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Abstract
Schelling’s classical segregation model gives a coherent explanation for the wide-spread phenomenon
of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling
Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the
predominant type in their neighborhood, decide whether to change their types; similar to a new
agent arriving as soon as another agent leaves the vertex.

We investigate the probability that an edge {u, v} is monochrome, i.e., that both vertices u and v

have the same type in the FSP, and we provide a general framework for analyzing the influence of
the underlying graph topology on residential segregation. In particular, for two adjacent vertices,
we show that a highly decisive common neighborhood, i.e., a common neighborhood where the
absolute value of the difference between the number of vertices with different types is high, supports
segregation and, moreover, that large common neighborhoods are more decisive.

As an application, we study the expected behavior of the FSP on two common random graph
models with and without geometry: (1) For random geometric graphs, we show that the existence of
an edge {u, v} makes a highly decisive common neighborhood for u and v more likely. Based on
this, we prove the existence of a constant c > 0 such that the expected fraction of monochrome
edges after the FSP is at least 1/2 + c. (2) For Erdős–Rényi graphs we show that large common
neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is
at most 1/2 + o (1). Our results indicate that the cluster structure of the underlying graph has a
significant impact on the obtained segregation strength.
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1 Introduction

Residential segregation is a well-known sociological phenomenon [49] where different groups
of people tend to separate into largely homogeneous neighborhoods. Studies, e.g., [18], show
that individual preferences are the driving force behind present residential patterns and bear
much to the explanatory weight. Local choices therefore lead to a global phenomenon [47].
A simple model for analyzing residential segregation was introduced by Schelling [46, 47] in
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29:2 The Flip Schelling Process on Random Graphs

the 1970s. In his model, two types of agents, placed on a grid, act according to the following
threshold behavior, with τ ∈ (0, 1) as the intolerance threshold: agents are content with
their current position on the grid if at least a τ -fraction of neighbors is of their own type.
Otherwise they are discontent and want to move, either via swapping with another random
discontent agent or via jumping to a vacant position. Schelling demonstrated via simulations
that, starting from a uniform random distribution, the described process drifts towards strong
segregation, even if agents are tolerant and agree to live in mixed neighborhoods, i.e., if τ ≤ 1

2 .
Many empirical studies have been conducted to investigate the influence of various parameters
on the obtained segregation, see [8, 9, 25, 41, 45]. On the theoretical side, Schelling’s model
started recently gaining traction within the algorithmic game theory and artificial intelligence
communities [1, 11, 16, 17, 21, 22, 33], with focus on core game theoretic questions, where
agents strategically select locations. Henry et al. [31] described a simple model of graph
clustering motivated by Schelling where they showed that segregated graphs always emerge.
Variants of the random Schelling segregation process were analyzed by a line of work that
showed that residential segregation occurs with high probability [5, 7, 10, 13, 32, 51].

We initiate the study of an agent-based model, called the Flip Schelling Process (FSP),
which can be understood as the Schelling model in a saturated open city. In contrast to closed
cities [7, 13, 32, 51], which require fixed populations, open cities [4, 5, 10, 27] allow resident
to move away. In saturated city models, also known as voter models [20, 35, 36], vertices are
not allowed to be unoccupied, hence, a new agent enters as soon as one agent vacates a vertex.
In general, in voter models, two types of agents are placed on a graph. Agents examine their
neighbors and, if a certain threshold is of another type, they change their types. Also in
this model, segregation is visible. There is a line of work, mainly in physics, that studies
the voting dynamics on several types of graphs [3, 14, 37, 43, 50]. Related to voter models,
Granovetter [30] proposed another threshold model treating binary decisions and spurred a
number of research, which studied and motivated variants of the model, see [2, 34, 38, 44].

In the FSP, agents have binary types. An agent is content if the fraction of agents in
its neighborhood with the same type is larger than 1

2 . Otherwise, if the fraction is smaller
than 1

2 , an agent is discontent and is willing to flip its type to become content. If the fraction
of same type agents in its neighborhood is exactly 1

2 , an agent flips its type with probability 1
2 .

Starting from an initial configuration where the type of each agent is chosen uniformly at
random, we investigate a simultaneous-move, one-shot process and bound the number of
monochrome edges, which is a popular measurement for segregation strength [19, 26].

Close to our model is the work by Omidvar and Franceschetti [39, 40], who initiated an
analysis of the size of monochrome regions in the so called Schelling Spin Systems. Agents of
two different types are placed on a grid [39] and a geometric graph [40], respectively. Then
independent and identical Poisson clocks are assigned to all agents and, every time a clock
rings, the state of the corresponding agent is flipped if and only if the agent is discontent w.r.t.
a certain intolerance threshold τ regarding the neighborhood size. The model corresponds to
the Ising model with zero temperature with Glauber dynamics [15, 48].

The commonly used underlying topology for modeling the residential areas are (toroidal)
grid graphs [11, 32, 39], regular graphs [11, 17, 21], paths [11, 33], cycles [4, 6, 7, 13, 51]
and trees [1, 11, 22, 33]. Considering the influence of the given topology that models the
residential area regarding, e.g., the existence of stable states and convergence behavior
leads to phenomena like non-existence of stable states [21, 22], non-convergence to stable
states [11, 17, 21], and high-mixing times in corresponding Markov chains [10, 28].

To avoid such undesirable characteristics, we suggest to investigate random geometric
graphs [42], like in [40]. Random geometric graphs demonstrate, in contrast to other random
graphs without geometry, such as Erdős–Rényi graphs [23, 29], community structures, i.e.,
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Figure 1 The fraction of monochrome edges after the Flip Schelling Process (FSP) in Erdős–Rényi
graphs and random geometric graphs for different graph sizes (number of vertices n) and different
expected average degrees. Each data point shows the average over 1000 generated graphs with one
simulation of the FSP per graph. The error bars show the interquartile range, i.e., 50 % of the
measurements lie between the top and bottom end of the error bar.

densely connected clusters of vertices. An effect observed by simulating the FSP is that the
fraction of monochrome edges is significantly higher in random geometric graphs compared
to Erdős–Rényi graphs, where the fraction stays almost stable around 1

2 , cf. Fig 1.
We set out for rigorously proving this phenomenon. In particular, we prove for random

geometric graphs that there exists a constant c such that, given an edge {u, v}, the probability
that {u, v} is monochrome is lower-bounded by 1

2 + c, cf. Theorem 6. In contrast, we show
for Erdős–Rényi graphs that segregation is not likely to occur and that the probability that
{u, v} is monochrome is upper-bounded by 1

2 + o (1), cf. Theorem 17.
We introduce a general framework to deepen the understanding of the influence of the

underlying topology on residential segregation. To this end, we first show that a highly decisive
common neighborhood supports segregation, cf. Section 3.1. In particular, we provide a lower
bound on the probability that an edge {u, v} is monochrome based on the probability that
the difference between the majority and the minority regarding both types in the common
neighborhood, i.e., the number of agents which are adjacent to u and v, is larger than their
exclusive neighborhoods, i.e., the number of agents which are adjacent to either u or v. Next,
we show that large sets of agents are more decisive, cf. Section 3.2. This implies that a large
common neighborhood, compared to the exclusive neighborhood, is likely to be more decisive,
i.e., makes it more likely that the absolute value of the difference between the number of
different types in the common neighborhood is larger than in the exclusive ones. These
considerations hold for arbitrary graphs. Hence, we reduce the question concerning a lower
bound for the fraction of monochrome edges in the FSP to the probability that, given {u, v},
the common neighborhood is larger than the exclusive neighborhoods of u and v, respectively.

For random geometric graphs, we prove that a large geometric region, i.e., the intersecting
region that is formed by intersecting disks, leads to a large vertex set, cf. Section 3.3, and
that random geometric graphs have enough edges that have sufficiently large intersecting
regions, cf. Section 3.4, such that segregation is likely to occur. In contrast, for Erdős–Rényi
graphs, we show that the common neighborhood between two vertices u and v is with high
probability empty and therefore segregation is not likely to occur, cf. Section 4.

Overall, we shed light on the influence of the structure of the underlying graph and
discovered the significant impact of the community structure as an important factor on the
obtained segregation strength. We reveal for random geometric graphs that already after
one round a provable tendency is apparent and a strong segregation occurs.

ISAAC 2021



29:4 The Flip Schelling Process on Random Graphs

2 Model and Preliminaries

Let G = (V, E) be an unweighted and undirected graph, with vertex set V and edge set E. For
any vertex v ∈ V , we denote the neighborhood of v in G by Nv = {u ∈ V : {u, v} ∈ E} and
the degree of v in G by δv = |Nv|. We consider random geometric graphs and Erdős–Rényi
graphs with a total of n ∈ N+ vertices and an expected average degree δ > 0.

For a given r ∈ R+, a random geometric graph G ∼ G(n, r) is obtained by distributing n

vertices uniformly at random in some geometric ground space and connecting vertices u and v

if and only if dist(u, v) ≤ r. We use a two-dimensional toroidal Euclidean space with total
area 1 as ground space. More formally, each vertex v is assigned to a point (v1, v2) ∈ [0, 1]2
and the distance between u = (u1, u2) and v is dist(u, v) =

√
|u1 − v1|2◦ + |u2 − v2|2◦ for

|ui − vi|◦ = min{|ui − vi|, 1 − |ui − vi|}. We note that using a torus instead of, e.g., a unit
square, has the advantage that we do not have to consider edge cases, for vertices that are
close to the boundary. In fact, a disk of radius r around any point has the same area πr2.
Since we consider a ground space with total area 1, r ≤ 1√

π
. As every vertex v is connected

to all vertices in the disk of radius r around it, its expected average degree is δ = (n − 1)πr2.
For a given p ∈ [0, 1], let G(n, p) denote an Erdős–Rényi graph. Each edge {u, v} is

included with probability p, independently from every other edge. It holds that δ = (n − 1)p.
Consider two different vertices u and v. Let Nu∩v := |Nu ∩ Nv| be the number of vertices

in the common neighborhood, let Nu\v := |Nu \ Nv| be the number of vertices in the exclusive
neighborhood of u, and let Nv\u := |Nv \ Nu| be the number of vertices in the exclusive
neighborhood of v. Furthermore, with Nu∪v := |V \ (Nu ∪ Nv)|, we denote the number of
vertices that are neither adjacent to u nor to v.

Let G be a graph where each vertex represents an agent of type t+ or t−. The type of
each agent is chosen independently and uniformly at random. An edge {u, v} is monochrome
if and only if u and v are of the same type. The Flip Schelling Process (FSP) is defined as
follows: an agent v whose type is aligned with the type of more than δv/2 of its neighbors
keeps its type. If more than δv/2 neighbors have a different type, then agent v changes its
type. In case of a tie, i.e., if exactly δv/2 neighbors have a different type, then v changes its
type with probability 1

2 . FSP is a simultaneous-move, one-shot process, i.e., all agents make
their decision at the same time and, moreover, only once.

For x, y ∈ N, we define [x..y] = [x, y] ∩ N and for x ∈ N+, we define [x] = [1..x].

2.1 Useful Technial Lemmas
In this section, we state several lemmas that we will use in order to prove our results in the
next sections.

▶ Lemma 1. Let X ∼ Bin(n, p) and Y ∼ Bin(n, q) with p ≥ q be independent. Then
Pr [X ≥ Y ] ≥ 1

2 .

Proof. Let Y1, . . . , Yn be the individual Bernoulli trials for Y , i.e., Y =
∑

i∈[n] Yi. Define new
random variables Y ′

1 , . . . , Y ′
n such that Yi = 1 implies Y ′

i = 1 and if Yi = 0, then Y ′
i = 1 with

probability (p − q)/(1 − q) and Y ′
i = 0 otherwise. Note that for each individual Y ′

i , we have
Y ′

i = 1 with probability p, i.e., Y ′ =
∑

i∈[n] Y ′
i ∼ Bin(n, p). Moreover, as Y ′ ≥ Y for every

outcome, we have Pr [X ≥ Y ] ≥ Pr [X ≥ Y ′]. It remains to show that Pr [X ≥ Y ′] ≥ 1
2 .

As X and Y ′ are equally distributed, we have Pr [X ≥ Y ′] = Pr [X ≤ Y ′]. Moreover, as
one of the two inequalities holds in any event, we get Pr [X ≥ Y ′] + Pr [X ≤ Y ′] ≥ 1, and
thus equivalently 2Pr [X ≥ Y ′] ≥ 1, which proves the claim. ◀
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▶ Lemma 2. Let n ∈ N+, p ∈ [0, 1), and let X ∼ Bin(n, p). Then, for all i ∈ [0..n], it holds
that Pr [X = i] ≤ Pr [X = ⌊p(n + 1)⌋].

Proof. We interpret the distribution of X as a finite series and consider the sign of the
differences of two neighboring terms. A maximum of the distribution of X is located at
the position at which the difference switches from positive to negative. To this end, let
b : [0, n − 1] → [−1, 1] be defined such that, for all i ∈ [0, n − 1] ∩ N, it holds that

b(d) =
(

n

d + 1

)
pd+1(1 − p)n−d−1 −

(
n

d

)
pd(1 − p)n−d.

We are interested in the sign of b. In more detail, for any d ∈ [0, n − 2] ∩ N, if sgn
(
b(d)

)
≥ 0

and sgn
(
b(d + 1)

)
≤ 0, then d + 1 is a local maximum. If the sign is always negative, then

there is a global maximum in the distribution of X at position 0.
In order to determine the sign of b, for all i ∈ [0..n − 1], we rewrite

b(i) = n!
i!(n − i − 1)!p

i(1 − p)n−i−1 p

i + 1 − n!
i!(n − i − 1)!p

d(1 − p)n−i−1 1 − p

n − i

= n!
i!(n − i − 1)!p

i(1 − p)n−i−1
(

p

i + 1 − 1 − p

n − i

)
.

Since the term n!pi(1 − p)n−i−1 is always non-negative, the sign of b(i) is determined by the
sign of p/(i + 1) − (1 − p)/(n − i).

Solving for i, we get that

p

i + 1 − 1 − p

n − i
≥ 0 ⇔ i ≤ p(n + 1) − 1.

Note that p(n + 1) − 1 may not be integer. Further note that the distribution of X is
unimodal, as the sign of b changes at most once. Thus, each local maximum is also a global
maximum. As discussed above, the largest value d ∈ [0, n − 2] ∩ N such that sgn

(
b(d)

)
≥ 0

and sgn
(
b(d + 1)

)
≤ 0 then results in a global maximum at position d + 1. Since d needs to

be integer, the largest value that satisfies this constraint is ⌊p(n + 1) − 1⌋. If the sign of b

is always negative (p ≤ 1/(n + 1)), then the distribution of X has a global maximum at 0,
which is also satisfied by ⌊p(n + 1) − 1⌋ + 1, which concludes the proof. ◀

▶ Theorem 3 (Stirling’s Formula [24, page 54]). For all n ∈ N+, it holds that
√

2πnn+1/2 e−n · e(12n+1)−1
< n! <

√
2πnn+1/2 e−n · e(12n)−1

.

▶ Corollary 4. For all n ≥ 2 with n ∈ N, it holds that

n! >
√

2πnn+1/2 e−n and (1)

n! < e nn+1/2 e−n . (2)

Proof. For both inequalities, we aim at using Theorem 3.
Equation (1): Note that e(12n+1)−1

> 1, since 1
12n+1 > 0. Hence,

√
2πnn+1/2 e−n <

√
2πnn+1/2 e−n · e(12n+1)−1

.

Equation (2): We prove this case by showing that
√

2π e(12n)−1
< e . (3)

ISAAC 2021
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Note, that e(12n)−1 is strictly decreasing. Hence, we only have to check whether Equation (3)
holds for n = 2.

√
2π e(12n)−1

≤
√

2π e 1
24 < 2.7 < e . ◀

▶ Lemma 5. Let A, B, and C be random variables such that Pr [A > C ∧ B > C] > 0 and
Pr [A > C ∧ B ≤ C] > 0. Then Pr [A > B ∧ A > C] ≥ Pr [A > B] · Pr [A > C].

Proof. Using the definition of conditional probability, we obtain

Pr [A > B ∧ A > C] = Pr [A > B | A > C ] · Pr [A > C] .

Hence, we are left with bounding Pr [A > B | A > C ] ≥ Pr [A > B]. Partitioning the sample
space into the two events B > C and B ≤ C and using the law of total probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B | A > C ∧ B > C]
+ Pr [B ≤ C | A > C ] · Pr [A > B | A > C ∧ B ≤ C] .

Note that the condition A > C ∧ B ≤ C already implies A > B and thus the last probability
equals to 1. Moreover, using the definition of conditional probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B ∧ A > C ∧ B > C]
Pr [A > C ∧ B > C]

+ Pr [B ≤ C | A > C ] .

Using that Pr [B > C | A > C ] ≥ Pr [A > C ∧ B > C], that A > B ∧ B > C already
implies A > C, that Pr [B ≤ C | A > C ] ≥ Pr [A > B ∧ B ≤ C], and finally the law of total
probability, we obtain

Pr [A > B | A > C] ≥ Pr [A > B ∧ A > C ∧ B > C] + Pr [B ≤ C | A > C ]
= Pr [A > B ∧ B > C] + Pr [B ≤ C | A > C ]
≥ Pr [A > B ∧ B > C] + Pr [A > B ∧ B ≤ C]
= Pr [A > B] . ◀

3 Monochrome Edges in Geometric Random Graphs

In this section, we prove the following main theorem.

▶ Theorem 6. Let G ∼ G(n, r) be a random geometric graph with expected average degree
δ = o (

√
n). The expected fraction of monochrome edges after the FSP is at least

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).

Note that the bound in Theorem 6 is bounded away from 1
2 for all δ ≥ 2. Moreover, the two

factors depending on δ go to 1
2 and 1, respectively, for a growing δ.

Given an edge {u, v}, we prove the above lower bound on the probability that {u, v} is
monochrome in the following four steps.
1. For a vertex set, we introduce the concept of decisiveness that measures how much the

majority is ahead of the minority in the FSP. With this, we give a lower bound on
the probability that {u, v} is monochrome based on the probability that the common
neighborhood of u and v is more decisive than their exclusive neighborhoods.
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2. We show that large neighborhoods are likely to be more decisive than small neighborhoods.
To this end, we give bounds on the likelihood that two similar random walks behave
differently. This step reduces the question of whether the common neighborhood is more
decisive than the exclusive neighborhoods to whether the former is larger than the latter.

3. Turning to geometric random graphs, we show that the common neighborhood is suf-
ficiently likely to be larger than the exclusive neighborhoods if the geometric region
corresponding to the former is sufficiently large. We do this by first showing that the ac-
tual distribution of the neighborhood sizes is well approximated by independent binomial
random variables. Then, we give the desired bounds for these random variables.

4. We show that the existence of the edge {u, v} in the geometric random graph makes it
sufficiently likely that the geometric region hosting the common neighborhood of u and v

is sufficiently large.

3.1 Monochrome Edges via Decisive Neighborhoods
Let {u, v} be an edge of a given graph. To formally define the above mentioned decisiveness,
let N+

u∩v and N−
u∩v be the number of vertices in the common neighborhood of u and v that

are occupied by agents of type t+ and t−, respectively. Then Du∩v := |N+
u∩v − N−

u∩v| is the
decisiveness of the common neighborhood of u and v. Analogously, we define Du\v and Dv\u

for the exclusive neighborhoods of u and v, respectively.
The following theorem bounds the probability for {u, v} to be monochrome based on the

probability that the common neighborhood is more decisive than each of the exclusive ones.

▶ Theorem 7. In the FSP, let {u, v} ∈ E be an edge and let D be the event {Du∩v >

Du\v ∧ Du∩v > Dv\u}. Then {u, v} is monochrome with probability at least 1/2 + Pr [D] /2.

Proof. If D occurs, then the types of u and v after the FSP coincide with the predominant
type before the FSP in the shared neighborhood. Thus, {u, v} is monochrome.

Otherwise, assuming D, w.l.o.g., let Du∩v ≤ Du\v and assume further the type of v has
already been determined. If Du∩v = Du\v, then u chooses a type uniformly at random,
which coincides with the type of v with probability 1

2 . Otherwise, Du∩v < Du\v and thus u

takes the type that is predominant in u’s exclusive neighborhood, which is t+ and t− with
probability 1

2 , each. Moreover, this is independent from the type of v as v’s neighborhood is
disjoint to u’s exclusive neighborhood.

Thus, for the event M that {u, v} is monochrome, we get Pr [M | D] = 1 and Pr
[
M | D

]
=

1
2 . Hence, we get Pr [M ] > Pr [D] + 1

2 (1 − Pr [D]) = 1
2 + Pr [D] /2. ◀

3.2 Large Neighborhoods are More Decisive
The goal of this section is to reduce the question of how decisive a neighborhood is to the
question of how large it is. To be more precise, assume we have a set of vertices of size a and
give each vertex the type t+ and t−, respectively, each with probability 1

2 . Let Ai for i ∈ [a]
be the random variable that takes the value +1 and −1 if the i-th vertex in this set has type
t+ and t−, respectively. Then, for A =

∑
i∈[a] Ai, the decisiveness of the vertex set is |A|. In

the following, we study the decisiveness |A| depending on the size a of the set. Note that
this can be viewed as a random walk on the integer line: Starting at 0, in each step, it moves
one unit either to the left or to the right with equal probabilities. We are interested in the
distance from 0 after a steps.

Assume for the vertices u and v that we know that b vertices lie in the common neigh-
borhood and a vertices lie in the exclusive neighborhood of u. Moreover, let A and B be
the positions of the above random walk after a and b steps, respectively. Then the event

ISAAC 2021
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Du∩v > Du\v is equivalent to |B| > |A|. Motivated by this, we study the probability of
|B| > |A|, assuming b ≥ a. The core difficulty here comes from the fact that we require |B|
to be strictly larger than |A|. Also note that a + b corresponds to the degree of u in the
graph. Thus, we have to study the random walks also for small numbers of a and b. We note
that all results in this section are independent from the specific application to the FSP, and
thus might be of independent interest.

Before we give a lower bound on the probability that |B| > |A|, we need the following
technical lemma. It states that doing more steps in the random walk only makes it more
likely to deviate further from the starting position.

▶ Lemma 8. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
Then Pr [|A| < |B|] ≥ Pr [|A| > |B|].

Proof. Let ∆k be the event that |B| − |A| = k. First note that

Pr [|A| < |B|] =
∑
k∈[b]

Pr [∆k] and Pr [|A| > |B|] =
∑

k∈[a]

Pr [∆−k] .

To prove the statement of the lemma, it thus suffices to prove the following claim.

▷ Claim 9. For k ≥ 0, Pr [∆k] ≥ Pr [∆−k].

We prove this claim via induction on b − a. For the base case a = b, A and B are equally
distributed and thus Claim 9 clearly holds.

For the induction step, let B+ be the random variable that takes the values B + 1 and
B − 1 with probability 1

2 each. Note that B+ represents the same type of random walk as A

and B but with b + 1 steps. Moreover B+ is coupled with B to make the same decisions in
the first b steps. Let ∆+

k be the event that |B+| − |A| = k. It remains to show that Claim 9
holds for these ∆+

k . For this, first note that the claim trivially holds for k = 0. For k ≥ 1,
we can use the definition of ∆+

k and the induction hypothesis to obtain

Pr
[
∆+

k

]
= Pr [∆k−1]

2 + Pr [∆k+1]
2

≥ Pr [∆−k+1]
2 + Pr [∆−k−1]

2 = Pr
[
∆+

−k

]
. ◀

Using Lemma 8, we now prove the following general bound for the probability that |A| < |B|,
depending on certain probabilities for binomially distributed variables.

▶ Lemma 10. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
Moreover, let X ∼ Bin(a, 1

2 ), Y ∼ Bin(b, 1
2 ), and Z ∼ Bin(a + b, 1

2 ). Then

Pr [|A| < |B|] ≥ 1
2 − Pr

[
Z = a + b

2

]
+

Pr
[
X = a

2
]

· Pr
[
Y = b

2
]

2 .

Proof. Using that Pr [|A| < |B|] ≥ Pr [|A| > |B|] (see Lemma 8), we obtain

Pr [|A| < |B|] + Pr [|A| > |B|] + Pr [|A| = |B|] = 1
⇒ 2Pr [|A| < |B|] + Pr [|A| = |B|] ≥ 1

⇔ Pr [|A| < |B|] ≥ 1
2 − Pr [|A| = |B|]

2 . (4)

Thus, it remains to give an upper bound for Pr [|A| = |B|].
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Using the inclusion–exclusion principle and the fact that B is symmetric around 0, i.e.,
Pr [B = x] = Pr [B = −x] for any x, we obtain

Pr [|A| = |B|] = Pr [A = B ∨ A = −B]
= Pr [A = B] + Pr [A = −B] − Pr [A = B = 0]
= 2Pr [A = −B] − Pr [A = B = 0] . (5)

We estimate Pr [A = −B] and Pr [A = B = 0] using bounds for binomially distributed vari-
ables. To this end, define new random variables Xi = Ai+1

2 for i ∈ [a] and let X =
∑

i∈[a] Xi.
Note that the Xi are independent and take values 0 and 1, each with probability 1

2 . Thus,
X ∼ Bin(a, 1

2 ). Moreover, A = 2X − a. Analogously, we define Y with Y ∼ Bin(b, 1
2 ) and

B = 2Y − b. Note that X and Y are independent and thus Z = X + Y ∼ Bin(a + b, 1
2 ).

With this, we get

Pr [A = −B] = Pr [2X − a = −2Y + b] = Pr
[
Z = a + b

2

]
, and

Pr [A = B = 0] = Pr [A = 0] · Pr [B = 0] = Pr
[
X = a

2

]
· Pr

[
Y = b

2

]
.

This, together with Equations (4) and (5) yield the claim. ◀

The bound in Lemma 10 becomes worse for smaller values of a and b. Considering this worst
case, we obtain the following specific bound.

▶ Theorem 11. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
If a = b = 0 or a = b = 1, then Pr [|A| < |B|] = 0. Otherwise Pr [|A| < |B|] ≥ 3

16 .

Proof. Clearly, if a = b = 0, then A = B = 0 and thus Pr [|A| < |B|] = 0. Similarly, if
a = b = 1, then |A| = |B| = 1 and thus Pr [|A| < |B|] = 0. For the remainder, assume that
neither a = b = 0 nor a = b = 1, and let X, Y , and Z be defined as in Lemma 10, i.e.,
X ∼ Bin(a, 1

2 ), Y ∼ Bin(b, 1
2 ), and Z ∼ Bin(a + b, 1

2 ).
If a + b is odd, then Pr

[
Z = a+b

2
]

= 0. Thus, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 .

If a + b is even and a + b ≥ 6, then

Pr
[
Z = a + b

2

]
=
(

a + b
a+b

2

)(
1
2

)a+b

≤
(

6
3

)(
1
2

)6
= 5

16 .

Hence, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 − 5

16 = 3
16 .

If a + b < 6 (and a + b is even), there are four cases: a = 0, b = 2; a = 0, b = 4;
a = 1, b = 3; a = 2, b = 2. If a = 0 and b = 2, then A = 0 with probability 1 and |B| = 2
with probability 1

2 . Thus, Pr [|A| < |B|] = 1
2 . If a = 0 and b = 4, then |A| < |B| unless

B = 0. As Pr [B = 0] =
(4

2
)

· ( 1
2 )4 = 3

8 , we get Pr [|A| < |B|] = 1 − 3
8 = 5

8 . If a = 1 and b = 3,
then |A| = 1 with probability 1 and |B| = 3 with probability 1

4 (either B1 = B2 = B3 = 1
or B1 = B2 = B3 = −1). Thus, Pr [|A| < |B|] = 1

4 . If a = b = 2, then |A| = 0 with
probability 1

2 and |B| = 2 with probability 1
2 . Thus Pr [|A| < |B|] = 1

4 .
We note that the bound of Pr [|A| < |B|] = 3

16 is tight for a = b = 3. ◀
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3.3 Large Common Regions Yield Large Common Neighborhoods

To be able to apply Theorem 11 to an edge {u, v}, we need to make sure that the size of their
common neighborhood (corresponding to b in the theorem) is at least the size of the exclusive
neighborhoods (corresponding to a in the theorem). In the following, we give bounds for the
probability that this happens. Note that this is the first time we actually take the graph
into account. Thus, all above considerations hold for arbitrary graphs.

Recall that we consider random geometric graphs G(n, r) and u and v are each connected
to all vertices that lie within a disk of radius r around them. As u and v are adjacent, their
disks intersect, which separates the ground space into four regions; cf. Fig 2a. Let Ru∩v be
the intersection of the two disks. Let Ru\v be the set of points that lie in the disk of u but
not in the disk of v, and analogously, let Rv\u be the disk of v minus the disk of u. Finally,
let Ru∪v be the set of points outside both disks. Then, each of the n − 2 remaining vertices
ends up in exactly one of these regions with a probability equal to the corresponding measure.
Let µ(·) be the area of the respective region and p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u)
be the probabilities for a vertex to lie in the common and exclusive regions, respectively.
The probability for Ru∪v is then 1 − p − 2q.

We are now interested in the sizes Nu∩v, Nu\v, and Nv\u of the common and the exclusive
neighborhoods, respectively. As each of the n − 2 remaining vertices ends up in Nu∩v with
probability p, we have Nu∩v ∼ Bin(n−2, p). For Nu\v and Nv\u, we already know that v is a
neighbor of u and vice versa. Thus, (Nu\v −1) ∼ Bin(n−2, q) and (Nv\u −1) ∼ Bin(n−2, q).
Moreover, the three random variables are not independent, as each vertex lies in only exactly
one of the four neighborhoods, i.e., Nu∩v, (Nu\v − 1), (Nv\u − 1), and the number of vertices
in neither neighborhood together follow a multinomial distribution Multi(n − 2, p) with
p = (p, q, q, 1 − p − 2q).

The following lemma shows that these dependencies are small if p and q are sufficiently
small. This lets us assume that Nu∩v, (Nu\v − 1), (Nv\u − 1) are independent random
variables following binomial distributions if the expected average degree is not too large.

▶ Lemma 12. Let X = (X1, X2, X3, X4) ∼ Multi (n, p) with p = (p, q, q, 1 − p − 2q). Then
there exist independent random variables Y1 ∼ Bin (n, p), Y2 ∼ Bin (n, q), and Y3 ∼ Bin (n, q)
such that Pr [(X1, X2, X3) = (Y1, Y2, Y3)] ≥ 1 − 3n · max(p, q)2.

Proof. Let Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) be independent random variables. We
define the event B to hold, if each of the n individual trials increments at most one of
the random variables Y1, Y2, or Y3. More formally, for i ∈ [3] and j ∈ [n], let Yi,j be the
individual Bernoulli trials of Yi, i.e., Yi =

∑
j∈[n] Yi,j . For j ∈ [n], we define the event Bj to

be Y1,j + Y2,j + Y3,j ≤ 1, and the event B =
⋂

j∈[n] Bj .
Based on this, we now define the random variables X1, X2, X3, and X4 as follows.

If B holds, we set Xi = Yi for i ∈ [3] and X4 = n − X1 − X2 − X3. Otherwise, if B,
we draw X = (X1, X2, X3, X4) ∼ Multi (n, p) independently from Y1, Y2, and Y3 with
p = (p, q, q, 1 − p − 2q). Note that X clearly follows Multi (n, p) if B. Moreover, conditioned
on B, each individual trial increments exactly one of the variables X1, X2, X3, or X4 with
probabilities p, q, q, and 1 − p − 2q, respectively, i.e., X ∼ Multi (n, p).

Thus, we end up with X ∼ Multi (n, p). Additionally, we have three independent random
variables Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) with (X1, X2, X3) = (Y1, Y2, Y3) if B holds.
Thus, to prove the lemma, it remains to show that Pr [B] ≥ 1 − 3n max(p, q)2. For j ∈ [n],
the probability that the jth trial goes wrong is
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Pr
[
Bj

]
= 1 −

(
(1 − p)(1 − q)2)−

(
p(1 − q)2)− 2 (q(1 − p)(1 − q))

= 2pq − 2pq2 + q2 ≤ 2pq + q2 ≤ 3 · max(p, q)2.

Using the union bound it follows that Pr
[
B
]

≤
∑

j∈[n] Pr
[
Bj

]
≤ 3n · max(p, q)2. ◀

As mentioned before, we are interested in the event Nu∩v ≥ Nu\v (and likewise Nu∩v ≥ Nv\u),
in order to apply Theorem 11. Moreover, due to Lemma 12, we know that Nu∩v and (Nu\v −1)
almost behave like independent random variables that follow Bin(n − 2, p) and Bin(n − 2, q),
respectively. The following lemma helps to bound the probability for Nu∩v ≥ Nu\v. Note
that it gives a bound for the probability of achieving strict inequality (instead of just ≥),
which accounts for the fact that (Nu\v −1) and not Nu\v itself follows a binomial distribution.

▶ Lemma 13. Let n ∈ N with n ≥ 2, and let p ≥ q > 0. Further, let X ∼ Bin(n, p)
and Y ∼ Bin(n, q) be independent, let d = ⌊p(n + 1)⌋, and assume d = o (

√
n), then

Pr [X > Y ] ≥
( 1

2 − 1/
√

2πd
)
(1 − o (1)).

Proof. By Lemma 1, we get Pr [X ≥ Y ] ≥ 1
2 , and we bound

Pr [X > Y ] = Pr [X ≥ Y ] − Pr [X = Y ] ≥ 1
2 − Pr [X = Y ] ,

leaving us to bound Pr [X = Y ] from above. By independence of X and Y , we get

Pr [X = Y ] =
∑
i∈[n]

Pr [X = i] · Pr [Y = i] . (6)

Note that, by Lemma 2, for all i ∈ [0..n], it holds that Pr [X = i] ≤ Pr [X = d]. Assume that
we have a bound B such that Pr [X = d] ≤ B. Substituting this into Equation (6) yields

Pr [X = Y ] ≤ B
∑
i∈[n]

Pr [Y = i] = B,

resulting in Pr [X > Y ] ≥ 1
2 − B. Thus, we now derive such a bound for B and apply the

inequality that for all x ∈ R, it holds that 1 + x ≤ ex, as well as Equation (1). We get(
n

d

)
pd(1 − p)n−d ≤ nd

d!

(
d

n

)d(
1 − d

n

)n(
1 − d

n

)−d

≤ dd

d! e−d

(
1 − d

n

)−d

≤ dd

√
2πdd+1/2e−d

e−d

(
1 − d

n

)−d

= 1√
2πd

1
(1 − d/n)d

. (7)

By Bernoulli’s inequality, we bound (1 − d/n)d ≥ 1 − d2/n = 1 − o (1) by the assumption
d = o (

√
n). Substituting this back into Equation (7) concludes the proof. ◀

Finally, in order to apply Theorem 11, we have to make sure not to end up in the special
case where a = b ≤ 1, i.e., we have to make sure that the common neighborhood includes at
least two vertices. The probability for this to happen is given by the following lemma.
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Ru∩v

Ru\v Rv\u
u v

(a) The geometric re-
gions corresponding to
the common and exclus-
ive neighborhoods, re-
spectively, with yellow
illustrating Ru∩v and
blue illustrating Ru\v

and Rv\u.

xα

j

i

(b) Let α be the cent-
ral angle determined by
the intersection points i
and j, and let x be
the corresponding circu-
lar sector (illustrated in
yellow).

y

`

(c) Let y be a triangle
in the intersection (il-
lustrated in green) de-
termined by the radical
axis ℓ and the central
angle α, cf. Fig 2b.

h
`

r

(d) The height h di-
vides the area µ(y)
(illustrated in green)
of the triangle y, cf.
Fig 2c, into two sub-
areas of equal size, since
adjacent and opposite
legs have the same
length r.

Figure 2 The neighborhood of two adjacent vertices u and v in a random geometric graph.

▶ Lemma 14. Let X ∼ Bin(n, p) and let c = np ∈ o (n). Then it holds that Pr [X > 1] ≥
(1 − e−c (1 + c)) (1 − o (1)).

Proof. As X > 1 holds if and only if X ̸= 0 and X ̸= 1, we get

Pr [X > 1] = 1 − Pr [X = 0] − Pr [X = 1] = 1 − (1 − p)n − n · p · (1 − p)n−1.

Using that for all x ∈ R it holds that 1 − x ≤ e−x, we get

Pr [X > 1] ≥ 1 − e−pn − n · p · e−p(n−1)

= 1 − e−c − c · ec/n · e−c

= 1 − e−c
(

1 + c · ec/n
)

.

As ec/n goes to 1 for n → ∞, we get the claimed bound. ◀

3.4 Many Edges Have Large Common Regions
In Section 3.3, we derived a lower bound on the probability that Nu∩v ≥ Nu\v provided that
the probability for a vertex to end up in the shared region Ru∩v is sufficiently large compared
to Ru\v. In the following, we estimate the measures of these regions depending on the distance
between u and v. Then, we give a lower bound on the probability that µ(Ru∩v) ≥ µ(Ru\v).

▶ Lemma 15. Let G ∼ G(n, r) be a random geometric graph with expected average degree δ,
let {u, v} ∈ E be an edge, and let τ := dist(u,v)

r . Then,

µ(Ru∩v) = δ

(n − 1)π

(
2 arccos

(τ

2

)
− sin

(
2 arccos

(τ

2

)))
and (8)

µ(Ru\v) = µ(Rv\u) = δ

n − 1 − µ(Ru∩v). (9)

Proof. We start with proving Equation (8). Let i and j be the two intersection points of the
disks of u and v, let α be the central angle enclosed by i and j, and let x be the corresponding
circular sector, cf. Fig 2b. Moreover, let the triangle y be a subarea of x determined by α
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and the radical axis ℓ, cf. Fig 2c. Let h denote the height of the triangle y, cf. Fig 2d.
For our calculations, we restrict the length of ℓ by the intersection points i and j. Since
we consider the intersection between disks and thus ℓ divides the area µ(Ru∩v) into two
subareas of equal sizes, it holds that µ(Ru∩v) = 2 (µ(x) − µ(y)). Considering the two areas
µ(x) and µ(y), it holds that

µ(x) = α

2 r2 and µ(y) = h · ℓ

2 = cos
(α

2

)
r · sin

(α

2

)
r = sin(α)

2 r2. (10)

For the central angle α we know cos (α/2) = h/r = τ/2 and therefore α = 2 arccos
(

τ
2
)
.

Together with Equation (10), we obtain

µ(Ru∩v) = 2 (µ(x) − µ(y)) = 2
(

2 arccos
(

τ
2
)

2 r2 −
sin
(
2 arccos

(
τ
2
))

2 r2

)
. (11)

The area of a general circle is equal to πr2. Since we consider a ground space with total
area 1, the area of one disk in the random geometric graph equals δ

n−1 , i.e., r2 = δ
(n−1)π .

Together with Equation (11), we obtain Equation (8).
Equation (9): We get the claimed equality by noting that µ(Ru∩v) + µ(Ru\v) = πr2. ◀

▶ Lemma 16. Let G ∼ G(n, r) be a random geometric graph, and let {u, v} ∈ E be an edge.
Then Pr

[
µ(Ru∩v) ≥ µ(Ru\v)

]
≥
( 4

5
)2.

Proof. Let τ = dist(u,v)
r . By Lemma 15 with µ(Ru∩v) ≥ µ(Rv\u), we get(

2 arccos
(τ

2

)
− sin

(
2 arccos

(τ

2

)))
≥ π

2 ,

which is true for τ ≥ 4
5 . The area of a disk of radius 4

5 r is
(
π( 4

5 r)2) /
(
πr2) =

( 4
5
)2 times

the area of a disk of radius r. Hence, the fraction of edges with distance at most 4
5 r is at

least
( 4

5
)2, concluding the proof. ◀

3.5 Proof of Theorem 6
By Theorem 7, the probability that a random edge {u, v} is monochrome is at least 1

2 +
Pr [D] /2, where D is the event that the common neighborhood of u and v is more decisive
than each exclusive neighborhood. It remains to bound Pr [D].

Existence of an edge yields a large shared region. Let R be the event that µ(Ru∩v) ≥
µ(Ru\v). Note that this also implies µ(Ru∩v) ≥ µ(Rv\u) as µ(Ru\v) = µ(Rv\u). Due to the
law of total probability, we have

Pr [D] ≥ Pr [R] · Pr [D | R] .

Due to Lemma 16, we have Pr [R] ≥
( 4

5
)2. By conditioning on R in the following, we can

assume that µ(Ru∩v) ≥ δ
2n ≥ µ(Ru\v) = µ(Rv\u), where δ is the expected average degree.

Neighborhood sizes are roughly binomially distributed. The next step is to go from the
size of the regions to the number of vertices in these regions. Each of the remaining n′ = n−2
vertices is sampled independently to lie in one of the regions Ru∩v, Ru\v, Rv\u, or Ru∪v.
Denote the resulting numbers of vertices with X1, X2, X3, and X4, respectively. Then
(X1, X2, X3, X4) follows a multinomial distribution with parameter p = (p, q, q, 1 − p − 2q)
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for p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u). Note that Nu∩v = X1, Nu\v = X2 + 1, and
Nv\u = X3 + 1 holds for the sizes of the common and exclusive neighborhoods, where the +1
comes from the fact that v is always a neighbor of u and vice versa.

We apply Lemma 12 to obtain independent binomially distributed random variables Y1,
Y2, and Y3 that are likely to coincide with X1 = Nu∩v, X2 = Nu\v − 1, and X3 = Nv\u − 1,
respectively. Let B denote the event that (Nu∩v, Nu\v − 1, Nv\u − 1) = (Y1, Y2, Y3). Again,
using the law of total probabilities and due to the fact that R and B are independent, we get

Pr [D | R] ≥ Pr [B | R] · Pr [D | R ∩ B] = Pr [B] · Pr [D | R ∩ B] .

Note that p, q ≤ δ
n for the expected average degree δ. Thus, Lemma 12 implies that

Pr [B] ≥
(

1 − 3δ
2
/n
)

. Conditioning on B makes it correct to assume that Nu∩v ∼ Bin(n′, p),
(Nu\v − 1) ∼ Bin(n′, q), (Nv\u − 1) ∼ Bin(n′, q) are independently distributed. Additionally
conditioning on R gives us p ≥ δ

2n ≥ q.

A large shared region yields a large shared neighborhood. In the next step, we consider
an event that makes sure that the number Nu∩v of vertices in the shared neighborhood is
sufficiently large. Let N1, N2, and N3 be the events that Nu∩v ≥ Nu\v, Nu∩v ≥ Nv\u, and
Nu∩v > 1, respectively. Let N be the intersection of N1, N2, and N3. We obtain

Pr [D | R ∩ B] ≥ Pr [N | R ∩ B] · Pr [D | R ∩ B ∩ N ]
≥ Pr [N1 | R ∩ B] · Pr [N2 | R ∩ B] · Pr [N3 | R ∩ B] · Pr [D | R ∩ B ∩ N ] ,

where the last step follows from Lemma 5 as the inequalities in N1, N2, and N3 all go in
the same direction. Note that Nu∩v ≥ Nu\v is equivalent to Nu∩v > Nu\v − 1. Due to the
condition on B, Nu∩v and Nu\v − 1 are independent random variables following Bin(n′, p)
and Bin(n′, q), respectively, with p ≥ q due to the condition on R. Thus, we can apply
Lemma 13, to obtain

Pr [N1 | R ∩ B] = Pr [N2 | R ∩ B] ≥ 1
2 − 1√

2π⌊δ/2⌋(1 − o (1))
,

and Lemma 14 gives the bound

Pr [N3 | R ∩ B] ≥ 1 − e−δ/2
(

1 + δ

2 · (1 + o (1))
)

.

Note that both of these probabilities are bounded away from 0 for δ ≥ 2. Conditioning on N

lets us assume that the shared neighborhood of u and v contains at least two vertices and
that it is at least as big as each of the exclusive neighborhoods.

A large shared neighborhood yields high decisiveness. The last step is to actually bound
the remaining probability Pr [D | R ∩ B ∩ N ]. Note that, once we know the number of vertices
in the shared and exclusive neighborhoods, the decisiveness no longer depends on R or B, i.e.,
we can bound Pr [D | N ] instead. For this, let D1 and D2 be the events that Du∩v > Du\v

and Du∩v > Dv\u, respectively. Note that D is their intersection. Moreover, due to Lemma 5,
we have Pr [D | N ] ≥ Pr [D1 | N ] · Pr [D2 | N ]. To bound Pr [D1 | N ] = Pr [D2 | N ], we use
Theorem 11. Note that the b and a in Theorem 11 correspond to Nu∩v and Nu\v + 1 (the
+1 coming from the fact that Nu\v does not count the vertex v). Moreover conditioning on
N implies that a ≤ b and b > 1. Thus, Theorem 11 implies Pr [D1 | N ] ≥ 3

16 .



T. Bläsius, T. Friedrich, M. S. Krejca, and L. Molitor 29:15

Conclusion. The above arguments give us that the fraction of monochrome edges is

1
2 + Pr [D]

2 ≥ 1
2 + 1

2 · Pr [R]︸ ︷︷ ︸
≥( 4

5 )2

· Pr [B]︸ ︷︷ ︸
1−o(1)

·
(

Pr [N1 | R ∩ B]︸ ︷︷ ︸
≥ 1

2 − 1√
2π⌊δ/2⌋

)2 · Pr [N3 | R ∩ B]︸ ︷︷ ︸
≥1−e−δ/2

(
1+ δ

2

) ·
(

Pr [D1 | N ]︸ ︷︷ ︸
≥ 3

16

)2
,

where we omitted the o (1) terms for Pr [N1 | R ∩ B] and Pr [N3 | R ∩ B], as they are already
covered by the 1 + o (1) coming from Pr [B]. This yields the bound stated in Theorem 6:

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).

4 Monochrome Edges in Erdős–Rényi Graphs

In the following, we are interested in the probability that an edge {u, v} is monochrome
after the FSP on Erdős–Rényi graphs. In contrast to geometric random graphs, we prove
an upper bound. To this end, we show that it is likely that the common neighborhood is
empty and therefore u and v choose their types to be the predominant type in their exclusive
neighborhood, which is t+ and t− with probability 1

2 , each.

▶ Theorem 17. Let G ∼ G(n, p) be an Erdős–Rényi graph with expected average degree
δ = o (

√
n). The expected fraction of monochrome edges after the FSP is at most 1

2 + o (1).

Proof. Given an edge {u, v}, let M be the event that {u, v} is monochrome. We first split M

into disjoint sets with respect to the size of the common neighborhood and apply the law of
total probability and get

Pr [M ] = Pr [M | Nu∩v = 0] · Pr [Nu∩v = 0] + Pr [M | Nu∩v > 0 ] · Pr [Nu∩v > 0]
≤ Pr [M | Nu∩v = 0] · 1 + 1 · Pr [Nu∩v > 0] .

We bound each of the summands separately. For estimating Pr [M | Nu∩v = 0], we note
that the types of u and v are determined by the predominant type in disjoint vertex sets. By
definition of the FSP this implies that the probability of a monochrome edge is equal to 1

2 .
We are left with bounding Pr [Nu∩v > 0]. Note that Nu∩v ∼ Bin

(
n, p2). Thus, by

Bernoulli’s inequality we get Pr [Nu∩v > 0] = 1 − Pr [Nu∩v = 0] = 1 −
(
1 − p2)n ≤ np2.

Noting that np2 = o (1) holds due to our assumption on δ, concludes the proof. ◀
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