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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V, E) and
wants to find a minimum cardinality set S ⊆ V such that G − S is acyclic. DFVS is a fundamental
problem in computer science and finds applications in areas such as deadlock detection. The problem
was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the
problem that is tailored to perform well on instances that are mostly bi-directed. For such instances,
we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative
reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number
of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact
track of the PACE challenge. We perform computational experiments and compare the running time
to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show
that we outpace the other algorithms on instances that have a low density of uni-directed edges.
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1 Introduction

In the Directed Feedback Vertex Set (DFVS) problem, we are given a directed graph
G = (V, E) and the objective is to find a minimum cardinality set S ⊆ V such that G − S is
acyclic. DFVS is a fundamental computational problem that appeared in Karp’s seminal
paper [19]. The problem is equivalent to the Feedback Arc Set (FAS) problem where
we want to delete edges instead of vertices i.e., there are reductions in both directions
that preserve the value of the solution and blow up the graph size only polynomially. Both
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10:2 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

problems have applications in areas such as deadlock detection [13], compiler optimization [34],
program verification [31], VLSI chip design [5], Computer Aided Design (CAD) [23], and
chemical engineering [2].

From a theoretical point of view, DFVS is NP-hard, thus polynomial exact algorithms
are very unlikely. The currently best known theoretical runtime known in terms of input size
n for an exact algorithm is the O(1.9977n) algorithm by Razgon [28], only barely beating the
trivial O(2n) time brute-force algorithm. From the perspective of parameterized algorithms
(see [8] for an introduction to parameterized complexity), the current best fixed parameter
tractable algorithm for DFVS is a 4kk!nO(1) time algorithm by Chen et al. [7], where the
parameter k is the size of the directed feedback vertex set. The best known polynomial time
approximation algorithm known for DFVS is a O(log k log log k) approximation by Even et
al. [12].

From a practical point of view, there are only few recent exact algorithms that can be
used for large general instances. Historically, Smith and Walford [32] gave the first exact
algorithm for DFVS in 1975 but their algorithm can only handle small graphs [21]. There
are also a few branch and bound based exact algorithms. Chakradhar et al. [5] in 1995
gave a branch and bound exact algorithm using an ILP relaxation for finding DFVS of
flip-flop dependency graphs arising from sequential circuits. Orenstein et al. [25], also in
1995, used branch and bound to find optimal DFVS in digital circuit graphs and tested them
on ISCAS89 benchmarks. Lin and Jou [23] in 1999 gave an improved branch and bound exact
algorithm together with reduction rules, and experimentally evaluated them on the ISCAS89
benchmarks coming from CAD applications.

More recent exact algorithms use different techniques. Fleischer et al. [13] experimentally
evaluate Chen’s algorithm and some reduction rules. Based on their experiments, the
algorithm already becomes impractical when the solution size k is as small as 10. Baharev
et al. [2] gave an integer-program based exact algorithm for Feedback Arc Set that uses a
lazy enumeration of cycles, and can be also applied to DFVS. To apply an FAS algorithm to
DFVS, one can split each vertex into an in-vertex and out-vertex with a uni-directed edge
between them.

Some heuristic algorithms have been also developed for DFVS e.g, based on greedy
randomized adaptive search [26] (1998), markov chains [22] (2008), and local search [15]
(2013). We do not describe them in further detail as exact algorithms are the focus of this
work.

Perhaps also due to this lack of fast exact algorithms for DFVS, it was selected as the
problem for the PACE 2022 coding challenge [30].

A much more extensively studied problem, that was also subject of the PACE challenge
in 2019 [10], is Vertex Cover. It is closely related to other important problems such as
Maximum Clique, Maximum Independent Set, Odd Cycle Tansversal etc. Often, a
formulation in terms of vertex cover have been useful in solving these problems [24].

From a theoretical point of view, Vertex Cover is “easier” than DFVS, since there is
an easy reduction from Vertex Cover to DFVS that just replaces undirected edges with
bi-directional arcs. This is also reflected in the much better theoretical exact algorithms.
The current best exact algorithm measured with respect to the number of vertices n runs
in O(1.1996n) [35]. Also, just recently, the parameterized 1.2738knO(1) algorithm by Chen,
Kanj and Xia [6] was improved to 1.25298knO(1) by Harris and Narayanaswamy [17].

Also, and perhaps even more so, there are much more powerful practical solvers for
Vertex Cover than for DFVS. Vertex Cover has a straight forward ILP formulation
that can be then fed into commercial ILP solvers such as Gurobi and CPLEX. Akiba and
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Iwata [1] gave a branch and reduce algorithm and showed it to be competitive with the
CPLEX solver. Faster solvers were developed as a result of the PACE 2019 challenge [10].
The winning solver is the WeGotYouCovered solver by Hespe et al. [18] which uses branch
and reduce and branch and bound. Later, Plachetta and van der Grinten [27] developed
a branch and reduce algorithm using a SAT solver that was competitive with the PACE
winner. Stallmann, Ho and Goodrich [33] enhanced the solver by Akiba and Iwata [1] using
targeted reductions depending on the instance profile. Also, vertex cover has extremely fast
heuristic solvers, e.g. [4]. Thus, our approach to DFVS is to take advantage of this wealth of
results for Vertex Cover.

In a recent ALENEX 2023 paper [20], Kiesel and Schidler describe their DAGer algorithm
for DFVS, which won the first place in the PACE 2022 challenge [29]. In a nuthsell, their
algorithm first applies an extensive set of preprocessing rules to reduce the size of the instance.
The reduced instance is then solved exactly using a modified SAT-solver. As initialization,
a set of clauses corresponding to cycles that need to be hit, is given. This set might not
be exhaustive. To ensure feasibility, the SAT-solver is modified to maintain a topological
ordering on the vertices and dynamically detect cycles and adding the corresponding clauses
to the problem. They refer to this approach as Cycle Propagation, which builds on the
idea that already a limited number of the constraints in a propositional encoding is usually
sufficient for finding an optimal solution, thus their algorithm starts with a small number of
constraints and cycle propagation adds additional constraints when necessary. Our approach
deviates from DAGer, as we describe in the following section.

Our Contribution

We develop a novel exact algorithm Mount-Doom for the DFVS problem. Our approach is
different from all the previous exact as well as heuristic approaches. We develop a method to
iteratively reduce DFVS to the Vertex Cover problem and exploit fast existing algorithms
for this problem. In order to strategically reduce to Vertex Cover, we also develop a new
reduction rule called SHORTONE that reduces the number of uni-directed edges.

With these strategies, Mount-Doom was able to secure third place in the exact track of
PACE 2022 challenge.

We perform experiments to compare our algorithm to the PACE winning solver DAGer [20,
29] and the state-of-the-art ILP based solver Sdopt [2] for DFAS. We use the complete set of
200 instances from the PACE competition as well as our own randomly generated instances,
and observe that in a fair share of the instances our running times are significantly better.
As characteristic of instances in which our algorithm performs better, we consider the density
of uni-directed edges. This measure can be seen as a distance to the DFVS instance being a
Vertex Cover instance. We show experimentally that when the density of uni-directed
edges is small then we are considerably faster than other algorithms in the PACE instances.

We also perform another set of experiments to demonstrate the utility of our new
reduction rule SHORTONE. Our experiments reveal that in many of the PACE instances
there is significantly more reduction in the instance size by using this new rule in addition to
the existing reduction rules. On our less structured set of generated graphs (Erdős-Rényi
graphs), we are more often outperformed by the competitors. This indicates that our
algorithm heavily takes advantage of structured input.

SEA 2023
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2 Preliminaries

We use G = (V, E) to denote directed and undirected graphs. For any S ⊆ V we write G − S

for the graph obtained from G by deleting all vertices in S together with their adjacent edges.
With these notions, the Directed Feedback Vertex Set problem (DFVS for short) is the task
to find a minimum cardinality subset S ⊆ V such that G − S is acyclic.

We call an edge vw ∈ E bi-directed if wv ∈ E. Let PIE ⊆ E be the set of all bi-directed
edges and DIR = E \ PIE. We define G[PIE] to be the undirected graph obtained from G

by deleting all edges in DIR, and replacing any pair of bi-directed edges by an undirected
edge. Further, we define the graph G[DIR] = (V, DIR), the subgraph of G containing
only the not bi-directed edges. We call theses edges uni-directed. Therefore, we define the
uni-directed edge density of a graph as the number of uni-directed edges divided by the
number of possible edges

(|V |
2

)
. We use uv ∈ E to denote an uni-directed edge from u to v,

and {u, v} for a bi-directed edge.
For any v ∈ V , N+(v) denotes the set of outgoing neighbors of v, i.e. N+(v) = {u |

vu ∈ E}. Similarly, N−(v) denotes the set of incoming neighbors. We define the set of
bi-directed neighbors N(v) of v as the set of its neighbors in G[PIE], formally N(v) = {u |
uv ∈ E ∧ vu ∈ E}. Additionally, we call D ⊆ V a diclique, if D \ {u} ⊆ N(u) for each u ∈ D.

For v ∈ V , we define the graph obtained from G by shortcutting v as the graph G′ =
(V ′, E′) with vertex set V ′ = V \ {v} and edge set E′ = (E ∩ (V ′ × V ′)) ∪ (N−(v) × N+(v)).
Note that in the context of the DFVS problem, shortcutting v corresponds to the assumption
that v is not part of the solution.

3 Mount Doom Solver

As already mentioned, our overall idea is to profit from the plethora of results obtained for
the Vertex Cover problem. We do this both by adapting known reduction rules for and
also by a direct reduction to Vertex Cover.

3.1 Reduction to Vertex Cover
Our reduction to Vertex Cover relies on the simple but surprisingly powerful observation,
that any directed feedback vertex set has to in particular cover all bi-directed edges. In the
special case of a graph that only contains bi-directed edges, DFVS is equivalent to Vertex
Cover. More generally, one can observe the following relation to the underlying undirected
graph; recall that we defined G[PIE] to be the graph obtained from G by replacing bi-directed
edges by undirected edges, and then deleting the remaining directed edges.

▶ Observation 1. If S is a minimum vertex cover for G[PIE] and G − S is acyclic, then S

is a minimum feedback vertex set for G.

This observation implies that if we happen to find a feedback vertex set by solving the
Vertex Cover problem on G[PIE], then we have solved DFVS on G. On the other hand,
if such a minimum vertex cover S for G[PIE] is not a feedback vertex set for G, then there
exists a cycle in G[DIR] that is not covered by S. For our reduction, we add a clique gadget
to such cycles.

Formally, let G = (V, E) be an undirected graph and let C ⊆ V . Our goal is to create a
graph G′ such that that any minimum vertex cover for G′ is a vertex cover for G and also
contains a vertex in C. Let C be a set of r vertices c1, . . . , cr. For our clique gadget, we
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(a) A cycle C in the graph G. (b) The clique c′
1, ..., c′

4 in G[P IE] + C.

Figure 1 An example reduction to vertex cover. Red denotes uni-directed and black denotes
bi-directed edges.

add r new vertices c′
1, . . . , c′

r to G, turn them into a clique, and add the edges {ci, c′
i} for all

1 ≤ i ≤ r. We denote this operation by G + C. See Figure 1 for an example application. We
first prove an exchange argument for vertex covers for G + C.

▶ Lemma 2. For any cycle C in G[DIR] and vertex cover S for G[PIE] + C, a vertex cover
S′ for G[PIE] + C with |S′| ≤ |S| and such that C ∩ S′ ̸= ∅ can be created in linear time.

Proof. Assume that S contains no vertices of C = {c1, . . . , cr}, as otherwise we are already
done. In order to cover the edges {ci, c′

i} for 1 ≤ i ≤ r, S then has to contain all vertices c′
i,

1 ≤ i ≤ r added by the clique gadget. To create S′ from S, we replace c′
1 by c1. This choice

of S′ obviously satisfies |S′| ≤ |S|. Further, S′ is also a vertex cover for G[PIE] + C, since
N(c′

1) = {c1, c′
2, . . . , c′

r} ⊆ S′ and thus all edges that were covered by S through c′
1 remain

covered by S′. ◀

With this exchange argument, we can assume that adding the clique gadget results in a
vertex cover for G[PIE] + C that contains at least one vertex from C. The overall idea of
our reduction to Vertex Cover is to iteratively add clique gadgets for so far not covered
cycles, until we find a feedback vertex set for the original graph.

Consider any set of cycles C = {C1, C2, . . . , Cq} in G[DIR]. Denote the graph resulting
from iteratively applying the clique gadget for each cycle in C by G[PIE] + C. Note that with
this gadgetry we add multiple disjoint sets C ′

i of new vertices. Formally, for Ci = {ci
1, . . . , ci

ri
},

we add new vertices C ′
i = {di

1, . . . , di
ri

}, add edges to turn C ′
i into a clique, and add edges

{ci
j , di

j} for all 1 ≤ i ≤ ri, for each 1 ≤ i ≤ q. For this iterative application of the clique
gadget, we observe the following.

▶ Lemma 3. For any set of C = {C1, C2, . . . , Cq} in G[DIR] and minimum vertex cover S

for G[PIE] + C, if G − S is acyclic, then S ∩ V is a minimum feedback vertex set for G.

Proof. Let S∗ be a minimum feedback vertex set for G. We claim that |S∗| ≥ |S ∩ V |, which
proves the lemma. Since S∗ is a feedback vertex set for G, it follows that S∗ is a vertex cover
for G[PIE], and contains at least one vertex from each cycle in C. (Note that any edge in
G[PIE] and any cycle in G[DIR] corresponds to a cycle in G that needs to be covered.)
Assume w.l.o.g. that S∗ contains vertex ci

1 for each Ci.
Let S∗

C be the set created from S∗ by adding di
2, . . . , di

ri
for each i, 1 ≤ i ≤ q. Observe

that S∗
C then is a vertex cover for G[PIE] + C. The vertices added from the C ′

i cover the
clique-edges among the C ′

i, and all edges {ci
j , di

j} with j ≥ 2. Since S∗ contains vertex ci
1,

also the edge {ci
1, di

1} is covered for each i.

SEA 2023
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heuristic solver

for Vertex Cover

exact solver

for Vertex CoverS is DFVS

S is no DFVS

update C

S is DFVS

S is no DFVS

update C

return S

heuristic solver

for Vertex Cover

exact solver

for Vertex CoverS is DFVS

S is no DFVS

update C

S is DFVS

S is no DFVS

update C

return S

for Vertex Cover

exact solver

for Vertex Cover
solver needs

> 5 sec

S ∩ V is no DFVS

update C

S ∩ V
is DFVS

S ∩ V is DFVS

heuristic solver
return S ∩ V

S ∩ V is no DFVS

update C

Figure 2 Overview of the reduction to Vertex Cover.

Since S is a minimal vertex cover for G[PIE] + C, it follows that |S∗
C | ≥ |S|. At last, note

that S ∩ V contains at least ri − 1 out of the ri vertices in C ′
i for each i, since these build a

clique in G[PIE] + C that needs to be covered. Also, we added exactly ri − 1 out of the ri

vertices in C ′
i for each i to S∗ to create S∗

C .
Thus |S ∩ V | ≤ |S| −

∑q
i=1(ri − 1) ≤ |S∗

C | −
∑q

i=1(ri − 1) = |S∗|. ◀

Building from this idea, we iteratively choose new cycles and add their corresponding
clique gadgets, growing a set C. By using the exchange argument from Lemma 2 on the
vertex cover for G[PIE] + C, we are certain that this process converges to finding a directed
feedback vertex set for the original graph, at the latest when C contains all cycles in G.
We start with C = ∅, and iteratively do the following until we find a solution. Compute a
minimum vertex cover S for G[PIE] + C and use the exchange argument from Lemma 2 to
create a set that contains at least one vertex for each cycle in C. If S ∩ V is not a feedback
vertex set for G, we compute a set of vertex disjoint cycles in G[DIR] − S (simply with a
depth first search) and add them to C.

Since this iterative built up of C can result in multiple calls to a Vertex Cover solver,
we do the following. If the exact Vertex Cover solver takes more than five seconds, we
switch to a heuristic solver to find a set C that gives a feedback vertex set. (See Figure 2
for an overview of how we switch between solvers.) Then we run the exact Vertex Cover
solver only once on G[PIE] + C for this set C to find an optimal solution. In theory, it could
happen that the set C by the heuristic solver gives a feedback vertex set does not work for
the exact solver and we would have to iterate further, adding more cycles to C. To our
knowledge, this did not happen in our experiments.

3.2 Reduction Rules

Before reducing to Vertex Cover, we apply a number of reduction rules to shrink the
input. We adapt some reduction rules that were introduced for the Vertex Cover problem,
and also introduce a new rule that is tailored specifically for instances with many bi-directed
and few not bi-directed edges.

We can again use that any feedback vertex set in particular is a vertex cover for G[PIE]
and inherit the following reduction rules from [14] for Vertex Cover.

VC-DOME. Let u be isolated in G[DIR] such that N(u) \ {v} ⊆ N(v) for some v ∈ N(u)
(u is dominated by v in G[PIE]). Add v to the solution and delete it from G.
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(a) Before application of SHORTONE. (b) After application of SHORTONE.

Figure 3 An example application of the SHORTONE reduction rule. Red denotes uni-directed
and black denotes bi-directed edges.

Degree 2 Fold. Let v, u ∈ V be two isolated vertices in G[DIR] (i.e. they are adjacent
only to bi-directed edges in G). Also, let v have degree two in G[PIE] with N(v) = {u, w}.
Add a new vertex t to G and connect t in such a way, that N+(t) = N+(w) ∪ N(u) and
N−(t) = N−(w) ∪ N(u) and remove u, v and w.

To unfold this reduction after a solution S is computed for the reduced graph do the
following. If t ∈ S, the solution to the original instance is (S \ {t}) ∪ {u, w}, and otherwise,
the solution to the original instance is S ∪ {v}.

Funnel Fold. Let v be isolated in G[DIR] and w ∈ N(v) such that N(v) \ w is a diclique.
Add C = N(v) ∩ N(w) to the solution and delete these vertices. Then add edges, such that
each x ∈ N(v) \ C is a bi-directed neighbor of every y ∈ N(w) \ C. Finally delete v and w.

To unfold this reduction after a solution S is computed for the reduced graph do the
following. If N(v) \ {w} ⊆ S, the solution to the original instance is S ∪ {w}, otherwise
S ∪ {v}.

Particularly for instances with low degree in G[DIR], we design the following reduction
rule to decrease the number of edges that are not bi-directed.

SHORTONE. Let v be a node with exactly one incoming edge uv and one outgoing edge vw

in G[DIR] such that N(v) ⊆ N(u) ∪ N(w) (any bi-directed neighbor of v is also a bi-directed
neighbor of u or w). Remove the edges uv and vw and add uw.

▶ Lemma 4. Reduction rule SHORTONE is correct.

Proof. Let G be the original graph, and G′ be the graph obtained from G by applying
SHORTONE. First consider any directed feedback vertex set S for G. If v ̸∈ S, then S is also
a solution for G′. If v ∈ S, assume S is not a solution for G′. Then u, w ̸∈ S since any cycle
that is present in G′ and not in G was introduced by SHORTONE and hence must use uw.
Since all bi-directed neighbors of v in G are also bi-directed neighbors of u or w in G, those
must all be included in S. Thus we can simply replace v by u (or w) and obtain a solution
for G′ of the same size as S.

Conversely, consider any solution S′ for G′ and assume that it is not a solution for G.
Thus G − S′ still contains a cycle C. Since S′ is a solution for G′, C has to contain uv or vw

since these are the only arcs deleted to create G′. Further, C cannot contain both uv and
vw, since G′ contains the added uw that could be used to turn C into a cycle in G′. Thus, C

has to contain edge of the form vx or xv for some x /∈ {u, w}. However, all possible choices
of x are bi-directed neighbors of v in G′, and are thus contained in S′. ◀

See Figure 3 for an example application of the SHORTONE reduction rule.

SEA 2023
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Aside from these reduction rules imported or inspired by techniques developed for Vertex
Cover, we use and slightly alter some of those rules for DFVS.

These following two rules can be found in [22], where we do a slight novel alteration of
the second one.

PIE. If uv is an edge between different strongly connected components in G[DIR], then
delete uv.

Improved CORE. A vertex a is a core of a diclique, if the graph induced by a and its
neighbors is a diclique. Traditionally, one now deletes N(a) from G since if S′ is optimal for
G − N(v), S′ ∪ N(v) is optimal for G. We proceed differently and shortcut the node a if
N+(a) or N−(a) are dicliques. While this extension is easy to prove, it is, to the best of our
knowledge, novel.

As first obvious reduction rules that are always applied, all nodes with self loops are
collected into the solution and removed from the graph, and isolated nodes are removed as
well. Further we use the classical domination rule, formally.

DOME. An edge ab ∈ DIR is called dominated if all outgoing neighbors of b are also
outgoing neighbors of a or if all incoming neighbors of a are also incoming neighbors of b. It
is well known (see e.g. [9]) that such a dominated edge can safely be deleted.

3.3 Implementation Details
We fist only use the reduction rules Improved CORE and PIE, and deletion of self loops and
isolated nodes. If we do not completely solve the instance within five seconds, using only
these reductions, we proceed with all reduction rules listed above.

In both cases, if the instance is not solved after exhaustive application of all reduction
rules, we proceed with our clique gadget to reduce to Vertex Cover. To solve the Vertex
Cover instances G[PIE] + C, we initially reduce them using the kernelization procedure,
implemented by the winning solver of the 2019 PACE challenge [18]. For solving these
reduced instances heuristically, we use the local-search solver NuMVC by Cai et al. [4]. When
the heuristic solver has found a successful set of cycles C, we compute an exact minimal
vertex cover for G[PIE] + C. For this exact computation, we use the solver SAT-and-Reduce
by Plachetta and van der Grinten [27], which we augment by implementing better upper
bounds using the aforementioned local-search solver (SAT-and-Reduce internally uses the
SAT solver CaDiCaL by Biere et al. [3].)

4 Experiments

In this section we give the details of the computational experiments conducted to evaluate
our solver Mount-Doom.

4.1 Data
We evaluate both the effect of our new reduction rule SHORTONE and the overall solver on
two data sets. Firstly, we examine the performance on the public and private instances from
the PACE 2022 challenge. Those are designed to provide a wide range of graph types with
practical relevance [30].
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Figure 4 Running time on PACE graphs by density of uni-directed edges.

Figure 5 Running time on Erdős-Rényi graphs by density of uni-directed edges.

Secondly, we evaluate on randomly generated graphs of varying sizes and densities. In
the usual Erdős-Rényi model the number of vertices is fixed and each possible edge is present
uniformly and independently at random with some constant probability [11]. Since we are
interested in the effect of the uni-directed edge density on the solver performance, we modify
this model as follows: For n ∈ N and p, q ∈ R+ s.t. p + q ≤ 1 generate a graph G(n, p, q)
with n vertices letting each possible edge be a bi-directed edge with probability p, a single
edge with probability q and not present with probability 1 − p − q. In the case of single edges,
pick one of the two possible directions with equal probability. We then examine different
parameters, with n between 10 and 500, p and q between 0.0001 and 0.05. Overall, we
generated 253 such graphs.

These two data sources help us gain a good understanding of two different aspects: The
PACE instances provide large scale real-world relevant instance which contain up to a million
edges while our random instances provide a more systematic view into the effect of the
uni-directed edge density.
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4.2 Competing Algorithms
We compare our algorithm with the winner of the PACE 2022 implementation challenge
DAGer [20, 29] and a state-of-the-art-solver for the Directed Feedback Arc Set problem
(DFAS) Sdopt [2].

The solver DAGer first applies an extensive set of preprocessing rules to reduce the
size of the instance. The reduced instance is then solved exactly using a modified SAT-
solver. As initialization, a set of clauses corresponding to cycles that need to be hit, is
given. This set might not be exhaustive. To ensure feasibility, the SAT-solver is modified to
maintain a topological ordering on the vertices and dynamically detect cycles and adding
the corresponding clauses to the problem.

To use the solver Sdopt, which is designed to solve the DFAS problem, we first use the
canonical reduction from the DFVS problem to the DFAS problem. Initially the solver
enumerates a set of cycles and solves the integer programming formulation for hitting all of
theses cycles. If the obtained solution is a directed feedback arc set, this solution is returned,
otherwise the current solution is augmented to a feasible DFAS and the found optimum is
updated. Additionally, it searches for cycles that are not hit and adds some of them to the
integer program relaxation. This process is repeated until a solution is found.

4.3 Machine Specifications
All experiments were conducted on an AMD EPYC 7742 at 2.25GHz CPU running Fedora
34. Both DAGer and Mount-Doom were compiled with GCC 11.3.1. Sdopt was run with
Python 3.9 against Gurobipy 9.5.2 [16]. All experiments were conducted on a single thread.

4.4 Experiment Description
To examine the efficacy of our solver as a whole and the effect of our proposed reduction rule
SHORTONE, we conducted two experiments.

For our first experiment, we take the two data sets described above and run the three
described solvers (DAGer, Sdopt, Mount-Doom) on them.

We hypothesize that on instances with a large number of bi-directed edges, our solver
outperforms both competing solvers. To support this conclusion, the randomly generated
graphs contain instances with a wide range of bi-directed and uni-directed edges and overall
densities. The PACE instances also vary widely in these parameters.

In the second experiment, we want to examine the effect of our novel reduction rule
SHORTONE. We compare the reduction achieved by our whole set of reduction rules to this
set without SHORTONE on both of the data sets.

4.5 Results and Discussion
Next, we present the results of the conducted experiments and summarize our findings.

Figure 4 shows the running times of the three algorithms Mount-Doom, DAGer, and Sdopt
on the PACE instances and Figure 5 shows the running times on the Erdős-Rényi graphs. It
is apparent from the plots that Mount-Doom and DAGer outpace the Sdopt solver. Hence we
make further one-to-one comparisons between DAGer and Mount-Doom in Table 1. Although
DAGer clearly wins on the PACE instances in the total number of instances solved before
the timeout, our Mount-Doom solver wins in the number of instances solved faster. On
Erdős-Rényi graphs, DAGer also wins in the number of fast solved instances. This indicates
that our solver is more suited for structured and less random instances.



S. Angrick et al. 10:11

Figure 6 Ratio of Mount-Doom and DAGer running times on the PACE instances sorted by
uni-directed edge density. On blue instances at least one of the solvers did not finish within 30
minutes. The unfinished solver’s time is denoted by 30 minutes. The line shows a linear regression
model with a confidence interval of 95%.

Figure 7 Ratio of Mount-Doom and DAGer running times on the Erdős-Rényi instances. On
blue instances at least one of the solver’s did not finish within 30 minutes. The unfinished solvers
time is denoted by 30 minutes. The line shows a linear regression model with a confidence interval
of 95%.

Figure 8 Percentage of total edges which are reduced with SHORTONE but not without by
density of directed edges. The instances are taken from the set of all PACE instances after removing
graphs which were fully reduced without SHORTONE (60 instances) and those that are not reduced
at all even after including SHORTONE (2 instances).

SEA 2023



10:12 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

Table 1 Comparison of number of instances solver faster by each solver for different graph types.

Data set Solver #Solved #Solved faster #Solved faster by factor 2

PACE Mount-Doom 153 109 46
DAGer 186 78 38

Erdős-Rényi Mount-Doom 166 75 17
DAGer 213 102 28

The instances in the plots in Figure 4 and Figure 5 are ordered by the density of the
uni-directed edges. We can see that in Figure 4 i.e. the PACE instances, we are in general
faster than the other two algorithms in those instances with few uni-directed edges. Figure 6
shows the ratios between running times of Mount-Doom and DAGer with a similar X-axis
and a linear regression line with a confidence interval of 95%. The regression line clearly
shows the trend that Mount-Doom is better on low uni-directed density instances. But such
a trend cannot be seen in Erdős-Rényi graphs from similar plots in Figures Figure 5 and
Figure 7, again showing that Mount-Doom is better suited for structured instances.

Our SHORTONE reduction rule relies on the existence of a vertex v with exactly one
incoming and one outgoing uni-directed neighbor, such that for every w ∈ N(v) there is
a uni-directed neighbor of v adjacent to w in G[PIE]. Therefore, when we have a sparse
directed graph with relatively many bi-directed edges, we expect SHORTONE to be well
applicable. This can be attested by Figure 8 showing the performance of SHORTONE on
PACE instances. When we have only a small percentage of uni-directed edges, we can reduce
a considerable percentage of initial edges which we do not reduce without SHORTONE. With
up to 5% of the initial edges, we see a clear advantage compared to not using SHORTONE.
This advantage decreases with increasing density of uni-directed edges. But even for a
uni-directed edge density of about 1%, where G[DIR] becomes quite dense, we are still able
to reduce some edges.

However, on the generated Erdős-Rényi graphs, which exhibit a uniform edge distribution,
the required edge structure for the rule to be applied is much less likely to occur. This was
confirmed by experimental results, where the inclusion of SHORTONE did not reduce the
instances any further.

5 Conclusion

We give the description of our new exact algorithm Mount-Doom for DFVS, which won the
third place in the PACE coding challenge 2022. We also present the results of extensive
experiments we conducted to compare Mount-Doom to the PACE winner DAGer and a state
of art solver Sdopt. We demonstrated that we clearly outpace Sdopt in terms of running
time. Although DAGer beats our algorithm in many cases, our algorithm is still competitive,
and is considerably faster in a big share of the instances. Especially, on structured instances
with low uni-directed edge density Mount-Doom has an upper hand.

We also introduced a new reduction rule SHORTONE in our algorithm. We demonstrated
that the reduction rule comes to good use in many of the instances, especially the structured
instances with small uni-directed edge density.

The efficiency of our solver seems to not just depend on the uni-directed edge density
but even more on structure, as can be seen by the different performance between the PACE
instances and the Erdős-Rényi graphs. As further work, it would be interesting to study more
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closely which structures are beneficial not just for our particular algorithm, but generally
for the approach to reduce DFVS to Vertex Cover. One could, for example, also directly
attempt to develop an algorithm that has theoretical efficiency in the low uni-directed density
regime.
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