
Algorithmica (2017) 77:515–536
DOI 10.1007/s00453-015-0082-y

Minimizing Maximum (Weighted) Flow-Time on
Related and Unrelated Machines

S. Anand1 · Karl Bringmann2 ·
Tobias Friedrich3 · Naveen Garg4 ·
Amit Kumar4

Received: 12 November 2014 / Accepted: 11 October 2015 / Published online: 26 October 2015
© Springer Science+Business Media New York 2015

Abstract In this paper we initiate the study of job scheduling on related and unre-
lated machines so as to minimize the maximum flow time or the maximum weighted
flow time (when each job has an associated weight). Previous work for these metrics
considered only the setting of parallel machines, while previous work for scheduling
on unrelated machines only considered L p, p < ∞ norms. Our main results are: (1)
we give anO(ε−3)-competitive algorithm to minimize maximum weighted flow time
on related machines where we assume that the machines of the online algorithm can
process 1+ε units of a job in 1 time-unit (ε speed augmentation). (2) For the objective
of minimizing maximum flow time on unrelated machines we give a simple 2/ε-
competitive algorithm when we augment the speed by ε. For m machines we show a
lower bound of Ω(m) on the competitive ratio if speed augmentation is not permitted.
Our algorithm does not assign jobs to machines as soon as they arrive. To justify this
“drawback” we show a lower bound of Ω(logm) on the competitive ratio of immedi-
ate dispatch algorithms. In both these lower bound constructions we use jobs whose
processing times are in {1,∞}, and hence they apply to the more restrictive subset

A preliminary conference version [4] without most of the proofs appeared in the 40th International
Colloquium on Automata, Languages and Programming (ICALP 2013). This work was done while all five
authors were visiting the Department of Computer Science and Engineering of IIT Delhi, India. Naveen
Garg is supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

B Tobias Friedrich
friedrich@hpi.de

1 Max Planck Institute for Informatics, Campus E1 4, 66123 Saarbrücken, Germany

2 ETH Zürich, Universitätstrasse 6, 8092 Zurich, Switzerland

3 Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

4 Computer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
110016, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0082-y&domain=pdf

516 Algorithmica (2017) 77:515–536

parallel setting. (3) For the objective of minimizing maximum weighted flow time on
unrelated machines we establish a lower bound of Ω(logm)-on the competitive ratio
of any online algorithm which is permitted to use s = O(1) speed machines. In our
lower bound construction, job j has a processing time of p j on a subset of machines
and infinity on others and has a weight 1/p j . Hence this lower bound applies to the
subset parallel setting for the special case of minimizing maximum stretch.

Keywords Scheduling · Minimizing flow-time · Online algorithms ·
Competitive analysis

1 Introduction

The problem of scheduling jobs so as to minimize the flow time (or response time) has
received much attention. In the online setting of this problem, jobs arrive over time
and the flow time of a job is the difference between its release time (or arrival time)
and completion time (or finish time). We assume that the jobs can be preempted. The
task of the scheduler is to decide which machine to schedule a job on and in what
order to schedule the jobs assigned to a machine.

One way of combining the flow times of various jobs is to consider the sum of the
flow times. An obvious drawback of this measure is that it is not fair since some job
might have a very large flow time in the schedule that minimizes the sum of their flow
times. A natural way to overcome this is to minimize the L p norm of the flow times of
the jobs [3,7,13,14] which, for increasing values of p, would ensure better fairness.
Bansal and Pruhs [7], however, showed that even for a single machine, minimizing,
the L p norm of flow times requires speed augmentation—the online algorithm must
have machines that are, say, an ε-fraction faster (can do 1 + ε units of work in one
time-unit) than those of the offline algorithm. With a (1 + ε)-speed augmentation
Bansal and Pruhs [7] showed that a simple algorithm which schedules the shortest
job first isO(ε−1)-competitive for any L p norm on a single machine; we refer to this
as an (1 + ε,O(1/ε))-competitive algorithm. Golovin et al. [13] used a majorizing
technique to obtain a similar result for parallel machines. While both these results
have a competitive ratio that is independent of p, the results of Im and Moseley [14]
and Anand et al. [3] for unrelated machines have a competitive ratio that is linear in
p and which therefore implies an unbounded competitive ratio for the L∞ norm.

Our main contribution in this paper is to provide a comprehensive treatment of the
problem of minimizing maximum flow time for different machine models. The two
models that we consider are related machines (each machine has a slowness si and
the time required to process job j on machine i is p j · si , i.e., si is the inverse speed
of machine i) and unrelated machines (job j has processing time pi j on machine i).
A special case of unrelated machines is the subset-parallel setting where job j has a
processing time p j independent of the machines but can be assigned only to a subset
of the machines.

Besides maximum flow time, another metric of interest is the maximum weighted
flow time where we assume that job j has a weightw j and the objective is to minimize
max j w j Fj , where Fj is the flow time of j in the schedule constructed. Besides the

123

Algorithmica (2017) 77:515–536 517

Table 1 Previous results and the results obtained in this paper for the different machine models andmetrics
considered. The uncited results are from this paper

Max-Flow-time Max-Stretch Max-Weighted-Flow-time

Single machine Polynomial time (1, Ω(P2/5)) [11] and
(1, O(P1/2)) [9,10]

(1 + ε, O(ε−2)) [8]

Parallel machines (1, 2) [1] (1 + ε, O(ε−1)) [11]

Related machines (1 + ε, O(ε−3))

Subset parallel (1, Ω(m)) (O(1), Ω(logm))

Unrelated machines (1 + ε, O(ε−1))

obvious use of job weights to model priority, if we choose the weight of a job equal to
the inverse of its processing time, then minimizing maximum weighted flow time is
the same as minimizing maximum stretch where stretch is defined as the ratio of the
flow time to the processing time of a job. Chekuri and Moseley [11] considered the
problem of minimizing the maximum delay factor where a job j has a deadline d j , a
release date r j and the delay factor of a job is defined as the ratio of its flow time to
(d j − r j). This problem is in fact equivalent to minimizing maximum weighted flow
time and this can be easily seen by defining w j = (d j − r j)

−1.
The problem of minimizing maximum stretch was first considered by Bender et

al. [9] who showed a lower bound of Ω(P1/3) on the competitive ratio for a single
machine where P is the ratio of the largest to the smallest processing time. Bender et
al. [9] also showed aO(P1/2)-competitive algorithm for a single machine, which was
improved by Bender et al. [10], while the lower bound was improved to Ω(P0.4) by
Chekuri and Moseley [11].

Forminimizingmaximumweighted flow time,Bansal and Pruhs [8] showed that the
highest density first algorithm is (1+ε,O(ε−2))-competitive for single machines. For
parallel machines, Chekuri and Moseley [11] obtained a (1+ ε,O(ε−1))-competitive
algorithm that is both non-migratory (jobs once assigned to a machine are scheduled
only on that machine) and immediate dispatch (a job is assigned to a machine as soon
as the job arrives). Both these qualities are desirable in any scheduling algorithm since
they reduce/eliminate communication overheads amongst the central server/machines.

Our main results and the previous work for these three metrics (Max-Flow-time,
Max-Stretch and Max-Weighted-Flow-time) on the various machine models
(single, parallel, related, subset parallel and unrelated) are expressed in Table 1. Note
that the Max-Flow-time metric is not a special case of the Max-Stretch metric,
and neither is the model of related machines a special case of the subset-parallel
setting. Nevertheless, a lower bound result (respectively an upper bound result) for a
machine-model/metric pair extends to all model/metric pairs to the right and below
(respectively to the left and above) in the table.

Our main results are:

(i) We give anO(ε−3)-competitive non-migratory algorithm to minimize maximum
weighted flow time on related machines with ε speed augmentation. When com-
pared to a migratory optimum our solution is O(ε−4)-competitive.

123

518 Algorithmica (2017) 77:515–536

(ii) For the objective of minimizing maximum flow time on unrelated machines we
give a simple 2/ε-competitive algorithm when we augment the speed by ε. For
m machines we show a lower bound of Ω(m) on the competitive ratio if speed
augmentation is not permitted. Our algorithm does not assign jobs to machines
as soon as they arrive. However, Azar et al. [5] show a lower bound of Ω(logm)

on the competitive ratio of any immediate dispatch algorithm. Both these lower
bound constructions use jobs whose processing times are in {1,∞}, and hence
they apply to the more restrictive subset parallel setting.

(iii) For the objective of minimizing maximum weighted flow time on unrelated
machines, we establish a lower bound of Ω(logm)-on the competitive ratio of
any online algorithm which is permitted to use s = O(1) speed machines. In
our lower bound construction, job j has a processing time of p j on a subset of
machines and infinity on others and has a weight 1/p j . Hence this lower bound
applies to the subset parallel setting for the special case of minimizing maximum
stretch.

(iv) For minimizing the L p norm of stretch on subset parallel machines with a speed
augmentation of 1+ε, we show a lower bound ofΩ(

p
ε1−O(1/p)) on the competitive

ratio. This compares well with theO(
p

ε2+O(1/p))-competitive algorithm of Anand
et al. [3] for minimizing L p norm of weighted flow time on unrelated machines.

The problem of minimizing maximum (weighted) flow time also has interesting con-
nections to deadline scheduling. In deadline scheduling besides its processing time
and release time, job j has an associated deadline d j and the objective is to find a
schedule which meets all deadlines. For single machine it is known that the Earliest
Deadline First (EDF) algorithm is optimum, in that it would find a feasible schedule
if one exists. This fact implies a polynomial time algorithm for minimizing maximum
flow time on a single machine. This is because, job j released at time r j should com-
plete by time r j +opt, where opt is the optimal value of maximum flow time. Thus
r j + opt can be viewed as the deadline of job j . Hence EDF would schedule jobs in
order of their release times and does not need to know opt.

For parallel machines it is known that no online algorithm can compute a schedule
whichmeets all deadlines even when such a schedule exists. Phillips et al. [12] showed
that EDF can meet all deadlines if the machines of the online algorithm have twice
the speed of the offline algorithms. This bound was improved to e

e−1 by Anand et
al. [2] for a schedule derived from the Yardstick bound [15]. Our results imply that
for related machines a constant speedup suffices to ensure that all deadlines are met
while for the subset parallel setting, no constant (independent of number of machines)
speedup can ensure that we meet deadlines.

1.1 Outline

The paper is organized as follows. In Sect. 2 we consider the problem of minimizing
maximum weighted flow time on related machines. Section 3 studies the unweighted
variant of the problem on unrelated machines. Section 4 considers the problem of
minimizing maximum weighted flow time on unrelated machines. The last Sect. 5
proves a lower bound for the competitive ratio.

123

Algorithmica (2017) 77:515–536 519

2 Max-Weighted-Flow-time on Related Machines

In this section, we consider Max-Weighted-Flow-time on related machines with
speed augmentation. In the related machines setting, each job j has weightw j , release
date r j , and processing requirement p j . We are given m machines with varying slow-
ness (i.e., inverse speed) si . Assume that s1 ≤ · · · ≤ sm . For an instance I, let opt(I)

denote the value of the optimal non-migratory offline solution for I. We first compare
our algorithms with opt(I) and show in Sect. 2.2.2 how to compare with the opti-
mal migratory offline solution instead. We assume that the online algorithm is given
(1 + 4ε)-speed augmentation for some sufficiently small positive constant ε.

We assume that all weightsw j are of the form 2k , where k is a non-negative integer
(this affects the competitive ratio by a factor of 2 only). We say that a job is of class k
if its weight is 2k . To begin with, we shall assume that the online algorithm knows
the value of opt(I)—call it T . We say that a job j is valid for a machine i , if its
processing time on i , i.e., p j si , is at most T

w j
. Observe that a non-migratory offline

optimum algorithm will process a job j on a valid machine only.
In the next section, we describe an algorithm, which requires a small amount of

“look-ahead.” We describe it as an offline algorithm. Subsequently, we show that it
can be modified to an online algorithm with small loss of competitive ratio.

2.1 An Offline Algorithm

We now describe an offline algorithm A for I. We allow a speedup of 1 + 2ε. First
we develop some notation. For a class k and integer l, let I (l, k) denote the interval[

lT
ε2k ,

(l+1) T
ε2k

)
. We say that a job j is of type (k, l) if it is of class k and r j ∈ I (k, l).

Note that the intervals I (k, l) form a nested set of intervals.
The algorithm A is described in Fig. 1. It schedules jobs in a particular order: it

picks jobs in decreasing order of their class, and within each class, it goes by the order
of release dates. When considering a job j , it tries machines in order of increasing
speed, and schedules j in the first machine on which it can find enough free slots
(i.e., slots which are not occupied by the jobs scheduled before j). We will show that
our algorithm will always find some machine. Note that A may not respect release
dates of jobs. Observe that the idea of trying out machines in the order of increasing
speed is similar to the ‘slowest-fit’ algorithm for minimizing makespan on related
machines [6].

Algorithm A(I, T):

For k = K downto 1 (K is the highest class of a job)
For l = 1, 2, . . .
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
if there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj).

Fig. 1 The offline algorithm

123

520 Algorithmica (2017) 77:515–536

2.1.1 Analysis

In this section, we prove that the algorithm A will always find a suitable machine for
every job. We prove this by contradiction: let j� be the first job for which we are not
able to find such a machine. Then we will show that opt(I) must be more than T ,
which will contradict our assumption.

In the discussion below, we only look at jobs which were considered before j�

by A. We build a set S of jobs recursively. Initially S just contains j�. We add a job
j ′ of type (k′, l ′) to S if there is a job j of type (k, l) in S satisfying the following
conditions:

• The class k of j is at most k′.
• The algorithm A processes j ′ on a machine i which is valid for j as well.
• The algorithm A processes j ′ during I (k, l), i.e., I (k′, l ′) ⊆ I (k, l).

We use this rule to add jobs to S as long as possible. For a machine i and interval
I (k, l), define the machine-interval Ii (k, l) as the time interval I (k, l) on machine
i . We construct a set N of machine-intervals as follows. For every job j ∈ S of
type (k, l), we add the intervals Ii (k, l) to N for all machines i such that j is valid
for i . We say that an interval Ii (k, l) ∈ N is maximal if there is no other interval
Ii (k′, l ′) ∈ N which contains Ii (k, l) (note that both of the intervals are on the same
machine). Observe that every job in S except j� gets processed in one of the machine-
intervals in N . Let N ′ denote the set of maximal intervals in N . We now show that
the jobs in S satisfy the following crucial property.

Lemma 1 For any maximal interval Ii (k, l) ∈ N , the algorithm A processes jobs of
S on all but an ε

1+2ε -fraction of the interval’s slots.

Proof We prove that this property holds whenever we add a new maximal interval
to N . Suppose this property holds at some point in time, and we add a job j ′ to S.
Let j, k, l, k′, l ′, i be as in the description of S. Since k ≤ k′, and j is valid for i , N
already contains the intervals Ii ′(k, l) for all i ′ ≤ i . Hence, the intervals Ii ′(k′, l ′),
i ′ ≤ i , cannot be maximal. Suppose an interval Ii ′(k′, l ′) is maximal, where i ′ > i ,
and j ′ is valid for i ′ (so this interval gets added toN). Now, our algorithm would have
considered scheduling j ′ on i ′ before going to i—so it must be the case that all but
p j ′si ′ slots in Ii ′(k′, l ′) are busy processing jobs of class at least k′. Further, all the
jobs being processed on these slots will get added to S (by definition of S, and the fact
that j ′ ∈ S). The lemma now follows because p j ′si ′ ≤ T

2k′ ≤ ε|Ii ′(k′, l ′)|, and A can

do (1 + 2ε)|Ii ′(k′, l ′)| units of work during Ii ′(k′, l ′). ��
Corollary 1 The total volume of jobs in S is greater than

∑
Ii (k,l)∈N ′(1+ε)|Ii (k, l)|.

Proof Lemma 1 shows that given any maximal interval Ii (k, l), A processes jobs of
S for at least 1+ε

1+2ε -fraction of the slots in it. The total volume that it can process in
Ii (k, l) is (1+ 2ε)|Ii (k, l)|. The result follows because maximal intervals are disjoint
(we have strict inequality because A could not complete j∗). ��

We now show that the total volume of jobs in S cannot be too large, which leads to
a contradiction.

123

Algorithmica (2017) 77:515–536 521

Algorithm A(I, T):

For t = 0, 1, 2, . . .
For k = 1, 2, . . .
If t is the end-point of an interval I(k, l) for some l, then
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
If there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj).

Fig. 2 An alternate implementation of A

Lemma 2 Ifopt(I) ≤ T , then the total volume of jobs in S is at most
∑

Ii (k,l)∈N ′(1+
ε)|Ii (k, l)|.
Proof Suppose opt(I) ≤ T . For an interval Ii (k, l), let I ε

i (k, l) be the interval of
length (1+ ε)|Ii (k, l)| which starts at the same time as Ii (k, l). It is easy to check that
if Ii ′(k′, l ′) ⊆ Ii (k, l), then I ε

i ′(k
′, l ′) ⊆ I ε

i (k, l).
Let j ∈ S be a job of type (k, l). The offline optimal solution must schedule it

within T
2k of its release date. Since r j ∈ Ii (k, l), the optimal solution must process a

job j during I ε
i (k, l). So, the total volume of jobs in S can be at most

∣∣∣∣
⋃

Ii (k,l)∈N
I ε
i (k, l)

∣∣∣∣ =
∣∣∣∣

⋃
Ii (k,l)∈N ′

I ε
i (k, l)

∣∣∣∣

≤
∑

Ii (k,l)∈N ′
|I ε

i (k, l)|

=
∑

Ii (k,l)∈N ′
(1 + ε)|Ii (k, l)|,

which finishes the proof. ��
Clearly, Corollary 1 contradicts Lemma 2. So, algorithmAmust be able to process

all the jobs.

2.2 Offline to Online

Now, we give an online algorithm for the instance I. Recall that A is an offline
algorithm for I and may not even respect release dates. The online algorithm B is a
non-migratory algorithm which maintains a queue for each machine i and time t . For
each job j , it uses A to figure out which machine the job j gets dispatched to.

Note that the algorithm A can be implemented in a manner such that for any job j
of type (k, l), the slots assigned by A to j are known by the end of interval I (k, l)—
jobs which get released after I (k, l) do not affect the schedule of j . Also note that the
release date of j falls in I (k, l). This is described more formally in Fig. 2.

We now describe the algorithm B. It maintains a queue of jobs for each machine.
For each job j of class k and releasing during I (k, l), if j gets processed on machine i

123

522 Algorithmica (2017) 77:515–536

byA, then B adds j to the queue of i at end of I (k, l). Observe that B respects release
dates of jobs—a job j of type (k, l) has release date in I (k, l), but it gets dispatched
to a machine at the end of the interval I (k, l). For each machine i , B prefers jobs of
higher class, and within a particular class, it follows the ordering given by A (or it
could just go by release dates). Further, we give machines in B (1 + 3ε)-speedup.

2.2.1 Analysis

We now analyze B. For a class k, let J≥k be the jobs of class at least k. For a class k,
integer l and machine i , let Qi (k, l) denote the jobs of J≥k which are in the queue of
machine i at the beginning of Ii (k, l). First we note some properties of B:
(i) A job j gets scheduled in B only in later slots than those it was scheduled on by

A: A job j of type (k, l) gets scheduled during Ii (k, l) in A. However, it gets
added to the queue of a machine by B only at the end of Ii (k, l).

(ii) For a class k, integer l and machine i , the total remaining processing time (on
the machine i) of jobs in Qi (k, l) is at most (1+2ε)T

ε2k : Suppose this is true for
some i, k, l. We want to show that this holds for i, k, l + 1 as well. The jobs in
the queue Qi (k, l + 1) could consist of either (1) the jobs in Qi (k, l), or (2) the
jobs of J≥k which get processed by A during Ii (k, l). Indeed, jobs of J≥k which
get released before the the interval Ii (k, l) finish before this interval begins (in
A). Hence, in B, any such job would either finish before Ii (k, l) begins, or will
be in the queue Qi (k, l). The jobs of J≥k which get released during Ii (k, l) will
complete processing in this interval (inA) and hence may get added to the queue
Qi (k, l + 1).
Now, the total processing time of the jobs in (2) above is at most (1+2ε)|Ii (k, l)|
(recall that themachines inA have speedup of (1+2ε)). Suppose in the scheduleB,
themachine i processes a job of class smaller than k during some time in Ii (k, l)—
then it must have finished processing all the jobs in Qi (k, l) so that Qi (k, l + 1)
can only contain jobs from (2) above, and hence, their total processing time is
at most (1 + 2ε)|Ii (k, l)| and we are done. If, on the other hand, the machine
i is busy during Ii (k, l) processing jobs from J≥k (in B), then it does at least
(1 + 2ε)|Ii (k, l)| units of work so that the property holds at the end of Ii (k, l) as
well.

We are now ready to prove the main theorem.

Theorem 1 In the schedule B, a job j of class k has flow-time at most T (1+3ε)
ε22k . Hence

B is a
(
2(1+3ε)

ε2

)
-competitive algorithm with (1+3ε)-speedup compared to the optimal

non-migratory offline algorithm.

Proof Consider a job j of class type (k, l). Suppose it gets processed on machine i .
The algorithm B adds j to the queue Qi (k, l). Property (ii) above implies that the total
remaining processing time of these jobs (on i) is at most (1 + 2ε)|Ii (k, l)|. Consider
an interval I which starts at the beginning of Ii (k, l) and has length (1+2ε)|Ii (k,l)|

ε
=

(1+2ε) T
ε22k . The jobs of J≥k that B can process on i during I are either (1) jobs in

Qi (k, l), or (2) jobs processed byA on machine i during I (using property (i) above).

123

Algorithmica (2017) 77:515–536 523

The total processing time of the jobs in (2) is at most (1 + 2ε)|I |, whereas B can
process a total volume of (1 + 3ε)|I | during I (on machine i). This still leaves us
with ε|I | = (1+2ε) T

ε2k —which is enough to process all the jobs in Qi (k, l). Thus, the

flow-time of j is at most |I |+|Ii (k, l)| = T
2k

(
1
ε

+ 1+2ε
ε2

)
. Finally, given any instance,

we lose an extra factor of 2 in the competitive ratio because we scale all weights to
powers of 2. ��

2.2.2 Extensions

We mention some easy extensions of the above result.

Comparison with Migratory Offline Optimum Here, we allow the offline optimum to
migrate jobs across machines. To deal with this, we modify the definition of when a
job is valid on a machine. We will say that a job j of class k is valid for a machine i if
its processing time on i is at most T

2k · 1+ε
ε
. Note that even a migratory algorithm will

process at most ε
1+ε

-fraction of a job on machines which are not valid for it. Further,

we modify the definition of I (l, k) to be
[

lT
ε′2k ,

(l+1)T
ε′2k

)
, where ε′ = ε2+ε

ε+2 . The rest

of the analysis can be carried out as above to yield the following result. Note that we
could still work with (1 + 3ε)-speed augmentation, but we will need the following
result for large values of ε as well. Therefore, the constants in the statement of the
Theorem below show dependence on ε2 as well.

Theorem 2 There is an on-line scheduling algorithm which is
(
2(2+ε)(1+3ε+2ε2

(ε+ε2)2

)
-

competitive with (1 + 3ε + 2ε2)-speedup compared to the optimal migratory offline
algorithm.

Proof The algorithmA remains unchanged except that now it has (1+2ε+ε2)-speed
augmentation. As in Sect. 2.1.1, we first show thatA will schedule all the jobs. Proof
of Lemma 1 and Corollary 1 can be easily modified to show that the total volume of
jobs in S is at least (1+ 2ε + ε2 − ε′)

∑
Ii (k,l)∈N ′ |Ii (k, l)|. In the proof of Lemma 2,

we now only need to consider intervals I ε′
i (k, l)—intervals of length (1+ ε′)|Ii (k, l)|.

For a job j ∈ S, at least 1
1+ε

-fraction of its processing is done on a valid machine.
Therefore, the total volume of jobs in S is at most

(1 + ε)|
⋃

Ii (k,l)∈N
I ε′
i (k, l)| < (1 + ε)(1 + ε′)

∑
Ii (k,l)∈N ′

|Ii (k, l)|.

This yields the desired contradiction, because (1 + ε)(1 + ε′) ≤ (1 + 2ε + ε2 − ε′),
and shows that A schedules all the jobs.

The algorithm B is given (1 + 3ε + 2ε2)-speed augmentation, which is an extra
(ε+ε2)-speed as compared to that ofA. As earlier,we can show that the total remaining
processing time of jobs in Qi (k, l) is at most (1 + 2ε + ε2)|Ii (k, l)|. Arguing as in
proof of Theorem 1, we see that a job j of class k completes processing within

123

524 Algorithmica (2017) 77:515–536

(
1 + 1+2ε+ε2

ε+ε2

)
|Ii (k, l)| of its release date. This proves the desired result (the extra

factor 2 comes because we rounded weights to nearest power of 2). ��
Note that the above theorem states that for small values of ε, we get O(1/ε4)-

competitive algorithm with (1 + ε)-speed augmentation.

Deadline Scheduling on Related Machines In this setting, the input instance also
comes with a deadline d j for each job j . The assumption is that there is a schedule
(offline) which can schedule all jobs (withmigration) such that each job finishes before
its deadline. The question is: is there a constant s and an online algorithm S such that
with speedup s, it can meet all the deadlines? Using the above result, it is easy to show
that our online algorithm has this property provided we give it constant speedup.

Corollary 2 There is a constant s, and a non-migratory scheduling algorithm which,
given any instance of the deadline scheduling problem, completes all the jobs within
their deadline if we give speed-up of s to all the machines.

Proof Theorem 2 shows that if we pick ε to be 6, then the competitive ratio becomes
less than 1. Thus, with speedup of 91, the weighted flow-time of each job is even better
than the optimal value T . Further, note that there is no assumption of the weights of
the jobs—they do not need to be powers of 2. The fact that we round them to powers
of 2 worsens the competitive ratio by a factor of 2, which is getting absorbed in the
competitive ratio mentioned in Theorem 2.

Now consider an instance I of the deadline scheduling problem. We map this to
an instance I ′ of the Max-Weighted-Flow-time problem where we know that the
optimal value T is at most 1. Themapping is as follows.When a job j with deadline d j

arrives at time r j in I, we release j at time r j in I ′ as well (the processing time of
j is I ′ is same as that in I). Further, we set w j to be 1

d j −r j
in I ′. We claim that the

optimal value for I ′ is at most 1. Indeed, there is a schedule which finishes each job j
by time d j , and so, its weighted flow-time is at most 1. Now, our online algorithm
with speedup 91 will also have objective value of 1, i.e., each job will now finish by
its deadline d j . ��

2.3 Removing the Assumption About Knowledge of T

In this section, we show how to remove the assumption that we know T . Again, we
will construct an offline algorithm C, which will invokeA for different guesses for T .
Our algorithm will work with a guess for T which are powers of C = 1+ε

ε
. Assume

that all release dates and processing times are integers so that the optimum value is at
least 1. Let Tu denote Cu . We first slightly generalize algorithmA described in Fig. 1.
The new algorithm A′ will take as parameters an instance I ′, a guess for T , and a
starting time t0—all release dates in I ′ will be at least t0. It will runA(I ′, T) with the
understanding that time starts at t0. Also it will run the machines at speed (1 + 3ε).

Consequently, the interval I (T)(k, l) will be defined as
[
t0 + lT

ε2k , t0 + (l+1)T
ε2k

)
[this

is same as I (k, l) defined in Sect. 2.1]. Similarly, we say that a job of class k is of

123

Algorithmica (2017) 77:515–536 525

Algorithm C(I):

1. Initialize T0 = 1, t0 = 0, I0 = I.
2. For u = 0, 1, 2, . . .

(i) Run A′(Iu, Tu, tu) as described above.
(ii) If we are able to finish all jobs, then stop and output the schedule produced.
(iii) Else let j be the first job which the algorithm A′(Iu, Tu, tu) is not able to schedule.

Suppose j is of type (k, l)Tu . Define tu+1 as the end-point of I(Tu)(k, l).
Define Iu+1 as the jobs in Iu which are not scheduled yet.
Define the release date of a job j ∈ Iu+1 as max(tu+1, rj). Set Tu+1 = Tu · 1+ε

ε
.

Go to the next iteration.

Fig. 3 The offline algorithm without knowledge of T

type (k, l)T if r j ∈ I (T)(k, l). With these definitions, we are ready to present our new
offline algorithm. The algorithm is described in Fig. 3.

Wefirst show that algorithmC is constant competitive. Consider a run of algorithmC
on instance I. Suppose during iteration u of Step 2 we find a job j� as in Step 2(iii),
where j� is of type (k�, l�)Tu . Recall that tu+1 is the end-point of I (Tu)(k�, l�). For a
job j ∈ Iu , let ru

j denote its release date in the instance Iu .

Lemma 3 Any job j ∈ Iu+1 with ru
j < tu+1 must be of class at most k�. Further, if

such a job is of class k, then tu+1 − r j ≤ Tu+1
2k .

Proof Suppose j ∈ Iu and ru
j < tu+1. If j is of type (k, l)Tu , where k > k�, then

I (Tu)(k, l) ⊆ I (Tu)(k�, l�) so that the interval I (Tu)(k, l) ends on or before tu+1. Thus,
A′(Iu, Tu, tu) would have considered j before j�. By definition of j�, the algo-
rithm must have scheduled j in I (Tu)(k, l), which is before tu+1. This proves the
first statement of the lemma. We now prove the second statement of the lemma. We
use induction on u. Suppose the statement is true for iteration u − 1. We now show
that it is true for u. Let j be a job of class k′ ≤ k such that j ∈ Iu+1 and ru

j < tu+1.

Then j is of type (k, l)Tu , where the interval I (Tu)(k, l) ends on or after tu+1. Hence,
tu+1 − ru

j ≤ |I (Tu)(k, l)| = Tu
ε2k . If r j ≥ tu , then ru

j = r j , and we are done. Otherwise,

ru
j = tu so that we have tu+1− tu ≤ Tu

ε2k . By induction hypothesis, tu −r j ≤ Tu
2k . Thus,

tu+1 − r j ≤ Tu

ε2k
+ Tu

2k
= Tu+1

2k
.

��
Now, we show that if C is not able to process all jobs in iteration u, then opt(I)

must be at least Tu .

Lemma 4 If, during iteration u, C does not finish all jobs, then opt(I) ≥ Tu.

Proof The proof is similar to Sect. 2.1.1, so we sketch only the main ideas. The set S
is defined as in Sect. 2.1.1 (with respect to the input Iu). The proofs of Lemma 1 and
Corollary 1 remain unchanged. However, machines inA′ have (1+ 3ε)-speedup. So,
we get that the total volume of jobs in S ismore than

∑
I (Tu)(k,l)∈N ′(1+2ε)|I (Tu)(k, l)|.

123

526 Algorithmica (2017) 77:515–536

We get a contradiction by showing that if opt(Iu) ≤ Tu , then the total volume of
jobs in S is at most

∑
I (Tu)(k,l)∈N ′(1 + 2ε)|I (Tu)(k, l)|. The proof is similar to that of

Lemma 2. The only catch is that, for a job j of type (k, l)Tu , r j may not even lie in
I (Tu)(k, l). Thus, the optimum algorithm may process j even before this interval. But
Lemma 3 shows that r j may lie at most ε|I (Tu)(k, l)| to the left of I (Tu)(k, l). Hence,
we define the intervals I ε,(Tu)(k, l) which attach two segments of length ε|I (Tu)(k, l)|
both before and after I (Tu)(k, l). The remaining arguments work as in the proof of
Lemma 2. ��

Theorem 3 Suppose opt(I) lies between Tu−1 and Tu. Then algorithm C completes
a job of class k within (1+ε)Tu

ε2k of its release date. Further, the schedule for job j

depends only on jobs released till time r j + (1+ε)Tu
ε2k .

Proof Lemma 4 implies that A must finish in iteration u. Thus, each job of class k
terminates in I (Tu′)(k, l) for some u′ ≤ u. Lemma 3 now implies that it completes
within (1+ε)Tu′

ε2k of its release date. The second statement in the theorem is also easy to
see. ��

Wenowdescribe the online algorithm. The online algorithmD(I) runs C(I). Let Tu

be as in Theorem 3. The theorem implies that for any job j , we will know the machine
on which it will get scheduled by time r j + (1+ε)Tu

ε2k . At this time, we place j on the
queue of themachine to which it gets scheduled on by C. We give a speedup of (1+4ε)
to the machines inD. Further, each machine follows the following rule: it prefers jobs
of larger class, and within a particular class, it just goes by release date. The following
claim shows that the queues do not get too big.

Claim At time 2lTu
ε2k , for any integer l, the total remaining processing time of jobs of

J≥k in the queue of machine i is at most Tu
ε2k .

Proof We prove this by induction on l. For ease of notation, let tl denote
2lTu
ε2k . Suppose

the claim is true for some l. Now, the queue on i at time tl from J≥k could be (1) jobs
which are completely processed by C during

[
tl , tl+1

]
, which have processing time at

most (1+3ε)Tu
ε2k−1 on machine i , (2) jobs in the queue of i at time tl , which have remaining

processing time of at most Tu
ε2k (by induction hypothesis), and (3) jobs which were

partially processed by C by time tl : there will be at most 1 such job from each class,
and so their total processing tim will be at most Tu

2k−1 . The result now follows because

D can do (1+4ε)Tu
ε2k−1 amount of processing during [tl , tl+1]. ��

The proof of the following theorem is analogous to Theorem 1.

Theorem 4 The algorithm D completes a job of class k within (3+ε)Tu
ε22k of its release

date. Hence, D is (3+ε)(1+ε)

ε3
-competitive with (1+4ε)-speed augmentation compared

to the optimal non-migratory offline algorithm.

123

Algorithmica (2017) 77:515–536 527

3 Max-Flow-time on Unrelated Machines

We consider the (unweighted)Max-Flow-time on unrelated machines.We first show
that a constant competitive algorithm cannot have the property of immediate dispatch
and it requires speed augmentation. Since our instances use unit-sized jobs, the lower
bound also holds for Max-Stretch. Recall that a scheduling algorithm is called
immediate dispatch if it decides at the time of a job’s arrival whichmachine to schedule
the job on.

The lower bound for an immediate dispatch algorithm follows from the lower bound
of Azar et al. [5] for minimizing total load in the subset parallel settings. Here, we are
given a set of machines and jobs arrive in a sequence. Each job specifies a subset of
machines it can go to and the online algorithm needs to dispatch a job on its arrival to
one such machine. The goal is to minimize the maximum number of jobs which get
dispatched to a machine. Azar et al. [5] prove that any randomized online algorithm
for this problem is Ω(logm)-competitive. From this result, we can easily deduce the
following lower bound for Max-Flow-time in the subset parallel setting with unit-
sized jobs (given an instance of the load balancing problem, give each job a size of 1
unit, and make them arrive at time 0 in the same sequence as in the given instance).

Theorem 5 Any immediate dispatch randomized online algorithm for Max-Flow-
time in the subset parallel setting with unit-sized jobs must have a competitive ratio
of Ω(logm).

Now we show that any randomized online algorithm with bounded competitive ratio
needs speed augmentation.

Theorem 6 Any online algorithm for minimizingMax-Flow-time on subset-parallel
machines which allows non-immediate dispatch but does not allow speed augmenta-
tion has a competitive ratio of Ω(m). This holds even for unit-sized jobs.

Proof Let the machines be numbered from 1 to m. Consider an online algorithm A.
We will use the decisions made by A to build an instance I on which A would have
a maximum flow-time m − 1 while the optimum offline algorithm will have value 2.
Our construction involves defining a gadget Gi (t) as follows

(i) At time t , a job is released which can be scheduled on machine i or i + 1 only.
(ii) For all times t, t + 1, . . . , t + m − 1, two jobs are released, one of which can go

only on machine i and the other only on machine i + 1.
(iii) At time t + m, we release a job which can go only to the machine on which A

schedules the job released in step 1. Note thatA must have scheduled the job by
time t + m − 1 or else it has a flow time more than m − 1.

The following properties of Gi (t) are immediate from the construction

(i) Jobs are released from time t to t + m.
(ii) An offline algorithm which had no unfinished jobs on machines i, i + 1 at time t

can schedule all jobs released in Gi (t)within 2 time units of their release. Further,
the offline algorithm would have no unfinished jobs at time t + m + 1.

123

528 Algorithmica (2017) 77:515–536

0

0

1

0

0

1

0

2

0 1

0

Fig. 4 Composing gadgets to increase load

(iii) SupposeA has a unfinished jobs on machine i and b unfinished jobs on machine
i + 1 at time t . Then at time t + m + 1, machine i (respectively i + 1) has either
a+1 (respectivelymax(0, b−1)) or max(0, a−1) (respectively b+1) unfinished
jobs.

Note that if a machine i has a unfinished jobs at time t in A, then we can ensure
that it continues to have a unfinished jobs at time t ′ > t by releasing a job which can
be assigned only to machine i at each time instant from t to t ′ − 1. This idea is used
while composing gadgets to create an instance for which some job has a large flow
time in A.

We shall use the following statement by induction on the number of machines:
given k machines numbered 1, . . . , k, there is an instance such that time a certain time
tk , for every i, 0 ≤ i ≤ k − 1, there is a machine with i unfinished jobs in A. For the
base case (k = 2), we only need the gadget G1(0) and t2 is then m + 1. Now, assume
that the statement is true for k machines, and we will prove it for k + 1 machines.

Using the induction hypothesis, and relabeling of machines, we assume that at
time tk the machine i has k − i unfinished jobs inA, for 1 ≤ i ≤ k. Note that machine
k + 1 has 0 unfinished jobs at time tk . The gadget Gk(tk), which releases jobs for
machines k, k +1 in the interval [tk, tk +m], ensures that one of the machines k, k +1
has one unfinished job. There is no loss of generality in assuming that the number of
unfinished jobs on the lower-numbered machine increases by 1. With this assumption,
we create gadgetsGi (tk+(m+1)(k−i))which ensure that at time tk+(m+1)(k−i+1)
machine i has k − i + 1 unfinished jobs. Thus, at time tk + (m + 1)k = t1k , machine 1
has k unfinished jobs in A (see Fig. 4).

However, since machine i is part of gadgets Gi (·) and Gi−1(·), the number of
unfinished jobs on machine i at time t1k is the same as that at time tk . This implies
that, while machine 1 has k unfinished jobs, machines 2, 3, . . . , k + 1 have one less
unfinished job than desired. To correct this we repeat the construction on machines
2, . . . , k + 1 from time t1k to time t2k = t1k + (m + 1)(k − 1) and on machines
3, . . . , k + 1 from time t2k to time t3k = t2k + (m + 1)(k − 2), and so on. Hence at time
tk+1
k = tk + (m + 1)(k + 1)k/2 = tk+1, algorithmA has k + 1− i unfinished jobs on
machine i .

To complete the proof of Theorem 6, note that at time tm , A has m − 1 unfinished
jobs on machine 1, which implies that some job has a flow time of m − 1. Further, the
composition of these gadgets and the release of the intermediate jobs does not increase
the maximum flow time of the offline optimum. ��

123

Algorithmica (2017) 77:515–536 529

3.1 A (1+ ε,O(1/ε))-Competitive Algorithm

We now describe an
(2

ε

)
-competitive algorithm for Max-Flow-time on unrelated

machines with (1+ε)-speed augmentation. The algorithm proceeds in several phases:
denote these by Π1,Π2, . . ., where phase Πi begins at time ti−1 and ends at time ti .
In phase Πi , we will schedule all jobs released during the phase Πi−1.

In the initial phase, Π1, we consider the jobs released at time t0 = 0, and find an
optimal schedulewhichminimizes themakespan of jobs released at time t0. This phase
ends at the time we finish processing all these jobs. Now, suppose we have defined
Π1, . . . , Πl , and have scheduled jobs released during Π1, . . . ,Πl−1. We consider the
jobs released duringΠl , and starting from time tl , we find a schedule whichminimized
their makespan (assuming all of these jobs are released at time tl). Again, this phase
ends at the time we finish processing all these jobs. Note that this algorithm is a non-
immediate dispatch algorithm and does not require migration. We now prove that this
algorithm has the desired properties.

Theorem 7 Assuming ε ≤ 1, The algorithm described above has competitive ratio 2
ε

with (1 + ε)-speed augmentation.

Proof Consider an instance I and assume that the optimal offline schedule has a
maximum flow time of T . We will be done if we show that each of the phases Πi has
length at most T

ε
. For Π1, this is true because all the jobs released at time 0 can be

scheduled within T units of time. Suppose this is true for phase Πi . Now, we know
that the jobs released during Πi can be scheduled in an interval of length Πi + T .

Using (1 + ε)-speed augmentation, the length of the next phase is at most

|Πi | + T

1 + ε
≤ T/ε + T

1 + ε
= T

ε
. ��

4 Max-Weighted-Flow-time on Unrelated Machines

In this section, we show that for any constant speedup any online algorithm forMax-
Weighted-Flow-time on unrelated machines is Ω(logm)-competitive. This bound
holds for the special case of subset parallel machines, and even extends to the Max-
Stretch metric.

Theorem 8 Let c > 0 be sufficiently large and s ≥ 1 be an integer. For any online
algorithm A with a speedup of (s + 1)/2 there exists an instance I(s, c) of Max-
Stretch on subset parallel machines such that A is not c-competitive on I(s, c).
The instance I(s, c) has jobs with s different weights only, and uses (O(s))O(cs2)

machines.

Proof We will prove a stronger statement: given s and c as above, and an online
algorithm A (depending on s and c), we will construct an instance I(s, c) such that
the value of the optimal offline solution will be 2, whereas the objective value ofAwill
be at least 2c, even if each of the machines has an average speed of (s + 1)/2 during

123

530 Algorithmica (2017) 77:515–536

the time period 0 to T (s, c). Here, T (s, c) is the time by which any c-competitive
algorithm must finish all jobs in I(s, c), i.e., max j (r j + 2cp j), because the offline
optimum value will be 2.

Wewill prove this theorem by induction on s. We first show the base case for s = 2,
i.e., each machine is allowed an average speedup of 3/2. Since c will remain fixed
throughout the proof, we will not parameterize various quantities by c.

Base Case For the sake of contradiction, assume that A is c-competitive even when
we give each of the machines an average speedup of 3/2 on instance I(s, c) described
below. We have two kinds of jobs: a type 0 job has weight 8c and size 1/(8c), and a
type 1 job has weight and size both 1. We first describe a gadget G(t): here t denotes
the starting time for this gadget. The gadget G(t) has 6 machines. At time t we release
6 type 1 jobs—each of these jobs can go on exactly one of the 6 machines. Further,
during (t, t + 1) we release 5 type 0 jobs after every 1

8c time. This completes the
description of the gadget.

Before we give the actual construction, we note a useful property of the gadget. Let
the machines in G(t) be numbered from 1 to 6. ��
Claim Consider any online algorithmBwhich incursweighted flow-time of atmost 2c
for each job in G(t). Assume that at time t , for each machine i , we release extra bi

volume of type 1 jobs which can only go on machine i . Further, suppose machine i
does si amount of processing during (t, t + 1) (si could be bigger than 1 because we
are allowing speedup). Then, at time t + 1, there must exist some machine i , such that
at least 13

8 + bi − si volume of type 1 jobs which can only go on machine i remain
unfinished.

Proof Each of the type 0 jobs must have a weighted flow-time of at most 2c, and
so must finish within 1/4 units after its release date. Thus, the type 0 jobs released
during (t, t + 3

4) must finish during (t, t +1). During (t, t + 3
4), we release

15
4 volume

of type 0 jobs—since these must be done during (t, t + 1) on the 6 machines, this
leaves us with

∑
i si − 15

4 amount of time for processing the type 1 jobs. Hence,

we must have
∑

i bi + 6 −
(

si − 15
4

)
= 39

4 + ∑
i bi − ∑

i si unfinished volume of

type 1 jobs at time t + 1. Now we claim that some machine i must have at least
13
8 + bi − si unfinished volume of type 1 jobs at time t + 1. Indeed, if this is not the
case, then at time t + 1 the total amount of unfinished type 1 jobs will be less than
6 · 13

8 + ∑
i (bi − si) = 39

4 + ∑
i (bi − si), a contradiction. ��

Now we give the actual construction of the instance I(s, c). The instance will have
M machines, where M = 630c. Our instance will release jobs during (0, 30c)—let
si (t) be the amount of processing that machine i does during (t, t + 1). Again, note
that si (t) can be quite large—we are only giving a bound on the average speed of a
machine.

We will maintain the following invariant at every integral time t = 0, . . . , 30c—at
the beginning of time t , there will be a set M(t) of M

6t machines, such that for each

of these machines i , the algorithm A will have at least 13t
8 − ∑t−1

t ′=0 si (t ′) volume of
unfinished type 1 jobs which can only be assigned to i . All jobs released after time t

123

Algorithmica (2017) 77:515–536 531

will only go on one of the machines in M(t). Further, at time t , the offline algorithm
would not have any unfinished jobs on these machines.

Clearly, this invariant holds at time 0. Suppose it holds at the beginning of time t . Let
M(t) denote the set of these M

6t machines. We group these machines into disjoint sets
of 6 machines each—for each such group, we construct a copy of the gadget G(t). Let
these gadgets be G1(t), . . . , Gr (t), where r = M

6t+1 . Consider a gadget Gu(t)—Claim

4 implies that theremust exist amachine, call it i(u, t), that has 13(t+1)
8 −∑t

t ′=0 su(t)(t ′)
unfinished volume of type 1 jobs (we use bi(u,t) = 13t

8 − ∑t−1
t ′=0 si(u,t)(t ′) using the

invariant at time t). The machines i(u, t), 1 ≤ u ≤ r, form the set M(t + 1). This
proves that the invariant holds at time t + 1 as well.

It is easy to check that M(t + 1) ⊆ M(t) for all t , and hence, after time t + 1, we
will never assign any jobs to a machine outside M(t). The optimum offline algorithm
has no unfinished volume on machines in M(t) at time t (by the invariant). Now,
for each of the gadgets Gu(t), it will process the type 1 job released on the machine
i(u, t) during (t, t + 1) and all type 0 jobs released during (t, t + 1) will be processed
on the remaining 5 machines in this gadget. The 5 type 1 jobs (other than the one
which can be processed on i(u, t)) will be processed on the corresponding machines
during (t + 1, t + 2)—note that these machines will be idle after time t + 1, and so
this processing can always be done. Thus, all jobs corresponding to this gadget have
a weighted flow-time of at most 2. Further, the optimum algorithm finishes all jobs
which go on i(u, t) by time t + 1.

Therefore, at time 30c + 1, the online algorithm A has some machine i which
has more than 13(30c+1)

8 − ∑30c
t ′=0 si (t ′) unfinished volume of type 1 jobs. Notice

that T (s, c) = 30c + 2cmax j p j = 32c. Since we assumed an average speed-up of at
most 3/2,machine i is only allowed a total of 3

2 ·32c = 48c processing during (0, 32c).

In other words,
∑30c

t ′=0 si (t ′) ≤ 48c. Since 13(30c+1)
8 − 48c > 0, some type 1 job must

remain unfinished at time 32c. This contradicts the fact that A is c-competitive.

Remarks Before we go to the induction step, we write down some more invariants
about the instance I(s, c)—it is easy to check that they hold for s = 2. First of all, the
instance I(s, c) is constructed with reference to an online algorithm A—so we may
refer to it as IA(s, c). Further, the jobs released at any time t do not depend on the
speed profile of each of the machines until time t and the amount of processing done
on all the jobs released before t . In particular, the instance does not depend on the
average speedup of the machines. Further, the number of machines and the duration
of the instance do not depend on A—so we will refer to these quantities as M(s, c)
and T (s, c) respectively. Also, jobs are released at epochs which are multiples of a
parameter ε = 1

8c . Moreover, the optimum offline value is 2.

Induction Step Suppose the induction hypothesis is true for s and c. We show it is
true for (s + 1) and c. Fix an online algorithm A. We will first construct a gadget
G that depends on the behaviour of A. In addition, we will also build another online
algorithm B and consider the corresponding instance IB(s, c). G will have l · M(s, c)
machines, where l = 3s. For each machine i ∈ IB(s, c), we will identify l of the
machines in G—call these A(i); these sets are disjoint for different i . Furthermore,

123

532 Algorithmica (2017) 77:515–536

whenever a job j is released in IB(s, c), we will release (l − 1) identical jobs in
G—call these C(j). If a job j can go on a set of machines S in IB(s, c), then we
allow a job in C(j) to go on the machines ∪i∈S A(i) in G. We shall call these jobs
type C jobs. Besides these jobs, we will have jobs of type D in G—these jobs will not
have any analogues in IB(s, c). Each job of type D will have size T (s, c).

Let us now construct the gadget G along with the algorithmB. At time 0, if IB(s, c)
releases a set of jobs, then we release the corresponding set of jobs in G as described
above. Further, we release l · M(s, c) type D jobs at time 0 in G—for each machine
in G one job that can be processed only on this machine.

Suppose we have constructed the gadget and the algorithm B until time T ε for
some integer T ≥ 0. During a time t ∈ (T ε, (T + 1)ε), if a machine i ′ in G processes

jobs of type C at rate xi ′(t), then we run a machine i ∈ B at speed
∑

i ′∈A(i) xi ′ (t)
l−1

at time t . Hence, during this period, if A processes a job j ′ ∈ C(j) on machine
i ′ ∈ A(i), then B processes the job j on i at 1/(l − 1) of the rate at which j ′ gets
processed on i ′. Note that we will not process a job j in IB(s, c) for more than p j

amount of time. Thus, we have described B until time (T + 1)ε, and so depending
on which jobs get released at IB(s, c) at this time, we release corresponding jobs
in G. This completes the description of G (and B). We now prove the analogue of
Claim 4.

Claim Suppose algorithm A runs machine i at an average speed of si in G (during
(0, T (s, c))). Furthermore, suppose at time 0, for each machine i , we have released
bi T (s, c) volume of type D jobs which can only go onmachine i . IfA incurs weighted
flow-time of at most 2c on all type C jobs, then there exists a machine i for which we
have at least T (s, c)

(
bi + 1

4 + s+2
2 − si

)
unfinished volume of type D jobs at time

T (s, c).

Proof If A incurs a weighted flow-time of at most 2c on all type C jobs, then B
is c-competitive on IB(s, c). Thus, by induction hypothesis, there exists a machine
i ∈ IB(s, c) which runs at average speed at least (s + 1)/2. Considering the
machines in A(i), they spend (l − 1)(s + 1)T (s, c)/2 time processing type C
jobs. Hence, the total amount of time for which they can process a job of type D

is at most
(∑

i ′∈A(i) si ′ − (l−1)(s+1)
2

)
T (s, c). Thus, there must exist a machine

i ′ ∈ A(i) which processes type D jobs for at most
(

si ′ − (l−1)(s+1)
2l

)
T (s, c) time

(since |A(i)| = l). The unfinished volume of type D jobs on this machine is

bi ′ T (s, c) + T (s, c) −
(

si ′ − (l−1)(s+1)
2l

)
T (s, c). The claim follows because using

l = 3s, s ≥ 2 we obtain

1 + (l − 1)(s + 1)

2l
≥ s + 2

2
+ 1

4
. ��

The rest of the proof is as in the base case. We copy the same proof verbatim with
suitable changes. Let us construct the instance I(s + 1, c). The number of machines
will be M(s + 1, c) = (l M(s, c))30cs . We will divide time into epochs of size T (s, c).

123

Algorithmica (2017) 77:515–536 533

We will release jobs during (0, 30cs · T (s, c)). Let si (e) be the average speed of
machine i during epoch e, i.e., (e · T (s, c), (e + 1) · T (s, c)). We shall use G(e) to
refer to the gadget G starting at time e · T (s, c).

We will maintain the following invariant at every epoch e = 0, . . . , 30cs: at time
eT (s, c), there will be a set M(e) of M(s+1,c)

(l·M(s,c))e machines such that for each of these

machines i algorithmAwill have at least T (s, c)
(

e
4 + (s+2)e

2 − ∑e−1
e′=0 si (e′)

)
volume

of unfinished type D jobs which can only be assigned to i . All jobs released after time
e · T (s, c) will only go on one of the machines in M(e). Moreover, at the beginning of
epoch e, the offline algorithm would not have any unfinished jobs on these machines.

Clearly, this invariant holds at time 0. Suppose it holds at the beginning
of epoch e. We group the machines in M(e) into disjoint sets of l · M(s, c)
machines each—for each such group, we construct a copy of the gadget G(e).
Let these gadgets be G1(e), . . . , Gr (e), where r = M(s+1,c)

(l·M(s,c))e+1 . Consider a gad-
get Gu(e). Claim 4 implies that there must exist a machine, call it i(u, e) that has

T (s, c)
(

e+1
4 + (s+2)(e+1)

2 − ∑e
e′=0 si (e′)

)
volume of unfinished type D jobs (we use

bi(u,t) = T (s, c)
(

e
4 + (s+2)e

2 − ∑e−1
e′=0 si(u,t)(e′)

)
using the invariant at epoch e). The

set of machines i(u, e), 1 ≤ u ≤ r, form the set M(e + 1). This proves that the
invariant holds at the beginning of epoch e + 1 as well.

It is easy to check that M(e + 1) ⊆ M(e) for all e. Hence, after epoch e, we
will assign all jobs to a machine in M(e) only. The optimum offline algorithm has
no unfinished volume on machines in M(e) at time beginning of epoch e (by the
invariant). Now, for each of the gadgets Gu(e), it will process the type D job released
on the machine i(u, e) during this epoch and all type C jobs released during this epoch
will be processed on the remaining machines in this gadget. This can be done since, by
the induction hypothesis, the offline algorithm can finish all jobs by time T (s, c) in the
instance IB(s, c). The offline algorithm can do the same in the gadget Gu(e)—each
job in IB(s, c) has l − 1 copies in the gadget Gu(e), and, barring the machine used
for the one type D job, we still have l − 1 machines corresponding to each machine
in IB(s, c).

The remaining l · M(s, c) − 1 type D jobs (other than the one which can
be processed on i(u, e)) will be processed on the corresponding machines during
((e + 1) T (s, c), (e + 2)T (s, c))—note that these machines will be idle after epoch e,
and so this processing can always be done. Thus, all jobs corresponding to this gadget
have weighted flow-time of at most 2. Furthermore, the optimum algorithm finishes
all jobs which can go on i(u, e) before the beginning of epoch e + 1.

Therefore, at time (30cs +1) T (s, c), there is some machine i which has more than

T (s, c)
(30cs+1

4 + (s+2)(30cs+1)
2 − ∑30cs

e′=0 si (e′)
)
volume of unfinished type D jobs.

Notice that T (s + 1, c) = 30csT (s, c) + 2cmax j p j = (30s + 2)cT (s, c), and so
machine i is only allowed a total of s+2

2 ·(30s + 2)cT (s, c) = (15s+1)(s+2)c·T (s, c)

amount of processing during (0, T (s + 1, c)). Thus,
∑30cs

e′=0 si (e′) ≤ (15s + 1)c(s +
2) · T (s, c). Since

30cs + 1

4
+ (s + 2)(30cs + 1)

2
− (15s + 1)c(s + 2) > 0,

123

534 Algorithmica (2017) 77:515–536

some type D job must remain unfinished at time T (s + 1, c). This contradicts the fact
that A is c-competitive.

Finally, note that M(s + 1, c) = (l M(s, c))30cs , which implies that M(s, c) is at
most (20s)30cs2 .

5 Lower Bound for L p Norm of Stretch

We consider again the subset parallel setting, in which each job j is released at time r j

and needs processing time p j on some subset ofmachines and∞on all othermachines.
Recall that the stretch of job j is v j := (c j − r j)/p j , where c j is the completion time
of j . In this section, we change the objective of our scheduling problem and want to
minimize the L p norm of stretch, i.e., (1n

∑
j v

p
j)

1/p, where the sum ranges over all
jobs j and n is the total number of jobs.

In the previous section, we have proven a lower bound of Ω(logm) for the com-
petitive ratio of minimizing the L∞ norm of stretch with any constant speed-up in the
subset-parallel setting. In contrast, if we replace L∞ by any L p norm, p < ∞, then
there is a O(

p
ε2+O(1/p))-competitive algorithm with 1 + ε speed augmentation [3]. In

this section, we prove a nearly matching lower bound for this competitive ratio.

Theorem 9 Let ε > 0 be sufficiently small. Any online algorithm for minimizing the
L p norm of stretch on subset parallel machines with 1 + ε speed augmentation is
Ω(

p
ε1−O(1/p))-competitive.

Proof Assume that there is an online algorithmA with competitive ratio c = α
p

ε1−2/p

for sufficiently small constant α > 0. We construct an instance I = IA as follows.
We start with a gadget that involves two machines and increases the load on one of the
two machines. To this end, at time 0 we release two jobs of size 1—each can go on
exactly one of the two machines. Then, until time 1 we release tiny jobs, i.e., at each
δ time step a job of size δ is released that can go on any of the two machines. Note
that at time 1 at least one of the machines has load of size 1 jobs at least 1/2− ε − cδ.
Indeed, the total volume of all jobs is 3, the twomachines can process at most 2 (1+ε)

units of work, and all tiny jobs except the last c have to be completed at time 1. We set
δ := (8c)−1 and assume ε ≤ 1/8 so that the load of size 1 jobs on one of the machines
is at least 1/2 − ε − cδ ≥ 1/4.

Nowwe use this as a gadget. Startingwithm/2 pairs of machines, we use the gadget
to obtain m/2 machines with a load of size 1 jobs of at least 1/4 at time 1. We pair
thesem/2machines up and repeat the construction. As loads add up, this yields at time
log(m) a machine with a load of size 1 jobs of Ω(logm). This concludes the first of
two phases. Note that an offline algorithm knows in advance for each pair of machines
(i1, i2) which machine will be paired up further, say machine i1. This enables us to
process in time interval (0, 1) the size 1 job of i1 and all tiny jobs on machine i2. In
time interval (1, 2) we then process the size 1 job of machine i2, which is unoccupied
since we further pair up i1 but not i2. This way, we never have any unprocessed jobs on
a new pair of machines. Hence, the optimal offline algorithm has a maximum stretch
of 2 in this first phase.

123

Algorithmica (2017) 77:515–536 535

Nowwe have amachine i with large load of size 1 jobs at some time t . In the second
phase of the construction, we release tiny jobs for a time interval of length log(m)/ε.
More precisely, at each time t + kδ, k = 1, . . . , log(m)/δ we release a size δ job. This
concludes the second phase. Consider the time t + t ′ at which the last of the size 1
jobs of machine i is completed. At time t + t ′, at least t ′/δ − c of the tiny jobs have
to be processed (all released tiny jobs besides the last c ones). Thus, in time interval
(t, t + t ′) we have a total processing power of (1 + ε) t ′ (due to speed augmentation)
and have to process t ′ − cδ = t ′ − 1/8 units of work of size δ jobs and Ω(logm) units
of work of size 1 jobs. It follows that t ′ ≥ Ω(log(m)/ε) so that at least one job has
stretch Ω(log(m)/ε). In contrast, in the optimal offline algorithm we have no initial
load on machine i at the beginning of the second phase. Hence, we have stretch 1
for all jobs released in the second phase. In total, the optimal offline algorithm has a
maximum stretch of 2 so that it also has an L p norm of stretch of at most 2.

Let us bound the number of jobs n that we release in these two phases. In the first
phase of the construction we release m + m/2 + m/4 + · · · = O(m) jobs of size 1
and O(m/δ) jobs of size δ. In the second phase, we release O(log(m)/(εδ)) jobs of
size δ. Thus, n = O(m/δ + log(m)/(εδ)) ≤ O(m

εδ
). Plugging in 1

δ
= 8c ≤ p

ε
(for

sufficiently small α), we obtain n = O(
mp
ε2

).
We now lower bound the L p norm of stretch of algorithmA. Recall that at least one

job has stretchΩ(log(m)/ε). Let vi be the stretch of the i-th job. Then the L p norm of

stretch is (1n
∑

i v
p
i)1/p ≥ Ω

(log(m)
ε

(1n)1/p
)
. Plugging in our bound on n = O(mp/ε2)

this yields a bound of Ω
(
log(m)/(ε1−2/p(mp)1/p)

)
. Now we fix m = 2�(p), so that

log(m) = �(p) and (mp)1/p = �(1) and obtain that the online algorithm has an
L p norm of stretch of Ω(

p
ε1−2/p). Since the L p norm of stretch of the optimal offline

algorithm is constant, the claim follows. ��

References

1. Ambühl, C., Mastrolilli, M.: On-line scheduling to minimize max flow time: an optimal preemptive
algorithm. Oper. Res. Lett. 33(6), 597–602 (2005)

2. Anand, S., Garg, N., Megow, N.: Meeting deadlines: how much speed suffices? In: 38th International
colloquium on automata, languages and programming (ICALP), pp. 232–243 (2011)

3. Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual
fitting. In: 23rd Symposium on discrete algorithms (SODA), pp. 1228–1241 (2012)

4. Anand, S., Bringmann, K., Friedrich, T., Garg, N., Kumar, A.: Minimizing maximum (weighted) flow-
time on related and unrelated machines. In: 40th International colloquium on automata, languages and
programming (ICALP), pp. 13–24 (2013)

5. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. J. Algorithms 18(2), 221–237
(1995)

6. Azar, Y., Kalyanasundaram, B., Plotkin, S.A., Pruhs, K., Waarts, O.: On-line load balancing of tem-
porary tasks. J. Algorithms 22(1), 93–110 (1997)

7. Bansal, N., Pruhs, K.: Server scheduling in the 	p norm: a rising tide lifts all boats. In: 35th Symposium
on theory of computing (STOC), pp. 242–250 (2003)

8. Bansal, N., Pruhs, K.: Server scheduling in the weighted 	p norm. In: 6th Latin American theoretical
informatics conference (LATIN), pp. 434–443 (2004)

9. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling continuous
job streams. In: 9th Symposium on discrete algorithms (SODA), pp. 270–279 (1998)

10. Bender, M.A., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for stretch scheduling. In: 13th
Symposium on discrete algorithms (SODA), pp. 762–771 (2002)

123

536 Algorithmica (2017) 77:515–536

11. Chekuri, C., Moseley, B.: Online scheduling to minimize the maximum delay factor. In: 20th Sympo-
sium on discrete algorithms (SODA), pp. 1116–1125 (2009)

12. Cynthia, A.P., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmenta-
tion. Algorithmica 32(2), 163–200 (2002)

13. Golovin, D., Gupta, A., Kumar, A., Tangwongsan, K.: All-norms and all-	p-norms approximation
algorithms. In: 28th Conference foundations of software technology and theoretical computer science
(FSTTCS), pp. 199–210 (2008)

14. Im, S., Moseley, B.: An online scalable algorithm for minimizing 	k -norms of weighted flow time on
unrelated machines. In: 22nd Symposium on discrete algorithms (SODA), pp. 95–108 (2011)

15. Lam, T.W., To, K.-K.: Trade-offs between speed and processor in hard-deadline scheduling. In: 10th
Symposium discrete algorithms (SODA), pp. 623–632 (1999)

123

	Minimizing Maximum (Weighted) Flow-Time on Related and Unrelated Machines
	Abstract
	1 Introduction
	1.1 Outline

	2 Max-Weighted-Flow-time on Related Machines
	2.1 An Offline Algorithm
	2.1.1 Analysis

	2.2 Offline to Online
	2.2.1 Analysis
	2.2.2 Extensions

	2.3 Removing the Assumption About Knowledge of T

	3 Max-Flow-time on Unrelated Machines
	3.1 A (1+ε, mathcalO(1/ε))-Competitive Algorithm

	4 Max-Weighted-Flow-time on Unrelated Machines
	5 Lower Bound for Lp Norm of Stretch
	References

