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Abstract
In this paper we study the threshold model of geometric inhomogeneous random graphs (GIRGs); a
generative random graph model that is closely related to hyperbolic random graphs (HRGs). These
models have been observed to capture complex real-world networks well with respect to the structural
and algorithmic properties. Following comprehensive studies regarding their connectivity, i.e., which
parts of the graphs are connected, we have a good understanding under which circumstances a giant
component (containing a constant fraction of the graph) emerges.

While previous results are rather technical and challenging to work with, the goal of this paper
is to provide more accessible proofs. At the same time we significantly improve the previously
known probabilistic guarantees, showing that GIRGs contain a giant component with probability
1 − exp(−Ω(n(3−τ)/2)) for graph size n and a degree distribution with power-law exponent τ ∈ (2, 3).
Based on that we additionally derive insights about the connectivity of certain induced subgraphs of
GIRGs.
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1 Introduction

Geometric inhomogeneous random graphs (GIRGs) are a generative graph model where
vertices are weighted and placed in a geometric ground space and the probability for two of
them to be adjacent depends on the product of their weights, as well as their distance [19]. In
a sense the model combines the strengths of inhomogeneous random graphs [28] and random
geometric graphs [26]. Introduced as a simplified and more general version of hyperbolic
random graphs (HRGs) [23], GIRGs share crucial properties with complex real-world networks.
Such networks are typically characterized by a heterogeneous degree distribution (with few
high-degree vertices, while the majority of vertices has small degree), high clustering (vertices
with common neighbors are likely adjacent themselves), and a small diameter (longest
shortest path), and it has been shown that GIRGs and HRGs capture these properties
well [17, 19, 25].

Beyond these structural properties, GIRGs have also been observed to be a good model
for real-wold networks when it comes to the performance of graph algorithms [3]. This
makes the GIRG framework relevant for algorithmic purposes in multiple ways. On the one
hand, they are a useful tool in the context of average-case analysis, where they yield more
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realistic instances than, e.g., the Erdős–Rényi model, while it is still sufficiently simple to
be mathematically accessible [3, 7]. On the other hand, we can use GIRGs to generate an
abundance of benchmark instances with varying properties, allowing us to perform thorough
evaluations of algorithms even when real-world data is scarce [4, 5].

One of the most basic graph properties, which is also relevant from an algorithmic point
of view, is connectivity, i.e., the question about what parts of a graph are connected via paths.
For random graphs, the first question that typically arises in the context of connectivity
revolves around the emergence of a so-called giant component, which is a connected component
whose size is linear in the size of the graph. The existence of a giant has been researched
on many related graph models like Erdős–Rényi random graphs [12, 13], random geometric
graphs [2, 11, 26, 18], as well as on Chung-Lu random graphs that also capture inhomogeneous
random graphs [1, 9, 10].

Unsurprisingly, being such a fundamental feature, connectivity has also been studied on
GIRGs, and since HRGs are so closely related to them, we consider the corresponding results
to be relevant here as well. For HRGs we know how the emergence of a giant depends on
certain model properties that control the degrees of the resulting graph [6, 14]. We note
that some analyses there are based on a coupling from HRGs to a continuum percolation
model that exhibits a strong resemblance to GIRGs (see [14, Section 2] and [19, Part I,
Section 3.5]). Beyond the giant we also have bounds on the size of the second largest
component of HRGs [20]. For GIRGs it is known that a giant exists asymptotically almost
surely, i.e., with probability 1 − o(1) [21], with another proof giving a certainty of 1 − n−ω(1)

where n denotes the number of vertices in the graph [19, Theorem 4.2]. We note that the
specific function in the exponent has not been determined before.

In this paper, we answer this question, by showing that threshold GIRGs have a giant
component with probability at least 1 − exp(−Ω(n(3−τ)/2)). This improves the previous
results in two ways. First, our proof is simpler and shorter than the technical existing proofs
for HRGs [6, 14]. Secondly, our probability bound is substantially stronger compared to
previous bounds obtained for GIRGs. Moreover, we note that our improved bound does not
only hold for the full graph but also translates to subgraphs located in restricted regions
of the ground space. The argument for this is inspired by a technique used for HRGs [14,
Section 4] (though it is much simpler in our case).

Besides providing more accessible insights in the connectivity of GIRGs, we believe
that our results, in particular those on subgraphs in restricted regions, can be helpful for
algorithmic applications. For example in problems like balanced connected partitioning [8],
one is interested in partitioning a graph into connected components of (roughly) equal size
and in component order connectivity [16] the goal is to find a small separator that divides
the graph into components of bounded size. There it is important, that the graph cannot
only be separated into smaller pieces but that these pieces remain actually connected.

In the following, we give a brief overview of the basic concepts used in the paper (Section 2)
before presenting our proofs regarding the emergence of a giant in GIRGs (Section 3).

2 Preliminaries

Geometric Inhomogeneous Random Graphs. Let Bd = [0, 1]d be the d-dimensional hy-
percube (B for “box”) and let dist be the L∞ metric, i.e., for x = (x1, . . . , xd) ∈ Bd and
y = (y1, . . . , yd) ∈ Bd we have dist(x, y) = maxi∈[d] |xi − yj |.

A geometric inhomogeneous random graph (GIRG) G = (V, E) with ground space Bd

is obtained in three steps. The first step consists of a homogeneous Poisson point process
on Bd, with an intensity that yields n points in expectation. Each point is then considered to
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be a vertex in the graph. In the second step, each vertex v is assigned a weight wv > 1 that
is sampled according to a Pareto distribution with exponent τ ∈ (2, 3), i.e., Pr [wv ≤ w] =
1 − w−(τ−1). In the third step, any two vertices u and v are connected by an edge with a
probability that depends on their distance and their weights. More precisely, there are two
variants. In a threshold GIRG, u and v are adjacent if and only if

dist(u, v) ≤
(

λwuwv

n

)1/d

,

where the constant λ > 0 controls the expected average degree of the graph. We note
that the relation between λ and the corresponding average degree is not trivial and refer
to [5, Section 4.3] for details. In the temperate variant we have an additional temperature
parameter T ∈ (0, 1) and the probability for u and v to be adjacent is given by

Pr [{u, v} ∈ E] = min
{

1,

(
λwuwv

n · (dist(u, v))d

)1/T
}

.

The threshold variant is the limit of the temperature variant for T → 0. We denote the
resulting probability distribution of graphs with G(n,Bd, τ, λ, T ) for general GIRGs (allowing
temperatures in T ∈ [0, 1)). When we just refer to the threshold case, we use G(n,Bd, τ, λ).
We assume the parameters d, τ, λ, and T to be constant, i.e., independent of n.

GIRG Variants. In the literature, several variants of the GIRG model have been studied
and we want to briefly discuss the choice we made here. Usually, GIRGs are considered
with a torus Td as ground space, i.e., the distance in the ith dimension, between x and y

is min{|xi − yi|, 1 − |xi − yi|} instead of just |xi − yi|. The torus usually makes arguments
easier as it eliminates the special case close to the boundary of Bd. However, in our case,
this is not relevant. Moreover, as distances in Td are only smaller than in Bd, all our results
concerning the largest connected component directly translate to the case where Td is the
ground space.

Moreover, instead of sampling n points uniformly at random in the ground space, we use
a Poisson point process. This is a technique often used in geometric random graphs as it
makes the number of vertices appearing in disjoint regions stochastically independent. This is
a similar difference as the one between the Erdős–Rényi model G(n, m) with a fixed number
of edges m and the Gilbert model G(n, p) with a fixed probability p for each individual edge
to exist. While we generally advocate for using the Poisson variant of the GIRG model, we
note that our result carries over to the uniform model.

Poisson Point Process. Let R ⊆ Bd be a region of the ground space with volume a. Then,
the size of the vertex set V (R), i.e., the number of vertices that are sampled in R is a random
variable following a Poisson distribution with expectation µ = an. This in particular means
that the probability for R to contain no vertex is exp(−µ).

We note that the Poisson point process we consider is a marked process, where each
point sampled from Bd obtains a weight sampled from a weight space W as a mark. Due to
the marking theorem, this is equivalent to considering an (inhomogeneous) Poisson point
process of the product space Bd × W, i.e., colloquially speaking, each point pops up with a
position and a weight instead of initially only having a position and drawing the weight as
an afterthought. This is also equivalent to just sampling the number of points N following a
Poisson distribution and viewing the positions and the weights as marks that are sampled
subsequently for each of the N points. Throughout the paper, we switch between these
different perspectives without making this explicit.

ESA 2023
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Lowest Weights Dominate. We regularly consider weight ranges [w1, w2] with w2 ≥ c · w1
for a constant c > 1. The probability for a v to have weight in [w1, w2] is dominated by w1:

Pr [wv ∈ [w1, w2]] = w
−(τ−1)
1 − w

−(τ−1)
2 ≥ w

−(τ−1)
1 ·

(
1 − c−(τ−1)

)
∈ Θ(Pr [wv ≥ w1]).

3 Existence of a Giant Component

We want to show that a threshold GIRG is highly likely to contain a connected component
of linear size. Our argument goes roughly as follows. We first note that vertices with weight
at least

√
n/λ form a clique, which we call the core of the graph. For each non-core vertex,

we can show that the probability that it has a path into the core is non-vanishing, i.e., it is
lower bounded by a non-zero constant. This already shows that we get a connected graph of
linear size in expectation.

To show concentration, i.e., that we get a large connected component with the claimed
probability, we essentially need to show that the events for different low-weight vertices to
connect to the core are sufficiently independent of each other. To this end, we subdivide
the ground space into a grid of regular cells of side length ∆. We call a cell nice if a linear
number of its vertices connect to the core via paths not leaving the cell and then show that
a cell is nice with non-vanishing probability. As this only considers paths within the cell,
the different cells are independent. Thus, we get a series of independent coin flips, one for
each cell. If a constant fraction of these coin flips succeeds, we have a connected component
of linear size. Hence, if the number of cells is sufficiently large, we get concentration via a
Chernoff bound. It follows that we essentially want to choose the cell width ∆ to be as small
as possible such that cells are still nice with non-vanishing probability.

In Section 3.1, we first show that every vertex has constant probability to have a path to
the core. In fact, we show something slightly stronger, by considering not just any paths but
so-called layer paths. Afterwards, we use this result in Section 3.2, to bound the probability
for a cell to be nice. This then also informs us on how to choose the cell width ∆ and thus
on how many cells we obtain. With this, we can wrap up the argument in Section 3.3 by
applying a Chernoff bound. Besides our main results, we there also mention immediate
implications.

3.1 Layer Paths
We want to show that, for any individual vertex, the probability that it has a path to a vertex
of the core is non-vanishing. For this, we define the ℓ-th layer Vℓ to be the set of vertices with
weight in [eℓ/2, e(ℓ+1)/2). Note that the upper and lower bounds are a constant factor apart and
thus (as mentioned in Section 2) the probability for a vertex to have layer ℓ is asymptotically
dominated by the lower bound, i.e., Pr [v ∈ Vℓ] ∈ Θ(Pr

[
wv ≥ eℓ/2]) = Θ(e−ℓ(τ−1)/2).

A path (v0, . . . , vk) is a layer path if it goes from one layer to the next in every step, i.e.,
vi ∈ Vℓ implies vi−1 ∈ Vℓ−1 for every i ∈ [k]. Note that vertices in layer ⌈log(n/λ)⌉ have
weight at least

√
n/λ and thus belong to the core. Thus, the following lemma shows that

each vertex has a layer path to the core with non-vanishing probability.

▶ Lemma 1. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG and let v be a non-core vertex. The
probability that there is a layer path from v to layer ⌈log(n/λ)⌉ is non-vanishing.

Proof. We bound the probability that such a layer path exists in three steps. First, we
bound the probability that a vertex u on layer ℓ has a neighbor in layer ℓ + 1. In the second
step, we consider the intersection of the events where this happens on all considered layers.
Finally, we show that the resulting probability is non-vanishing.
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w
ℓ ℓ+ 1 ℓ+ 2

B

0

1

u

v

ℓ− 1

∆ℓ

Figure 1 Excerpt of a one-dimensional GIRG with the weights on the x-axis and the ground space
B on the y-axis. A layer path spans from layer ℓ − 1 to ℓ + 2. The gray region is the neighborhood of
vertex u. The dark-gray region contains all vertices in layer ℓ + 1 that have distance at most ∆ℓ to u.

For the first step, consider two vertices u ∈ Vℓ and v ∈ Vℓ+1 in consecutive layers, as
shown in Figure 1. Both their weights are at least w = eℓ/2. Thus, they are definitely
adjacent if their distance dist(u, v) satisfies

dist(u, v) ≤
(

λw2

n

)1/d

= λ1/d

(
eℓ

n

)1/d

=: ∆ℓ.

If vertex u ∈ Vℓ is the current vertex from which we want to make the next step in a layer path,
we are thus interested in the probability that there is a vertex v that lies in layer ℓ + 1 with
dist(u, v) ≤ ∆ℓ. Since these two events (being in layer ℓ+1 and having sufficiently low distance)
are independent, the probability that both happen is Pr [v ∈ Vℓ+1] · Pr [dist(u, v) ≤ ∆ℓ]. As
mentioned above, we have Pr [v ∈ Vℓ+1] ∈ Θ(e−ℓ(τ−1)/2). Moreover, Pr [dist(u, v) ≤ ∆ℓ] ∈
Θ(∆d

ℓ ) = Θ(eℓ/n). Hence, we obtain

Pr [v ∈ Vℓ+1] · Pr [dist(u, v) ≤ ∆ℓ] ∈ Θ
(

e−ℓ(τ−1)/2 · eℓ/n
)

= Θ
(

eℓ(3−τ)/2/n
)

.

To conclude the first step of the proof, let Xℓ be the number of vertices in layer ℓ + 1 with
distance at most ∆ℓ to u ∈ Vℓ. By the above probability, we have E[Xℓ] = Θ(eℓ(3−τ)/2).
We consider the event Xℓ > 0 and call it Aℓ. Note that Aℓ implies that u has at least one
neighbor in the next layer. As Xℓ follows a Poisson distribution, we get

Pr [Aℓ] = 1 − Pr [Xℓ = 0] = 1 − exp (−E[Xℓ]) = 1 − exp
(

−Θ
(

eℓ(3−τ)/2
))

.

In the second step of the proof, we now consider the intersection of all the independent
events A0, A1, . . . , A⌈log(n/λ)⌉, which is sufficient for a layer path starting in layer 0 to exist.
Note that a lower bound for the probability of this intersection also gives a lower bound for
the existence of a layer path starting in any other layer. To show that this intersection occurs
with non-vanishing probability, we utilize the fact that Pr [Aℓ] approaches 1 very quickly for
increasing ℓ. More precisely, we show that for a constant c, all subsequent events Aℓ with
ℓ ≥ c are sufficiently likely, that we can simply take the union bound over their complements.
Thus, we obtain

Pr

⌈log(n/λ)⌉⋂
ℓ=0

Aℓ

 = Pr
[

c−1⋂
ℓ=0

Aℓ

]
· Pr

⌈log(n/λ)⌉⋂
ℓ=c

Aℓ

 .

ESA 2023
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Clearly, the first factor is non-vanishing as it is the product of constantly many non-zero
constants. For the second factor, we consider the complementary events and apply the union
bound to obtain

Pr

⌈log(n/λ)⌉⋂
ℓ=c

Aℓ

 = 1 − Pr

⌈log(n/λ)⌉⋃
ℓ=c

AC
ℓ


≥ 1 −

⌈log(n/λ)⌉∑
ℓ=c

(1 − Pr [Aℓ])

= 1 −
⌈log(n/λ)⌉∑

ℓ=c

exp
(

−Θ(eℓ(3−τ)/2)
)

.

Since the sum converges, we can choose c to be a sufficiently large constant such that the
sum is bounded by any constant ε > 0. The above expression is thus at least 1 − ε, which is
non-vanishing. ◀

Observe that Lemma 1 already shows that the expected number of vertices with a layer
path to the core is linear. Thus, the expected size of the connected component including the
core vertices is linear. To show concentration, we separate the ground space into cells that
are then considered independently.

3.2 A Coin Flip for Each Cell
We subdivide the ground space into a grid of regular cells of side length ∆. We first show
that the high-weight vertices of each cell are likely to induce a connected graph. This is
useful as we can afterwards focus on vertices of lower weight. As edges between low-weight
vertices are short, layer paths on these vertices can cover only a small distance and thus only
few of them leave their cell, which makes different cells (mostly) independent.

▶ Lemma 2. Let G ∼ G(n,Bd, τ, λ) be threshold GIRG, let C be a cell of side length ∆, and
let w be a weight. Then, the graph induced by vertices in C of weight at least w is connected
with probability at least

1 − (2∆)d

λw2 · exp
(

−λw3−τ

2d

)
· n.

Proof. We discretize the cell C into sub-cells, such that vertices in adjacent sub-cells are
adjacent themselves, as shown in Figure 2. Note that two vertices u, v with weights wu, wv ≥ w

are adjacent if their distance is bounded by

dist(u, v) ≤
(

λw2

n

)1/d

.

Thus, all vertices in adjacent sub-cells are guaranteed to be adjacent, if the side length of a
sub-cell is

∆w = 1
2

(
λw2

n

)1/d

.

Note that for very large w, we get ∆w ≥ ∆, in which case all vertices in C are pairwise
adjacent with probability 1. In the following, we therefore assume that w is smaller. For a
given sub-cell C ′, we compute the probability for a given vertex v to lie in C ′ as
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B2

C

∆

∆w

u v

C ′

Figure 2 The cell C of width ∆ is divided into sub-cells of width ∆w. The sub-cell C′ is
completely contained in C. The vertices u and v are in adjacent sub-cells and are therefore adjacent
themselves.

Pr[v ∈ V (C ′)] = (∆w)d =
(

1
2

(
λw2

n

)1/d
)d

= λw2

2dn
.

Additionally, the probability for v to have weight at least wv ≥ w, is given by

Pr[wv ≥ w] = 1 − Pr[wv ≤ w] = w−(τ−1).

Together, we obtain

Pr[v ∈ V (C ′) ∧ wv ≥ w] = Pr[v ∈ V (C ′)] · Pr[wv ≥ w] = λw2

2dn
· w−(τ−1) = λw3−τ

2dn
.

Consequently, the expected number of vertices of weight at least w in C ′ is

E [|{v ∈ V (C ′) | wv ≥ w}|] = λw3−τ

2d
.

Since the vertices are distributed according to a Poisson distribution, the probability for C ′

to not contain any of these vertices is given by

Pr[{v ∈ V (C ′) | wv ≥ w} = ∅] = exp
(

−λw3−τ

2d

)
.

Finally, we lower-bound the probability for the vertices of weight at least w in our initial
cell C to induce a connected graph, by considering the probability that none of its sub-cells
is empty. Note that we have

k =
(⌊

∆
∆w

⌋)d

sub-cells C ′
1, . . . , C ′

k that are completely contained in the cell C. Clearly, whether the
remaining sub-cells (intersecting the boundary of C) are empty or not has no impact on the
connectedness of the considered subgraph. The probability for all of the sub-cells C ′

1, . . . , C ′
k

to be non-empty can be simplified by applying union bound, which yields

ESA 2023
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Pr[∀C ′ ∈ {C ′
1, . . . , C ′

k} : V (C ′) ̸= ∅] = (1 − Pr[V (C ′) = ∅])k

≥ 1 − k · Pr[V (C ′) = ∅]

= 1 −
(⌊

∆
∆w

⌋)d

· exp
(

−λw3−τ

2d

)
≥ 1 − ∆d · 2dn

λw2 · exp
(

−λw3−τ

2d

)
= 1 − (2∆)d

λw2 · exp
(

−λw3−τ

2d

)
· n. ◀

The following lemma shows that we basically get an independent coin-flip with non-
vanishing success probability for each cell to be nice. We want to point out three technical
details of the lemma statement here. First, the lemma specifically considers the connected
component containing a vertex of weight at least ŵ. We will later choose ŵ =

√
n/λ, i.e.,

this vertex is part of the core. As all core vertices form a clique, this makes sure that the
components we get for the individual cells actually connect to one large component in the
whole graph. Secondly, the lower bound on µ, which is the expected number of vertices in
the cell, given by µ = ∆dn, requires that the cells are sufficiently large to contain a vertex
of weight ŵ with non-vanishing probability. Thirdly, the lower bound on ŵ ensures that
vertices with higher weight are likely connected by Lemma 2.

▶ Lemma 3. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG, let ŵ be a weight, and let C

be a cell of side length ∆ containing µ vertices in expectation. Then, with non-vanishing
probability, the graph induced by the vertices in C contains a vertex of weight at least ŵ

whose connected component has size Θ(µ), if µ ≥ ŵτ−1, µ ∈ ω((log n)2/(3−τ) log log(n)d),
and ŵ ∈ ω((log n)1/(3−τ)).

Proof. The overall argument goes as follows. First, the lower bound on µ ensures that C

contains a vertex of weight ŵ with non-vanishing probability. For a smaller weight w ≤ ŵ, we
then apply Lemma 2 to get that all vertices of weight at least w form a connected component
asymptotically almost surely. Afterwards, it remains to show that enough vertices of lower
weight connect to a vertex of weight at least w via paths not leaving C. For the existence
of these paths, we use Lemma 1. To show that most of them do not leave C, we use that
the considered vertices have weight at most w and thus cannot deviate too much from the
starting position.

Recall that the weight of a vertex is at least ŵ with probability ŵ−(τ−1). Thus, the
expected number of vertices in cell C with weight at least ŵ is µŵ−(τ−1). Plugging in the
bound µ ≥ ŵτ−1, everything cancels and we obtain an expected value of 1. As the number
of vertices in C with weight above ŵ follows a Poisson distribution, we get at least one such
vertex with non-vanishing probability.

We set w = ((2d/λ) log n)1/(3−τ). Note that by the condition on ŵ in the lemma statement,
we have w ≤ ŵ for sufficiently large n. Note further that w is chosen such that the exponent
in the bound of Lemma 2 simplifies to − log n. Thus by Lemma 2, the graph induced by the
vertices of weight at least w in C is connected with probability at least 1 − (2∆)d/(λw2). As
∆ ≤ 1 and w is increasing with n, this goes to 1 for n → ∞.

Consider a vertex of weight below w. Then, by Lemma 1, it has a layer path to a vertex
with weight at least w with non-vanishing probability. In the following, with layer path we
always refer to a layer path that ends in the layer belonging to w. Note that a layer path
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has length at most O(log log n). Also note that the largest weight we encounter is in O(w)
as the path stops in the layer belonging to weight w and the weights increase only by a
constant factor between layers. It follows that, in each dimension, the distance between
two consecutive vertices on a layer path is in O((w2/n)1/d), as the vertices would not be
connected otherwise. Thus, the overall deviation of a layer path from the starting point
is upper bonded by O((w2/n)1/d log log n) = O

(
((log n)2/(3−τ) log log(n)d/n)1/d

)
. By the

second lower bound on µ, this is asymptotically less than ∆. Thus, shrinking C accordingly
from all directions yields a subregion C ′ that contains Θ(µ) vertices in expectation such that
any layer path that starts in C ′ stays in C.

Instead of counting all vertices in C ′ that have layer paths, we only count vertices in the
first layer. This has the advantage, that the event that an individual vertex in the first layer
has a layer path is independent of the number of vertices in the first layer (while it depends
on the number of vertices in higher layers). First note that the number of vertices in the
first level of C ′ is a random variable following a Poisson distribution with expected value in
Θ(µ). Thus, there are Θ(µ) such vertices with non-vanishing probability.

Now let X ∈ [0, 1] be the random variable that describes the fraction of vertices in the
first layer that fail to have a layer path. By Lemma 1, the probability for an individual
vertex to not have a layer path is a upper bounded constant p < 1 (i.e., the layer path exists
with non-vanishing probability at least 1 − p). Thus, we get E[X] ≤ p. Markov’s inequality
then gives us Pr [X ≥ c] ≤ p/c and thus Pr [X < c] ≥ 1 − p/c. We can choose c to be a
constant with p < c < 1, which gives us a non-vanishing probability that a fraction of at
least 1 − c > 0 vertices have the desired layer path. Note that this holds independently of
the number of vertices actually sampled in the first layer of C ′.

To wrap up, consider the three events that there exists a vertex of weight at least ŵ, that
there are Θ(µ) vertices in the first layer of C ′, and that a constant fraction of them have
layer paths. Note that the three events are independent and each holds with non-vanishing
probability. Thus, their intersection, which we denote with A, also holds with non-vanishing
probability. Finally, the event B that all vertices of weight at least w induce a connected
graph holds asymptotically almost surely. Though A and B are not independent, we can
apply the union bound to their complements to obtain that A and B together hold with
non-vanishing probability. ◀

3.3 Large Components are Likely to Exist
To obtain the following theorem, it remains to apply a Chernoff bound to the coin flips
obtained for each cell by Lemma 3.

▶ Theorem 4. Let G ∼ G(n,Bd, τ, λ) be a threshold GIRG. Then G has a connected
component of size Θ(n) with probability 1 − exp

(
−Ω(n(3−τ)/2)

)
.

Proof. First note that the probability to have ω(n) vertices is exponentially small and thus
we only have to show the lower bound on the size of the largest connected component. To
apply Lemma 3, we choose the cell width ∆ such that ∆dn = µ = ŵτ−1 where we set
ŵ =

√
n/λ. With this, we obtain that the number of cells k is

k ∈ Θ
(

1
∆d

)
= Θ

( n

ŵτ−1

)
= Θ

 n(√
n/λ

)τ−1

 = Θ
(

n
3−τ

2

)
.
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Note that this bound is valid even if ∆ does not divide the ground space evenly. Further
note that the chosen ∆ satisfies the conditions of Lemma 3, the graph induced by each cell
contains a vertex from the core whose connected component has size Θ(µ) with non-vanishing
probability. If this holds for a constant fraction of cells, we get a giant component, as all
vertices of weight at least ŵ form a clique in G. Thus, we have k independent coin flips,
each succeeding with a probability of p > 0, and we are interested in the number of successes
X. To show that X ∈ Θ(k) is highly likely, we can simply apply a Chernoff bound (see [24,
Theorem 4.4]). For δ ≥ 0, we get

Pr [X ≤ (1 − δ)E[X]] ≤ exp
(

−δ2

2 E[X]
)

.

As E[X] ∈ Θ(k), this implies Pr [X ∈ o(k)] ≤ exp (−Ω(k)). Inserting k yields the claim. ◀

As already mentioned in Section 2, this directly implies the following corollary.

▶ Corollary 5. Theorem 4 also holds with the torus T as ground space.

The following lemma states a well known property of GIRGs, see e.g. [19, Lemma 3.12]
and [22, Definition 2.8]. For the sake of transparency, we give a simple proof based on the
notation established throughout the paper.

▶ Lemma 6 (folklore). Let H ∼ G(n,Bd, τ, λ, T ) be a GIRG and let G be the subgraph induced
by the vertices within a cell of side length ∆ = (f(n)/n)1/d. Then G ∼ G(f(n),Bd, τ, λ, T ).

Proof. Note that we basically consider two ways to generate a graph and claim that they
give the same probability distribution over graphs. Intuitively, this can be seen by generating
points with weights in the cell [0, ∆]d, scaling it to the full ground space [0, 1]d, and making
three observations. First, for the vertex positions, this is equivalent to directly sampling
points in [0, 1]d. Secondly, the weight distribution is independent of the number of vertices.
Thirdly, the connection probabilities between vertices are the same in the scaled variant
as they are in the cell. To make this more formal, draw G as a subgraph of H as stated
in the lemma and draw G′ ∼ G(f(n),Bd, τ, λ, T ). We show that G and G′ follow the same
distribution.

Recall that we consider the Poisson variant of the GIRG model, i.e., the vertices are the
result of a Poisson point process in the product space Bd × W. Thus, the vertex set of G

can be generated by first determining the number of points nG with positions in [0, ∆]d,
which is a random variable following a Poisson distribution with expectation n · ∆d = f(n).
Then, independently for each of the nG vertices, a position is drawn uniformly at random
from [0, ∆]d and a weight is drawn from (1, ∞) with probability density function (τ −1) ·w−τ .

To generate G′, we can also first determine the number of points nG′ , which is also Poisson
distributed with expectation f(n). Thus, we can couple nG and nG′ to have the same value
and we assume a one-to-one correspondence between the vertices in G and G′ in the following.
For each vertex, the weight is again a random variable with density (τ − 1) · w−τ , which only
depends on τ . Thus, for each vertex, we can couple its weight in G with its weight in G′

to assume them to be equal. The position in G′ is drawn uniformly from [0, 1]d. Thus, we
can couple the random variables for the positions in G′ with those in G such that a vertex
with position x ∈ [0, ∆]d in G has position x/∆ in G′. Note that this has the effect that all
distances between vertices in G′ are scaled by a factor of 1/∆ compared to the corresponding
distance in G.
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It remains to show that for every vertex pair u, v the connection probability in G is the
same as in G′. Let wu and wv be the weight of u and v (which is the same for G and G′

due to the coupling). Also, let dist(u, v) be the distance between u and v in G and let
dist′(u, v) = dist(u, v)/∆ be their distance in G′. Then (for T > 0) the connection probability
of u and v in G is

Pr [{u, v} ∈ E] = min
{(

λwuwv

n dist(u, v)d

)1/T

, 1
}

.

The two things that change for G′ is that n is replaced by f(n) and dist(u, v)d is replaced by
dist′(u, v)d = (dist(u, v)/∆)d = n/f(n) · dist(u, v)d. The f(n) cancels out, yielding the same
connection probability for G and G′. For T = 0, the argument works analogously. ◀

Together with Theorem 4 this yields the following corollary. We note that this also yields
large connected components within cells that are too small to contain a core vertex. For
such cells, we know that we get a large connected component but we do not know whether it
connects to the giant of the whole graph. Clearly, the same statement holds with the torus
Td as ground space.

▶ Corollary 7. Let H ∼ G(n,Bd, τ, λ) be a threshold GIRG and let G be the subgraph induced
by the vertices within a cell of side length ∆ = (f(n)/n)1/d. Then G has a connected
component of size Θ(f(n)) with probability 1 − exp

(
−Ω(f(n)(3−τ)/2)

)
.

4 Conclusion

Our proof for the emergence of a giant component in geometric inhomogeneous random
graphs builds on three simple arguments. First, GIRGs are likely to contain a clique of
high-weight vertices. Second, the remaining vertices are sufficiently likely to connect to this
core via layer-paths, whose vertices have exponentially increasing weight. And, third, most
of these paths exist sufficiently independently from each other.

We note that the same argumentation also works for the closely related hyperbolic
random graph model, where the discretization into weight layers translates to a natural
discretization of the underlying geometric space that was previously used to bound the
diameter of HRGs [15].

Our resulting strong probability bound can be combined with a simple coupling argument
to identify connected subgraphs of arbitrary size in certain subregions of the geometric ground
space. In particular, when these subregions are the cells of a regular grid (as used several
times throughout the paper), we obtain connected subgraphs of roughly equal size. We believe
that this property can be utilized in the context of problems with connectivity constraints.
For example, in the previously mentioned balanced connected partitioning problem [8, 27],
the goal is to partition the vertices of a graph into a given number of sets of approximately
equal size, such that their induced subgraphs are connected. Moreover, in component order
connectivity [16] the aim is to find a minimum number of vertices such that after their removal
each connected component has bounded size. We conjecture that our structural insights in
Corollary 7 may prove useful in obtaining efficient algorithms for these problems on GIRGs
and the networks they represent well.
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