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Abstract
Force-directed drawing algorithms are the most commonly used approach to visualize networks.
While they are usually very robust, the performance of Euclidean spring embedders decreases if
the graph exhibits the high level of heterogeneity that typically occurs in scale-free real-world
networks. As heterogeneity naturally emerges from hyperbolic geometry (in fact, scale-free networks
are often perceived to have an underlying hyperbolic geometry), it is natural to embed them into
the hyperbolic plane instead. Previous techniques that produce hyperbolic embeddings usually make
assumptions about the given network, which (if not met) impairs the quality of the embedding. It is
still an open problem to adapt force-directed embedding algorithms to make use of the heterogeneity
of the hyperbolic plane, while also preserving their robustness.

We identify fundamental differences between the behavior of spring embedders in Euclidean and
hyperbolic space, and adapt the technique to take advantage of the heterogeneity of the hyperbolic
plane.
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1 Introduction

Network science is an increasingly popular field that ties in with many different research
areas such as biology or social science, where researchers examine real-world networks in
order to explain observed phenomena. While the goal is typically a mathematical analysis of
these graphs, more often than not the first step to understanding the structure of a network,
is to gain an intuition by looking at it, using a suitable visualization. The most natural way
to visualize a graph is to draw its vertices as points and edges as lines between them. In such
a drawing, it is typically desirable to have short edges while non-adjacent vertices should be
farther apart. On the one hand, this reduces visual clutter. On the other hand, it preserves
the typical interpretation of edges as a representation of similarity.

In Euclidean space, the approach that is most commonly used to embed graphs in such a
way are spring embedders or force-directed drawing algorithms [11]. Starting with a random
position for each vertex, they simulate physical forces between vertices. Attractive forces pull
adjacent vertices together and repulsive forces push non-adjacent vertices apart.

© Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.blaesius@kit.edu
https://scale.iti.kit.edu/people/thomasblaesius
mailto:tobias.friedrich@hpi.de
https://hpi.de/friedrich
https://orcid.org/0000-0003-0076-6308
mailto:maximilian.katzmann@hpi.de
https://orcid.org/0000-0002-9302-5527
https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
https://archive.softwareheritage.org/swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

Due to their basic nature, spring embedders can be applied to all types of graphs. However,
they typically struggle if a network contains high-degree vertices that tie together otherwise
loosely connected parts of the graph. In the Euclidean plane, there is not enough space close
to the high-degree vertices, to make all their edges short while keeping non-connected parts
away from each other, often leading to a visualization that resembles a ball of wool. This can
be resolved by embedding a network in the hyperbolic plane instead. There, space expands
exponentially, i.e., the area and circumference of a disk grows exponentially with its radius.
This makes it possible to have many vertices with pairwise large distance being close to a
single high-degree vertex.

In fact, a heterogeneous degree distribution (few vertices of high degree and many low-
degree vertices) emerges naturally from a hyperbolic geometry which is therefore perceived
to be underlying these so-called scale-free graphs [3, 13]. In particular, choosing an origin in
the hyperbolic plane, one can imagine a vertex’s distance to that origin (the vertex’s radius)
to be a measure of popularity: high-degree vertices are placed near the origin and low-degree
vertices are farther away. Additionally, the angular distance (around the origin) between two
vertices measures their similarity: the angular coordinates of adjacent vertices are close. If
we now distribute the vertices of a network uniformly within a hyperbolic disk, we obtain few
very popular vertices (near the disk center) that are connected to many unpopular vertices
(near the disk’s boundary) as a result of the exponential expansion of space.

To actually present a hyperbolic drawing to a user, one has to project the hyperbolic
plane to the Euclidean plane. This naturally results in a nice fish-eye view that highlights
what is currently in the center of the projection [14]. With these advantages of the hyperbolic
plane and the popularity of spring embedders, it is not surprising that a spring embedder has
been adapted to work for the hyperbolic plane [12]. This approach already produces good
results when the embedding is constrained to a small portion of the hyperbolic plane and it
showcases the nice fish-eye view effect obtained by the projection. Our goal is to extend their
work by considering larger portions of the plane in order to utilize the natural heterogeneity
of hyperbolic space to embed scale-free networks. Unfortunately, spring embedders encounter
some fundamental problems when confronted with this heterogeneity.

Due to the exponential expansion of space, geodesic lines between pairs of points are
bend towards the origin. Thus, moving towards another vertex almost always means moving
towards the origin first. Therefore, a less popular vertex (one with low degree) has to be
moved closer to the origin to get to where it actually belongs. However, this brings it closer
to every other vertex (the smaller the radius, the higher the popularity), which is prevented
by the repulsive forces. Thus, even bad embeddings with very long edges are rather stable.

Beyond spring embedders, other approaches have been proposed to generate hyperbolic
embeddings. Some of them determine hyperbolic coordinates for the vertices using a spanning
tree of the graph, for example to perform greedy routing [5, 10] or to visualize hierarchical
data in three-dimensional hyperbolic space [15]. In order to embed graphs with an underlying
hyperbolic geometry, the following techniques have been proposed.

An often used approach are maximum likelihood estimation embedders, which try to find
the coordinates for the vertices that maximize the probability of the network being generated
by an underlying hyperbolic model [18]. In the step model, such a hyperbolic random graph
is generated by placing n vertices in a hyperbolic disk of radius R and connecting any
two vertices with hyperbolic distance at most R. Thus, the probability of a graph being
produced by the model is 0, if it has edges longer than R or non-edges shorter than R.
Essentially, the goal of the embedder is to find an embedding such that adjacent vertices
are close to each other and non-adjacent vertices are farther apart, which is exactly, what
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spring embedders pursue as well. HyperMap [18] tries to solve this problem, by replaying the
network’s geometric growth in the hyperbolic plane: starting with high-degree vertices near
the origin, each vertex is placed close to its neighbors such that the probability is maximized
that the currently embedded graph emerged from the model. An improved version called
HyperMap-CN was later obtained by additionally taking the common neighborhood of two
vertices into account [17]. A further adaption yielded an algorithm with quasilinear running
time [2]. Additionally, a novel approach to embedding networks into the hyperbolic plane are
coalescent embeddings [16]. There, non-linear dimensionality reduction is applied to a matrix
representing distances between vertices in the graph. The result is a Euclidean embedding of
the network, in which metric distances between vertices match the corresponding distances
in the input matrix. The hyperbolic embedding is then obtained by deriving a circular order
of the vertices from the Euclidean embedding and combining it with information about the
degree of a vertex to approximate its position in the hyperbolic disk.

While the above techniques mostly produce good embeddings, they are not very robust.
For example, maximum likelihood embedders rely on a good initial embedding of the core
(the high-degree vertices) and place vertices with larger distance to the center near their
higher-degree neighbors. If the initial embedding of the core is bad (which can happen if
there are not enough high-degree vertices), the overall embedding will be bad as well. The
coalescent embedder encounters a similar issue if the initial Euclidean embedding is not good.

In the Euclidean plane, spring embedders have proven to be very robust and to quickly
produce good embeddings for non-complex graphs. It is still an open problem to adapt
this approach to work in the hyperbolic plane in a way that exploits the geometry to
better visualize heterogeneous networks. To answer this question, we provide a proof of
concept which shows that good hyperbolic embeddings of heterogeneous networks can be
obtained using a spring embedder. Our experiments indicate that the quality of the resulting
embeddings is on par with the one obtained using the previously mentioned embedding
techniques. As a consequence, we believe that our proof of concept lays the groundwork
for transferring the ensemble of techniques that have been developed to improve Euclidean
spring embedders into the hyperbolic setting.

Outline and Contribution. After a brief introduction into the hyperbolic space in Section 2,
we describe our embedding process in Section 3. First, we identify a fundamental difference
between Euclidean and hyperbolic spring embedders. Basically, the forces simulate a region
of influence around each vertex: attractive forces pull neighbors into this region and repulsive
forces push non-adjacent vertices out of it. In the hyperbolic plane this region of influence
has a very different impact on the embedding than in the Euclidean plane. In order to adapt
to this difference, we split the forces into two types: one that affects a vertex’s popularity
and one that tunes the similarity aspect. This, however, reduces the dimensionality of the
spring embedder, which makes it harder to escape local optima. We propose to overcome this
issue by embedding a network in the three-dimensional hyperbolic space first (Sections 3.1
to 3.4), and transitioning the resulting embedding to the plane afterwards (Section 3.5). In
order to evaluate this technique, we conducted experiments on different kinds of networks. In
Section 4 our results are compared to the existing embedding techniques mentioned above.
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(a) The central angle σ is used to determine the
hyperbolic distance between the two vertices v⃗1
and v⃗2.
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(b) Vertex v⃗1 is rotated towards v⃗2 around k⃗,
which goes through the origin O and is perpen-
dicular to the plane defined by v⃗1, v⃗2, and O.

Figure 1 Distances and vertex movement in three-dimensional hyperbolic space.

2 Preliminaries

Hyperbolic Plane. While space expands polynomially in the Euclidean geometry, the
expansion is exponential in the hyperbolic geometry. In the hyperbolic plane H2 a circle with
radius r has area 2π(cosh(r) − 1) and circumference 2π sinh(r), with cosh(x) = (ex + e−x)/2
and sinh(x) = (ex − e−x)/2, both growing as ex/2 ± o(1).

A point p ∈ H2 is identified using polar coordinates p = (r, φ), where r is the radius and
defines the distance to a designated origin O and φ ∈ [0, 2π) is the angular coordinate and
denotes the angular distance to a reference ray starting at O. Given two points p1 = (r1, φ1)
and p2 = (r2, φ2), the hyperbolic distance between them is given by

cosh(dist(p1, p2)) = cosh(r1) cosh(r2) − sinh(r1) sinh(r2) cos(∆(φ1, φ2)),

where ∆(φ1, φ2) = π − |π − |φ1 − φ2|| is the angular distance between p1 and p2. Finally,
given two points with radii r1, r2 ≤ R, respectively, the maximum angular distance such that
their hyperbolic distance is still at most R [8, Lemma 3.1], is given by

θ(r1, r2) = arccos
(

cosh(r1) cosh(r2) − cosh(R)
sinh(r1) sinh(r2)

)
= 2e

R−r1−r2
2 (1 + Θ(eR−r1−r2)). (1)

Three-Dimensional Hyperbolic Space. In H3 the coordinates of a vertex v are represented
by a tuple v⃗ = (r, λ, φ), which describes its radius, latitude, and longitude, respectively. As
can be seen in Figure 1a, the hyperbolic distance between two vertices v⃗1 and v⃗2 is obtained
by first determining the central angle σ between them, which is given by

cos(σ) = sin(φ1) sin(φ2) + cos(φ1) cos(φ2) cos(∆λ),

for ∆λ = |λ1 − λ2|. Afterwards, as in the two-dimensional case, the distance is obtained as

cosh(dist(v⃗1, v⃗2)) = cosh(r1) cosh(r2) − sinh(r1) sinh(r2) cos(σ). (2)

The rotation of a vertex v⃗1 towards another vertex v⃗2 around the origin works just as it
does in Euclidean space. We therefore convert our polar coordinates to Cartesian coordinates
and perform the rotation as if it was in Euclidean space. This rotation is defined by a single
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Figure 2 Two vertices and their regions of influence are shown in a hyperbolic disk of radius R.
As the distance between v and the origin is larger than the one between u and the origin, v’s region
of influence I(v) is smaller than I(u), although B(u) and B(v) have the same radius R.

vector k⃗. The direction of k⃗ denotes the axis that the vertex rotates around. This axis
goes through the origin and is perpendicular to the plane defined by the origin O and the
points v⃗1 and v⃗2 (the right-hand rule applies). We obtain k⃗ = v⃗1 × v⃗2, where × denotes the
cross-product. The length of the vector determines the rotation angle. In Figure 1b one can
see how vertex v⃗1 is rotated towards v⃗2. It is rotated by |⃗k| = γ around the axis denoted
by k⃗. Note that inverting the rotation axis from k⃗ to k⃗′ inverts the direction of the rotation.

Given the Cartesian coordinates of v⃗ and a rotation vector k⃗, the rotation R(v⃗, k⃗) is
applied using Rodrigues’ formula, yielding the coordinates of the rotated vector v⃗′ as

v⃗′ = R(v⃗, k⃗) = v⃗ cos
(

|⃗k|
)

+
(

k⃗ × v⃗
)

sin
(

|⃗k|
)

+ k⃗
(

k⃗ · v⃗
) (

1 − cos
(

|⃗k|
))

, (3)

where × and · denote the cross product and dot product, respectively.

3 Embedding Process

In a force-directed embedding, the forces simulate a region of influence around a vertex v,
denoted by B(v) (a ball around v). Attractive forces pull v’s neighbors into B(v) and
repulsive forces push non-adjacent vertices out of it.

In the Euclidean plane the size of the region of influence is an input parameter that
determines the preferred length of the edges, essentially scaling the embedding. In hyperbolic
space the region of influence has a very different impact on the embedding. Recall that a
scale-free network emerges naturally, if we assume that its vertices are distributed uniformly
within a hyperbolic disk. Since there are no vertices outside of the disk, the region of
influence I(v) of a vertex v can be seen as a ball around v that is constrained to the disk.
This is depicted in Figure 2, where we interpret the polar coordinates in hyperbolic space as
polar coordinates in Euclidean space. The size of the region of influence I(v) changes with v’s
distance to the origin, even though the radius of the ball denoting I(v) is fixed. The closer v

is to the origin, the larger is the portion of the disk that is covered by I(v). Consequently,
the popularity of v is high. With increasing distance between v and the origin, the size of
I(v) decreases, i.e., v becomes less popular (again see Figure 2). The exponential expansion
of space now leads to an interesting phenomenon: the heterogeneous degree distribution of
scale-free networks emerges naturally by using the same radius for the hyperbolic disk (that
the vertices are distributed in) and the ball that denotes the region of influence [13].
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Unfortunately, this property of hyperbolic geometry impedes the successful application of
force-directed embedding algorithms. As mentioned in the introduction, moving a vertex
towards another vertex decreases its distance to (almost) all other vertices. Consequently,
the resulting repulsive forces prevent this movement, leading to bad stable embeddings. We
overcome this problem by dividing the forces into two types, one effecting the popularity
(i.e., the radii), and the other only the similarity (i.e., the angular coordinates). That way,
vertices no longer move on their geodesic lines. This division, however, reduces the movement
of the vertices to one dimension, which decreases the chances of escaping local optima. We
circumvent this issue by first embedding the graph in three-dimensional hyperbolic space. In
this way, the forces affecting the similarity move the vertices on a two-dimensional surface of
a sphere, leading to a similar behavior as in the Euclidean plane.

The general process can now be described as follows. Starting with a random initial
embedding of the graph in three-dimensional hyperbolic space, we iteratively apply forces to
move adjacent vertices close to each other and non-adjacent vertices farther apart, and in the
process adapt the radii of the vertices to tune their region of influence. Once this embedding
is stable, a plane is identified, that minimizes the distance to all vertices. Finally, forces are
applied to pull the vertices towards this designated plane, resulting in a two-dimensional
embedding of the network. In the following sections, we explain each step in greater detail.

3.1 Initial Embedding
Recall that we imagine the vertices of our network to be evenly distributed in a disk lying in
the hyperbolic plane that has the same radius as the region of influence around each vertex.
This radius R can be estimated such that it best fits the size of the given network [3].

We start with an initial embedding E that assigns each vertex a point in a three-dimensional
hyperbolic sphere of radius R. To this end, we draw a point uniformly distributed on the
surface of the three-dimensional unit sphere, and a radius uniformly at random from [0, R].

3.2 Forces
Recall that we have two types of movements. Changing the radial coordinate only affects
the size of the region of influence. Rotating a vertex around the origin moves the region
of influence without changing its size. To accommodate for these two different movements,
we apply two types of forces separately: popularity forces affect the radius of a vertex, and
similarity forces affect the latitude and longitude of a vertex within the sphere.

Popularity Forces. A single vertex v with radius rv is adjusted by comparing its degree
deg(v) with the expected number of vertices in its region of influence, assuming that the
current radii r1, . . . , rn of all vertices are fixed. Consider the following random experiment:
n vertices with radii r1, . . . , rn ≤ R are placed in a hyperbolic disk by choosing their angular
coordinates uniformly at random. Without loss of generality we can assume that φv = 0.
Now we observe the random variable X which denotes the number of vertices in I(v). Recall
that a vertex u is contained in I(v) if its distance to v is at most R. Moreover, θ(ru, rv)
denotes the maximum angular distance between u and v such that this is true (Equation (1)).
Since the probability for this to happen is Pr[u ∈ I(v)] = 2θ(ru, rv)/2π, we can compute
E[X] as

E[X] = 1
π

∑
u∈V \{v}

θ(rv, ru).
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Figure 3 The functions fa(d) and fr(d) determine the magnitude of the attractive and repulsive
forces, respectively.

When applying the popularity force on a vertex v, we compare E[X] with deg(v). If
E[X] > deg(v), the region of influence of v is too large and rv is increased. If deg(v) = E[X],
rv is not changed. Otherwise it is decreased. In preliminary experiments we determined that
adjusting the radii using a fixed, small step size delivered the best results.

We note, that the radius of a vertex is not bounded from above, i.e., the radius R of
our disk (and therefore the size of the region of influence) can change during the embedding
process and is set to be the maximum radius of a vertex in the current embedding. That way
we can accommodate for potential errors that were made during the initial estimation of R.

Similarity Forces. The similarity forces move vertices without changing their radii. This
allows us to move vertices close to each other, without getting closer to all other vertices.

Let u ̸= v be two vertices with coordinates u⃗ and v⃗, respectively. In the following, we
observe the force that is caused by u and acts on v. Formally, the force is determined using a
function f : H3 × H3 → R3. The resulting vector describes the axis around which the vertex,
that the force acts on, is rotated. The direction of the force f(u⃗, v⃗) is perpendicular to the
plane containing u, v and the origin, and is given by k⃗ = (v⃗ × u⃗)/(|v⃗ × u⃗|). If the force is
repulsive, we invert the direction of the rotation by rotating around −k⃗. The length of f(u⃗, v⃗)
describes the magnitude of the force and was chosen to match the angle φ that v is rotated
by. It depends on the hyperbolic distance dist(u⃗, v⃗) between the two vertices (Equation (2)).
We define two functions fa (for attractive forces) and fr (for repulsive forces) that map the
distance d ∈ [0, 2R] to the magnitude φ ∈ [0, π/8] of the force. In preliminary experiments,
the upper bound of π/8 for φ proved to be useful in avoiding very large jumps. As they
delivered the best results in preliminary experiments, we chose the two functions to be

fa(d) =
{

0, d ≤ R/2,

π/8 ·
( 2d−R

3R

)
, otherwise

and fr(d) =
{

π/8, d ≤ R,

π/8 ·
(
2 − d

R

)1/2
, otherwise,

which are depicted in Figure 3. Note that the repulsive force is as strong as possible if the
distance between the two vertices is less than R, i.e., when v is in the region of influence of u.

3.3 Force Application
After the initial random embedding we alternatingly apply batches of popularity and similarity
forces. In each iteration we compute the forces that act on the vertices and rotate them
accordingly. Additionally, some precautions are taken that help stabilize the embedding. In
a single iteration i, the total force that acts on a vertex v is determined, by first summing
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(a) The initial embedding with random coordin-
ates for all vertices.

(b) A stable embedding after applying popular-
ity and similarity forces.

Figure 4 Two three-dimensional embeddings (before and after applying forces) of a hyperbolic
random graph with 492 vertices.

the forces that are caused by all other vertices, which we denote with k⃗i(v). In order to
stabilize the embedding, k⃗i(v) is then scaled using a temperature τi ∈ (0, 1] that decreases as
τi = 0.975 ·τi−1 in every iteration. Additionally, to prevent oscillations, a velocity is simulated
by adding a portion ν (we use ν = 1/2) of the forces that acted on v in the previous iteration.
Taken together, we obtain the rotation vector κ⃗i(v), describing the total force that acts on v

in iteration i as κ⃗i(v) = νκ⃗i−1(v) + τik⃗i(v) and rotate v accordingly.

3.4 Stability
After every iteration i we obtain a new embedding Ei describing the current positions of all
vertices. From these positions we can derive a potential ρi which describes how unstable the
embedding is after iteration i. The potential is defined as the sum of the strengths of all
forces and can be computed as ρi =

∑
v∈V |κ⃗i(v)|. After every iteration we compute the

potential ρi and compare it with previous ρj for j < i to detect whether the potential is
decreasing, meaning the embedding is getting more stable. Figure 4 compares the initial
embedding of a graph with a stable one, obtained after iteratively applying the forces.

After iteration i the process stops if the potential has decreased in the last couple
of iterations, meaning ρj > ρj+1, for i − 10 < j < i and the difference to the previous
potential ρi−1 drops below a given stability threshold. Additionally, the process stops if the
number of iterations has exceeded a predefined threshold. Usually, the potential fluctuates
in the beginning, since the temperature is high, but as the temperature decreases over time,
so does the potential and the embedding becomes stable eventually.

3.5 Transition to the Plane
Once the three-dimensional embedding is stable, we convert it to a two-dimensional embedding,
by first determining the plane that contains the origin and minimizes the distance to all
vertices, using principal component analysis. Then, the embedding is rotated such that this
plane aligns with the plane P = {(r, λ, φ) | φ = 0}. Afterwards, in addition to the forces
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Figure 5 An edge-length histogram that is used to measure the embedding quality. It shows the
portion of edges (blue) and non-edges (red) of a given length. The filled regions denote the errors.

that were used so far, we apply forces that pull the vertices towards P . To this end, for
every vertex v with coordinate v⃗ = (r, λ, φ), we introduce a virtual vertex v′ with coordinate
v⃗′ = (r, λ, 0). The total force κ⃗i(v) that acts on v is now determined as before, with the
addition of a force that attracts v towards v′. In particular, we obtain the new position of v

by rotating it around κ⃗i(v) + κ⃗′
i(v). The additional force κ⃗′

i(v) = τi · π/15 · (v⃗′ × v⃗)/(|v⃗′ × v⃗|)
is independent of the distance between v and v′, constantly pulling v towards the plane.
By still applying the popularity and similarity forces, we try to preserve the quality of the
existing embedding while transitioning it towards the plane. This process ends as soon as
the average distance between the vertices and the plane drops below a certain threshold or
a maximum number of iterations is reached. Then, all vertices are moved onto the plane,
yielding the final two-dimensional embedding.

4 Experiments

In order to evaluate whether the adapted spring embedder works and how it compares to
existing embedding techniques, we implemented it in C++1, using Eigen [7] to perform
the principal component analysis needed for the transition to the two-dimensional plane.
Afterwards we ran experiments on the largest component of 16 real-world networks [19]
and 18 hyperbolic random graphs with different parameter configurations. In addition to
our spring embedder, we considered the Euclidean spring embedder FMMM [9] (using the
implementation found in OGDF [4]), as well as the maximum likelihood estimation embedder
HyperMap-CN [17], the previously mentioned quasilinear adaptation, which we abbreviate
with BFKL [2], and the coalescent embedder [16].

Embedding Quality. Recall, that the goal of an embedding technique is to place adjacent
vertices closely together and non-adjacent ones farther apart. In order to measure how well
this goal is achieved we introduce the edge-length histogram, as can be seen in Figure 5. It is
based only on a graph’s adjacency information and an embedding. This allows us to evaluate
embeddings of real-world networks, where ground truth data is usually not available. The
edge curve (blue) denotes the relative number of edges of a given length. The non-edge curve
(red) does the same for non-edges. We measure the error of the embedding by determining

1 Our code is available at https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
(archived at swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1).
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Figure 6 Errors obtained using different embedding techniques on hyperbolic random graphs.
Filled circles indicate edge errors. Hollow circles indicate non-edge errors. Bars denote their average.
The graphs differ in the number of vertices n, the average degree d, the power-law exponent of the
degree distribution β, and the temperature T .

the area under the minimum of the two curves. The edge error is the corresponding area
whenever the edge curve takes on the minimum (filled blue region). The non-edge error
(denoted by the filled red region) is defined analogously. The average error is the average of
the edge error and the non-edge error and the balancing error is the difference between them.

In a perfect embedding, the edge-length histogram would show a peak in the edge curve
to the left of another peak in the non-edge curve without any overlap, meaning all edges
are shorter than all non-edges. In other words, all vertices have their neighbors inside their
region of influence and all non-neighbors outside of it. Consequently, the average error and
the balancing error are both 0%. Whenever the two curves overlap, errors were made. The
average error gives some general hints about the overall quality of the embedding. But
assume an embedding has an average error of 50% (the worst error possible). This could
mean, for example, that the edge error and the non-edge error are both close to 50%, or (in
the extreme case where all vertices are placed on the same point) that the edge error is 0%
and the non-edge error is 100%. In that case the latter embedding is arguably worse than
the first one, which is revealed by looking at the balancing error.

Hyperbolic Random Graphs. Figure 6 shows the errors obtained in our experiments on
hyperbolic random graphs. These graphs are sampled by placing n vertices uniformly
at random in a hyperbolic disk of radius R = 2 log n + C, where C controls the average
degree d of the network. Furthermore, the power-law exponent β ∈ (2, 3) impacts the degree
distribution. The smaller β, the denser is the core of the network. In the step model, any
two vertices are connected, if the distance between them is at most R. In a relaxed version,
a temperature T (typically between 0 and 1) is introduced, which allows for long-range
edges (and short non-edges) by smoothing the step function. This influences the clustering
coefficient of the generated network: the smaller T , the higher the clustering. We note that
this notion of temperature is independent of the one used to stabilize the embedding.
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Figure 7 Errors obtained using different embedding techniques on the largest component of
several real-world networks. Filled circles indicate edge errors. Hollow circles indicate non-edge
errors. Bars denote their average. Grey bars indicate that the embedding process did not finish
within 96 hours.

On these networks the considered techniques that generated embeddings in the hyperbolic
plane delivered mostly good results. The mean errors of the different techniques over all
generated graphs are:

Ground Truth FMMM HyperMap-CN BFKL Coalescent Spring
Average Error 2.8% 11.9% 14.5% 3.4% 5.9% 4.3%
Balancing Error 1.0% 13.4% 8.2% 1.0% 2.2% 1.8%

The BFKL embedder was the best one, delivering results that are very close to the ground
truth (the coordinates sampled during the graph generation). With the exception of FMMM
and HyperMap-CN, the remaining embedders also produced very good results.

As expected, FMMM had trouble fitting the hyperbolic random graphs into the Euclidean
plane. Figure 6 shows that on most networks FMMM obtained a small edge error at the
expense of a large non-edge error, yielding a balancing error of 13.4% on average. This does
not come as a surprise as there is simply not enough space in the Euclidean plane to keep
non-edges long while trying to obtain short edges. Unfortunately, HyperMap-CN seemed to
have issues with low temperatures. Excluding graphs with T = 0, HyperMap-CN obtained
an average error of 7.2%.

The hyperbolic spring embedder produced embeddings that are on par with the ground
truth and sometimes even better. The average error and the balancing error are small on
average, with 4.3% and 1.8%, respectively. This shows that spring embedders can be adapted
to take advantage of the intrinsic heterogeneity of the hyperbolic plane to produce good
embeddings of heterogeneous networks.

SEA 2021



22:12 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

(a) FMMM (b) BFKL (c) Spring

Figure 8 Embeddings of the largest component (containing 1458 vertices) of the bio-yeast-protein-
inter network, obtained using different techniques.

Real-World Networks. Figure 7 shows the errors of the embeddings obtained using the
different techniques on real-world networks. The mean errors over all graphs are:

FMMM HyperMap-CN BFKL Coalescent Spring
Average Error 10.1% 11.5% 42.1% 12.6% 10.1%
Balancing Error 10.9% 6.6% 15.8% 5.5% 4.1%

Overall the embedders produced good results, with the exception of BFKL with an average
error of 42.1%. As noted by the authors, this technique excels on larger graphs [2]. Thus,
one explanation for the bad performance is the constraint to smaller graph sizes (< 7000
vertices) that was necessary to compensate for the running time of other techniques. In fact,
while HyperMap-CN produced good results in general, it also encountered three instances
where it did not finish the embedding process within 96 hours. The remaining techniques
performed well with an average error of a little over 10%.

Figure 7 shows that FMMM encountered the same difficulties as on the hyperbolic random
graphs and was often not able to maintain long non-edges while making the edges short
(except for inf-euroroad, a road-network where the underlying geometry is arguably rather
Euclidean). Figure 8 depicts embeddings of the bio-yeast-protein-inter network.2 In the
FMMM embedding (Figure 8a) one can see how higher degree vertices are placed near the
center of the embedding and with them their low-degree neighbors. As a result, the center
part is very cluttered and the structure of the network is unclear.

Likewise, the maximum likelihood estimation techniques were sometimes not able to
produce embeddings that convey the structure of the network. They usually start the
embedding process by first embedding the core (high-degree vertices that are supposed to be
close to the origin) and determine the positions of later vertices based on the already placed
ones. As can be seen in Figure 8b, this fails if there are not enough vertices in the core. In
that case, the earlier stages of the embedding are rather arbitrary and later vertices can not
compensate for the initial errors.

On the other hand, the natural approach of applying forces between the vertices to
obtain embeddings that reflect the structure of the network well, proved to be very robust.
In 11 of the 16 embeddings the hyperbolic spring embedder delivered the best results and
was not far off on the remaining instances, yielding the best average and balancing errors

2 Further embedding evaluations can be found in Appendix A.
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of 10.1% and 4.1%, respectively. Figure 8c shows the hyperbolic spring embedding of the
bio-yeast-protein-inter network. One can observe a good trade-off between edges being too
long and non-edges being too short, resulting in a drawing where higher degree vertices
are placed towards the center and their low-degree neighbors are close to them near the
disk’s boundary. This separation between high- and low-degree vertices helps in reducing the
clutter, making it easier to see which vertices actually belong together.

5 Conclusion

It was previously observed that spring embedders encounter a fundamental problem when
being subjected to the natural heterogeneity of hyperbolic space. After explaining the core
difficulties we proposed a way to circumvent them: The application of the forces typically has
close to no impact on the position of a vertex as movement along geodesic lines simultaneously
affects its region of influence in two ways (popularity and similarity), which can be overcome
by differentiating between two types of forces and increasing the dimensionality in order to
better escape local optima. Our experiments indicate that the resulting approach produces
embeddings that are on par with other commonly used hyperbolic embedding techniques.

Adapting the standard force-directed embedding approach to work in hyperbolic space
paves the way for translating well known techniques that improve the quality of Euclidean
spring embedders into the hyperbolic setting. These include the use of geometric data
structures [1], the multilevel strategy of the previously mentioned FMMM embedder [9], and
the application of random sampling in order to improve the running time [6]. We believe
that these techniques can also be used to extend our proof of concept in order to further
improve its performance.
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A Additional Embedding Comparisons

On the following pages we show a few more comparisons of embeddings produced using the
various techniques as explained in Section 4.

Hyperbolic Random Graph (Figure 9)
Hyperbolic random graphs are sampled by distributing vertices uniformly at random in a
hyperbolic disk and connecting any two that are sufficiently close. Figure 9a depicts such a
graph using the sampled vertex positions. Since the underlying geometry of the network is
hyperbolic and not Euclidean, FMMM has no chance in finding an embedding that represents
the structure of the graph well (Figure 9b). The densely connected high-degree vertices as
well as their lower-degree neighbors are all placed close to each other, yielding a cluttered
embedding. Apart from the coalescent embedding (Figure 9e) the other techniques obtained
embeddings that resemble the ground truth well. This is reflected by the corresponding error
diagram in Figure 6 for the network with n = 970, d = 7.6, β = 2.5, and T = 0.4.

rt-twitter-copen (Figure 10)
Similarly to the embeddings in Figures 8a and 9a, FMMM succeeds in making the edges
short, which leads to a small average error. However, in order to achieve this, many of the
non-adjacent lower-degree vertices are placed close to the high-degree neighbors and, thus,
close to each other. Consequently, the small edge-error is counteracted by a comparatively
large non-edge error (denoted by the hollow-circle in Figure 7). While BFKL seemed to be
unable to find a good initial placement of the higher-degree vertices, the remaining techniques
produced reasonable results. Most notably, the spring embedder distributed the low-degree
vertices near the boundary of the embedding and placed them close to their higher-degree
neighbors. As a result, it obtained the best combination of average and balancing error.

inf-euroroad (Figure 11)
The underlying geometry of the road network inf-euroroad is arguably rather Euclidean than
hyperbolic. Therefore, it is no surprise that FMMM, the only considered embedder that
works with Euclidean geometry, obtained the best results here. The corresponding embedding
in Figure 11a resembles that of a road network and is, therefore, a good representation of
the structure of the graph. This is reflected by very small average and balancing errors, as
shown in Figure 7.

In heterogeneous networks we interpret the degrees of the vertices as a measure of their
popularity. In hyperbolic embeddings this is represented by the radial coordinates of the
vertices: a vertex that is closer to the center has a larger popularity (higher degree). However,
road networks are rather homogeneous, meaning most vertices have similar degree and, thus,
similar popularity. The hyperbolic embedders represent this by placing all vertices in a ring
close to the boundary of the embedding. The differences in the qualities of the embeddings is,
thus, revealed by how well the techniques captured the similarities of the vertices, i.e., how
close adjacent vertices are positioned in the ring. This is represented by the amount of edges
that go through the center of the embedding. Clearly, the coalescent embedder captured this
best, followed closely by the spring embedder, with HyperMap-CN and BFKL rather far off.
The exact same ranking is reflected in the corresponding average errors in Figure 7.
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(a) Ground Truth (b) FMMM

(c) HyperMap-CN (d) BFKL

(e) Coalescent (f) Spring

Figure 9 Embeddings of the largest component (containing 970 vertices) of a hyperbolic random
graph (with average degree 7.6, power-law exponent 2.5, and temperature 0.4), obtained using
different techniques.
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(a) FMMM (b) HyperMap-CN

(c) BFKL (d) Coalescent

(e) Spring

Figure 10 Embeddings of the largest component (containing 761 vertices) of the rt-twitter-copen
network, obtained using different techniques.
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(a) FMMM (b) HyperMap-CN

(c) BFKL (d) Coalescent

(e) Spring

Figure 11 Embeddings of the largest component (containing 1174 vertices) of the inf-euroroad
network, obtained using different techniques. Here, FMMM obtained the best representation of the
structure of the network.
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