n
n−

i=n/2+1

xi

to simplify the proof of Theorem 6 below. Furthermore, we call the bit-strings contained in the set

W := {pi ◦ q1 | 1 < i ≤ ℓ} ∪ {p1 ◦ qj | 1 < j ≤ ℓ′
}

well formed. Now, we define the bi-objective function DP that is illustrated in Fig. 3:

DP(x) :=


(z(x)/n3, 2 + z(x)/n3) x /∈ W ,

(1 + i/ℓ, 1 + i/ℓ) x = pi ◦ q1, 1 < i < ℓ,

(2 + j/ℓ′, j/ℓ′) x = p1 ◦ qj, 1 < j < ℓ′,

(3, 3) x = pℓ ◦ q1 ∨ x = p1 ◦ qℓ′ .

Note that two decision vectors of one of the sets Bn
\ W , {pi ◦ q1 | 1 < i < ℓ}, and {p1 ◦ qj | 1 < j < ℓ′

} are comparable,
whereas two decision vectors of different sets are incomparable. We also point out that the decision vectors pℓ ◦ q1 and
p1 ◦ qℓ′ dominate all other decision vectors. Hence, FDP = {(3, 3)} and PDP = {1

√
n/20n−

√
n/2, 0n/21n/2

}.
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Fig. 3. An illustration of the explored function DP. The possible objective vectors are shown in red. Some exemplary decision vectors are marked in blue.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Before we state and prove our theorems, we explain the function DP informally. All decision vectors that are not well
formed, i.e., not of the form pi ◦ q1, 1 < i ≤ ℓ, or p1 ◦ qj, 1 < j ≤ ℓ′, are mapped on the line (0, 2) + λ(1, 1), 0 ≤ λ ≤ 1,
in the objective space. In this case, a decision vector with less 1-bits than another decision vector dominates the latter one.
After a while, the decision vector 0n

= p1 ◦ q1 is created. From now on, the considered algorithms create decision vectors
of the form pi ◦ q1, 1 < i < ℓ, or p1 ◦ qj, 1 < j < ℓ′. In these cases, a decision vector that is located closer to the end of
the respective path than another decision vector dominates the latter one. The function definition guarantees that the two
types of decision vectors are incomparable, as they aremapped on the lines (1, 1)+λ(1, 1), 0 < λ < 1, and (2, 0)+λ(1, 1),
0 < λ < 1, respectively. As a consequence, the considered algorithms follow both paths in parallel until one of the decision
vectors pℓ ◦ q1 and p1 ◦ qℓ′ is found. The properties of both paths are complementary to each other: The first path is long
while the second one is short and it is relatively easy to find a better decision vector on the first path while it is relatively
hard to find a better one on the second path.

The following theorems show that the optimization time can increase significantly by using a fair selection rule instead
of a uniform selection rule. We begin with a theorem that shows that Global SEMO is able to optimize DP efficiently.

Theorem 5. The expected optimization time of the algorithm Global SEMO on DP is O(n3).

Proof. Weupper bound the time needed to create the individual 0n/21n/2. If all individuals in the population arewell formed,
then exactly one half of the decision vector of each individual in the population equals 0n/2. Since the probability to flip a
single bit in this half is lower bounded by

n
2

·
1
n

·


1 −

1
n

n−1

≥
1
2e

,

we have to wait an expected number of at most 2e = O(1) steps until a not well-formed individual is introduced into the
population. Let x be the not well-formed individual in the population. If |x|1 > 0, then it is always possible to flip a single
1-bit of x to create a not well-formed individual x′ with |x′

|1 = |x|1 − 1. Since the population size is always upper bounded
by 3, the probability to create such an individual is at least

1
3

·
1
n

·


1 −

1
n

n−1

≥
1

3en
.

Hence, we have to wait an expected number of at most n · 3en = 3en2
= O(n2) steps until the individual 0n is introduced

into the population. The probability to introduce a new individual of the form p1 ◦qj, 1 < j ≤ ℓ′, into the population is lower
bounded by

1
3

·


1
n

2

·


1 −

1
n

n−2

≥
1

3en2
,

since a particular individual x ∈ P with x = p1 ◦ qj, 1 ≤ j < ℓ′, has to be chosen for mutation and its two leftmost 0-bits
have to be flipped. Hence, we have to wait an expected number of at most n/4 · 3en2

= 3en3/4 = O(n3) steps until the
individual 0n/21n/2 is introduced into the population. �

The next theorem shows that a fair selection mechanism can slow down the optimization process drastically.

Theorem 6. The optimization time of the two algorithms Global FEMOds and Global FEMOos on DP is 2Ω(n1/2) with probability
1 − 2−Ω(n1/2).
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Proof. Let k :=
√
n/2. For the initial individual xwe have

∑k
i=1(1− xi) < k/4 with probability 2−Ω(n1/2) and

∑n
i=n/2+1 xi >

3n/8 with probability 2−Ω(n) due to Chernoff bounds. The probability that one of the first 2
√
n/2 mutations flips at least k/4

bits is upper bounded by 2−Ω(n1/2 log n) (see proof of Theorem 1). We assume that these events have not happened.
We consider a phase of length 2

√
n/2 and show that Global FEMOds and Global FEMOos do not reach the Pareto front with

high probability. The weights in the definition of z ensure that
∑k

i=1(1 − xi) ≥ k/4 and
∑n

i=n/2+1 xi ≤ 3n/8 + 3k/4 always
hold for the individual x ∈ P \ W . Since less than k/4 bits flip per mutation, the first k bits of pi and the bits of qj of a
well-formed offspring pi ◦ qj of the individual x ∈ P \W contain more than 0 0-bits and less than 3n/8+ 3k/4+ k/4 1-bits,
respectively. Hence, we can be sure that pi and qj are not located too close to the end of the respective paths. More precisely,
the indices i and j can be upper bounded by

i ≤
ℓ + 1
2

and j <


1
2

·


3n
8

+
3k
4

+
k
4


+ 1 ≤

7n
32

.

The Pareto front can be reached via the short path or via the long one. The traversal of the long path is impossible, since its
second half consists of (ℓ− 1)/2 points and no shortcuts can be taken, since less than k bits flip per mutation, and therefore

(ℓ − 1)/2
k/4 − 1

=
(2

√
n/2

− 1)
√
n/2/2

√
n/2/4 − 1

> 2
√
n/2

advances are needed which exceeds the length of the considered phase.
Although the traversal of the short path is possible it is unlikely. The probability to progress on the short path is upper

bounded by 1/n2, since at least the 2 leftmost 0-bits of the so far best individual on the short path have to flip. As at least
(n/32)/(k/4 − 1) advances on the short path are necessary and n2

− 1 attempts to generate an onward individual on the
path fail with probability (1 − 1/n2)n

2
−1

≥ 1/e, one individual on the short path fails for n2
− 1 times to create a better

individual on the path with probability

1 −


1 −

1
e

(n/32)/(k/4−1)

= 1 − 2−Ω(n1/2).

We show that the mentioned individual never gets an additional chance to create a better offspring. It can only get a n2th
chance if the lowest counter value of an individual in the population reaches n2

− 1. In the considered phase the population
always contains an individual with a better Hamming neighbor. The probability to reach this Hamming neighbor is lower
bounded by 1/en. Hence, the probability that such an individual fails for n2

− 1 times to generate a better individual with
an initial counter value of 0 is at most

1 −
1
en

n2−1

≤ e−n/e
·

en
en − 1

= 2−Ω(n).

Therefore, the probability of the lowest counter value reaching n2
−1 in a phase of length 2

√
n/2 is atmost 2−Ω(n). Altogether,

the theorem follows. �

6. Summary and outlook

Popular variants of MOEAs use specific modules to explore the Pareto front of a given problem by favoring solutions
belonging to regions in the decision or objective space that are rarely covered. With this paper, we have contributed to the
understanding of such mechanisms by rigorous runtime analyses. We have shown that there are simple plateau functions
which cannot be optimized without fairness or with fairness in the objective space, but with a MOEA which implements
fairness in the decision space (cf. Section 3). We also proved that for certain ‘‘perforated’’ plateaus the impact of fairness
can be the other way around (cf. Section 4). Our analyses point out that a fair MOEA has a marked preference for accepting
quick small improvements. This can help to find new solutions close to the current population quicker. On the other hand,
this effect can prevent a fair MOEA from exploring parts of the Pareto front that are harder to find (cf. Section 5). Hence,
depending on the function the use of fairness significantly influences the runtime behavior of MOEAs.

After having gained some insight into MOEAs using fairness mechanisms, future work should concentrate on analyzing
the mechanisms of NSGA-II or SPEA2. Analyses for these mechanisms seem to be more complicated. Recently, initial results
regarding the behavior of the density estimator used in SPEA2 have been obtained in [14]. These results are for some
pseudo-Boolean functions that point out the impact of some basic properties of the density estimator with respect to the
runtime behavior of simple multi-objective evolutionary algorithms. However, further studies, in particular for classical
combinatorial optimization problems, are necessary to increase the theoretical understanding of such mechanisms for
natural optimization problems. These insights hopefully contribute to the design of improved algorithms.
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