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Abstract. Large real-world networks are typically scale-free. Recent
research has shown that such graphs are described best in a geometric
space. More precisely, the internet can be mapped to a hyperbolic space
such that geometric greedy routing performs close to optimal (Boguná,
Papadopoulos, and Krioukov. Nature Communications, 1:62, 2010). This
observation pushed the interest in hyperbolic networks as a natural model
for scale-free networks. Hyperbolic random graphs follow a power-law
degree distribution with controllable exponent β and show high cluster-
ing (Gugelmann, Panagiotou, and Peter. ICALP, pp. 573–585, 2012).

For understanding the structure of the resulting graphs and for analyz-
ing the behavior of network algorithms, the next question is bounding the
size of the diameter. The only known bound is O((log n)32/((3−β)(5−β)))
(Kiwi and Mitsche. ANALCO, pp. 26–39, 2015). We present two much
simpler proofs for an improved upper bound of O((log n)2/(3−β)) and a
lower bound of Ω(log n). If the average degree is bounded from above by
some constant, we show that the latter bound is tight by proving an upper
bound of O(log n) for the diameter.

1 Introduction

Large real-world networks are almost always sparse and non-regular. Their
degree distribution typically follows a power law, which is synonymously used
for being scale-free. Since the 1960’s, large networks have been studied in detail
and hundreds of models were suggested. In the past few years, a new line of
research emerged, which showed that scale-free networks can be modeled more
realistically when incorporating geometry.

Euclidean Random Graphs. It is not new to study graphs in a geometric
space. In fact, graphs with Euclidean geometry have been studied intensively for
more than a decade. The standard Euclidean model are random geometric graphs
which result from placing n nodes independently and uniformly at random on
an Euclidean space, and creating edges between pairs of nodes if and only if
their distance is at most some fixed threshold r. These graphs have been studied
in relation to subjects such as cluster analysis, statistical physics, hypothesis
testing, and wireless sensor networks [23]. The resulting graphs are more or
less regular and hence do not show a scale-free behavior with power-law degree
distribution as observed in large real-world graphs.
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Table 1. Known diameter bounds for various random graphs. In all cases the diameter
depends on the choice of the model parameters. Here we consider a constant average
degree. For scale-free networks, we also assume a power law exponent 2 < β < 3.1

Random Graph Model Diameter

Sparse Erdős-Rényi [5] Θ(log n) [24]
d-dim. Euclidean [23] Θ(n1/d) [15]
Watts-Strogatz [26] Θ(log n) [6]
Kleinberg [18] Θ(log n) [21]

Chung-Lu [8] Θ(log n) [8]
Pref. Attachment [1] Θ(log log n) [10]
Hyperbolic [19] O((log n)

32
(3−β)(5−β) ) [17]

power-law graphs

Hyperbolic Random Graphs. For modeling scale-free graphs, it is natural
to apply a non-Euclidean geometry with negative curvature. Krioukov et al. [19]
introduced a new graph model based on hyperbolic geometry. Similar to euclidean
random graphs, nodes are uniformly distributed in a hyperbolic space and two
nodes are connected if their hyperbolic distance is small. The resulting graphs
have many properties observed in large real-world networks. This was impres-
sively demonstrated by Boguná et al. [4]: They computed a maximum likelihood
fit of the internet graph in the hyperbolic space and showed that greedy rout-
ing in this hyperbolic space finds nearly optimal shortest paths in the internet
graph. The quality of this embedding is an indication that hyperbolic geometry
naturally appears in large scale-free graphs.

Known Properties. A number of properties of hyperbolic random graphs have
been studied. Gugelmann et al. [16] compute exact asymptotic expressions for
the expected number of vertices of degree k and prove a constant lower bound
for the clustering coefficient. They confirm that the clustering is non-vanishing
and that the degree sequence follows a power-law distribution with controllable
exponent β. For 2 < β < 3, the hyperbolic random graph has a giant component
of size Ω(n) [2,3], similar to other scale-free networks like Chung-Lu [8]. Other
studied properties include the clique number [14], bootstrap percolation [7]; as
well as algorithms for efficient generation of hyperbolic random graphs [25] and
efficient embedding of real networks in the hyperbolic plane [22].

Diameter. The diameter, the length of the longest shortest path, is a fundamen-
tal property of a network. It also sets a worst-case lower bound on the number
of steps required for all communication processes on the graph. In contrast to
the average distance, it is determined by a single—atypical—long path. Due to
this sensitivity to small changes, it is notoriously hard to analyze. Even subtle

1 Note that the table therefore refers to a non-standard Preferential Attachment ver-
sion with adjustable power law exponent 2 < β < 3 (normally, β = 3).
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changes to the graph model can make an exponential difference in the diam-
eter, as can be seen when comparing Chung-Lu (CL) random graphs [8] and
Preferential Attachment (PA) graphs [1] in the considered range of the power
law exponent 2 < β < 3: On the one hand, we can embed a CL graph in the
PA graph and they behave effectively the same [13]; on the other hand, the
diameter of CL graphs is Θ(log n) [8] while for PA graphs it is Θ(log log n) [10].
Table 1 provides an overview over existing results. It was open so far how the
diameter of hyperbolic random graphs compares to the aforementioned bounds
for other scale-free graph models. The only known result for their diameter is
O((log n)

32
(3−β)(5−β) ) by Kiwi and Mitsche [17].

Our Contribution. We improve upon the result of Kiwi and Mitsche [17] in
the three directions, as described by the following theorems. First, we present
a much simpler proof which also shows polylogarithmic upper bound for the
diameter, but with a better (i.e. smaller) exponent.

Theorem 1. Let 2 < β < 3. The diameter of the giant component in the hyper-
bolic random graph G(n, α,C) is O((log n)

2
3−β ) with probability 1 − O(n−3/2).

The proof of Theorem 1 is presented in Section 3. It serves as an introduc-
tion to the more involved proof of a logarithmic upper bound for the diameter
presented in Section 4. There we show with more advanced techniques that for
small average degrees the following theorem holds.

Theorem 2. Let 2 < β < 3, and C be a large enough constant. Then, the
diameter of the giant component in the hyperbolic random graph G(n, α,C) is
O(log n) with probability 1 − O(n−3/2).

The logarithmic upper bound is best possible. In particular, we show that
Theorem 2 is tight by presenting the following matching lower bound.

Theorem 3. Let 2 < β < 3. Then, the diameter of the giant component in the
hyperbolic random graph G(n, α,C) is Ω(log n) with probability 1 − n−Ω(1).

Due to space constraints, the proof of Theorem 3 can be found in the long
version. We point out that although we prove all diameter bounds on the giant
component, our proofs will make apparent that the giant component is in fact
the component with the largest diameter in the graph.

Used Techniques. Our formal analysis of the diameter has to deal with a
number of technical challenges. First, in contrast to proving a bound on the
average distance, it is not possible to average over all path lengths. In fact, it is
not even sufficient to exclude a certain kind of path with probability 1−O(n−c);
as this has to hold for all possible Ω(n!) paths. This makes a union bound
inapplicable. We solve this by introducing upwards paths (cf. Definition 12),
which are in a sense “almost” shortest paths, and of which there are only two
per node. We prove deterministically that their length asymptotically bounds the
diameter. Then, we bound the length of a single upwards path by a multiplicative
drift argument known from evolutionary computation [20]; and show that the
length of conjunctions of upwards paths follows an Erlang distribution.
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A second major challenge is the fact that a probabilistic analysis of shortest
paths (and likewise, upwards paths) typically uncovers the probability space in
a consecutive fashion. Revealing the positions of nodes on the path successively
introduces strong stochastic dependencies that are difficult to handle with proba-
bilistic tail bounds [11]. Instead of studying the stochastic dependence structure
in detail, we use the geometry and model the hyperbolic random graph as a
Poisson point process. This allows us to analyze different areas in the graph
independently, which in turn supports our stochastic analysis of shortest paths.

2 Notation and Preliminaries

In this section, we briefly introduce hyperbolic random graphs. Although this
paper is self-contained, we recommend to a reader who is unfamiliar with the
notion of hyperbolic random graphs the more thorough investigations [16,19].

Let H2 be the hyperbolic plane. Following [19], we use the native representa-
tion; in which a point v ∈ H2 is represented by polar coordinates (rv, ϕv); and
rv is the hyperbolic distance of v to the origin.2

To construct a hyperbolic random graph G(n, α,C), consider now a circle Dn

with radius R = 2 ln n+C that is centered at the origin of H2. Inside Dn, n points
are distributed independently as follows. For each point v, draw ϕv uniformly at
random from [0, 2π), and draw rv according to the probability density function

ρ(r) :=
α sinh(αr)

cosh(αR) − 1
≈ αeα(r−R).

Next, connect two points u, v if their hyperbolic distance is at most R, i.e. if

d(u, v) := cosh−1(cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(Δϕu,v)) � R. (1)

By Δϕu,v we describe the small relative angle between two nodes u, v, i.e.
Δϕu,v := cos−1(cos(ϕu − ϕv)) � π.

This results in a graph whose degree distribution follows a power law with
exponent β = 2α + 1, if α � 1

2 , and β = 2 otherwise [16]. Since most real-world
networks have been shown to have a power law exponent 2 < β < 3, we assume
throughout the paper that 1

2 < α < 1. Gugelmann et al. [16] proved that the
average degree in this model is then δ = (1 + o(1)) 2α2e−C/2

π(α−1/2)2 .
We now present a handful of Lemmas useful for analyzing the hyperbolic

random graph. Most of them are taken from [16]. We begin by an upper bound
for the angular distance between two connected nodes. Consider two nodes with
radial coordinates r, y. Denote by θr(y) the maximal radial distance such that
these two nodes are connected. By equation (1),

θr(y) = arccos
(

cosh(y) cosh(r) − cosh(R)
sinh(y) sinh(r)

)
. (2)

This terse expression is closely approximated by the following Lemma.
2 Note that this seemingly trivial fact does not hold for conventional models (e.g.

Poincaré halfplane) for the hyperbolic plane.
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Lemma 4 ([16]). Let 0 � r � R and y � R − r. Then,

θr(y) = θy(r) = 2e
R−r−y

2 (1 ± Θ(eR−r−y)).

For most computations on hyperbolic random graphs, we need expressions
for the probability that a sampled point falls into a certain area. To this end,
Gugelmann et al. [16] define the probability measure of a set S ⊆ Dn as

μ(S) :=
∫

S

f(y) dy,

where f(r) is the probability mass of a point p = (r, ϕ) given by f(r) := ρ(r)
2π =

α sinh(αr)
2π(cosh(αR)−1) . We further define the ball with radius x around a point (r, ϕ) as

Br,ϕ(x) := {(r′, ϕ′) | d((r′, ϕ′), (r, ϕ)) � x}.

We write Br(x) for Br,0(x). Note that Dn = B0(R). Using these definitions, we
can formulate the following Lemma.

Lemma 5 ([16]). For any 0 � r � R we have

μ(B0(r)) = e−α(R−r)(1 + o(1)) (3)

μ(Br(R) ∩ B0(R)) =
2αe−r/2

π(α − 1/2)
· (1 ± O(e−(α−1/2)r + e−r)) (4)

Since we often argue over sequences of nodes on a path, we say that a node v
is between two nodes u,w, if Δϕu,v + Δϕv,w = Δϕu,w. Recall that Δϕu,v � π
describes the small angle between u and v. E.g., if u = (r1, 0), v = (r2, π

2 ), w =
(r3, π), then v lies between u and w. However, w does not lie between u and v
as Δϕu,v = π/2 but Δϕu,w + Δϕw,v = 3

4π.
Finally, we define the area BI := B0(R − log R

1−α − c) as the inner band, and
BO := Dn \ BI as the outer band, where c ∈ R is a large enough constant.

The Poisson Point Process. We often want to argue about the probability
that an area S ⊆ Dn contains one or more nodes. To this end, we usually apply
the simple formula

Pr[∃v ∈ S] = 1 − (1 − μ(S))n � 1 − exp(−n · μ(S)). (5)

Unfortunately, this formula significantly complicates once the positions of some
nodes are already known. This introduces conditions on Pr[∃v ∈ S] which can be
hard to grasp analytically. To circumvent this problem, we use a Poisson point
process Pn [23] which describes a different way of distributing nodes inside Dn.
It is fully characterized by the following two properties:

• If two areas S, S′ are disjoint, then the number of nodes that fall within S
and S′ are independent random variables.

• The expected number of points that fall within S is
∫

S
nμ(S).

One can show that these properties imply that the number of nodes inside S
follows a Poisson distribution with mean nμ(S). In particular, we obtain that
the number of nodes |Pn| inside Dn is distributed as Po(n), i.e. E[|Pn|] = n, and
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Pr(|Pn| = n) =
e−nnn

n!
= Θ(n−1/2).

Let the random variable G(Pn, n, α, C) denote the resulting graph when using
the Poisson point process to distribute nodes inside Dn. Since it holds

Pr[G(Pn, n, α, C) = G | |Pn| = n] = Pr[G(n, α,C) = G],

we have that every property p with Pr[p(G(Pn, n, α, C))] � O(n−c) holds for the
hyperbolic random graphs with probability Pr[p(G(n, α,C))] � O(n

1
2−c).

We explicitly state whenever we use the Poisson point process G(Pn, n, α, C)
instead of the normal hyperbolic random graph G(n, α,C). In particular, we can
use a matching expression for equation (5): Pr[∃v ∈ S] = 1 − exp(−n · μ(S)).

3 Polylogarithmic Upper Bound

As an introduction to the main proof, we first show a simple polylogarithmic
upper bound on the diameter of the hyperbolic random graph. We start by
investigating nodes in the inner band BI and show that they are connected by
a path of at most O(log log n) nodes. We prove this by partitioning Dn into
R layers of constant thickness 1. Then, a node in layer i has radial coordinate
∈ (R − i, R − i + 1]. We denote the layer i by Li := B0(R − i + 1) \ B0(R − i).

Lemma 6. Let 1 � i, j � R/2, and consider two nodes v ∈ Li, w ∈ Lj. Then,

2
e
e

i+j−R
2 (1 − Θ(ei+j−R)) � θru

(rv) � 2e
i+j−R

2 (1 + Θ(ei+j−R)),

Furthermore, we have μ(Lj ∩BR(v)) = Θ(e−αj+ i+j−R
2 ), and, if (i+j)/R < 1−ε

for some constant ε > 0, we have for large n

1
e
e−αj+ i+j−R

2 � μ(Lj ∩ BR(v)) � 4e−αj+ i+j−R
2 .

Proof. The statements follow directly from Lemmas 4 and 5 and the fact that
we have R − i < rv � R − i + 1 for a node v ∈ Li.

Using Lemma 6, we can now prove that a node v ∈ BI has a path of length
O(log log n) that leads to B0(R/2). Recall that the inner band was defined as
BI := B0(R − log R

1−α − c), where c is a large enough constant.

Lemma 7. Consider a node v in layer i. With probability 1 − O(n−3) it holds

1. if i ∈ [ log R
1−α + c, 2 log R

1−α + c], then v has a neighbor in layer Li+1, and
2. if i ∈ [2 log R

1−α + c,R/2], then v has a neighbor in layer Lj for j = α
2α−1 i.

Proof. The probability that node v ∈ Li does not contain a neighbor in Li+1 is

(1 − Θ(e−α(i+1)+i+ 1−R
2 ))n � exp(−Θ(1) · elog R+c(1−α)).

Since R = 2 log n + C and c is a large enough constant, this proves part (1) of
the claim. An analogous argument shows part (2).
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Lemma 7 shows that there exists a path of length O(log log n) from each node
v ∈ BI to some node u ∈ B0(R− 2 log R

1−α −c). Similarly, from u there exists a path
of length O(log log n) to B0(R/2) with high probability. Since we know that the
nodes in B0(R/2) form a clique by the triangle inequality, we therefore obtain
that all nodes in BI form a connected component with diameter O(log log n).

Corollary 8. Let 1
2 < α < 1. With probability 1 − O(n−3), all nodes u, v ∈ BI

in the hyperbolic random graph are connected by a path of length O(log log n).

3.1 Outer Band

By Corollary 8, we obtain that the diameter of the graph induced by nodes in
BI is at most O(log log n). In this section, we show that each component in BO

has a polylogarithmic diameter. Then, one can easily conclude that the overall
diameter of the giant component is polylogarithmic, since all nodes in B0(R/2)
belong to the giant component [3]. We begin by presenting one of the crucial
Lemmas in this paper that will often be reused.

Lemma 9. Let u, v, w ∈ V be nodes such that v lies between u and w, and let
{u,w} ∈ E. If rv � ru and rv � rw, then v is connected to both u and w. If
rv � ru but rv � rw, then v is at least connected to w.

Proof. By [3, Lemma5.28], we know that if two nodes (r1, ϕ1), (r2, ϕ2) are con-
nected, then so are (r′

1, ϕ1), (r′
2, ϕ2) where r1 � r′

1 and r′
2 � r2. Since the distance

between nodes is monotone in the relative angle Δϕ, this proves the first part
of the claim. The second part can be proven by an analogous argument.

For convenience, we say that an edge {u,w} passes under v if one of the
requirements of Lemma 9 is fulfilled. Using this, we are ready to show Theo-
rem 1. In this argument, we investigate the angular distance a path can at most
traverse until it passes under a node in BI . By Lemma 9, we then have with
high probability a short path to the center B0(R/2) of the graph.

(Proof of Theorem 1). Partition the hyperbolic disc into n disjoint sectors of
equal angle Θ(1/n). The probability that k consecutive sectors contain no node
in BI is

(1 − Θ(k/n) · μ(B0(R − log R
1−α − c)))n � exp(−Θ(1) · k · e−α log R/(1−α))

= exp(−Θ(1) · k · (log n)− α
1−α ).

Hence, we know that with probability 1 − O(n−3), there are no k :=
Θ((log n)

1
1−α ) such consecutive sectors. By a Chernoff bound, the number of

nodes in k such consecutive sectors is Θ((log n)
1

1−α ) with probability 1−O(n−3).
Applying a union bound, we get that with probability 1−O(n−2), every sequence
of k consecutive sectors contains at least one node in BI and at most Θ(k) nodes
in total. Consider now a node v ∈ BO that belongs to the giant component. Then,
there must exist a path from v to some node u ∈ BI . By Lemma 9, this path can
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visit at most k sectors—and therefore use at most Θ(k) nodes—before reach-
ing u. From u, there is a path of length O(log log n) to the center B0(R/2) of
the hyperbolic disc by Corollary 8. Since this holds for all nodes, and the center
forms a clique, the diameter is therefore O((log n)

1
1−α ) = O((log n)

2
3−β ).

This bound slightly improves upon the results in [17] who show an upper
bound of O((log n)

8
(1−α)(2−α) ). As we will see in Theorem 3, however, the lower

bound on the diameter is only Ω(log n). We bridge this gap in the remaining
part of the paper by analyzing the behavior in the outer band more carefully.

4 Logarithmic Upper Bound

In this section, we show that the diameter of the hyperbolic random graph is
actually O(log n), as long as the average degree is a small enough constant. We
proceed by the following proof strategy. Consider a node v ∈ BO. We investigate
the upwards path from this node, which is intuitively constructed as follows: Each
node on an upwards path has the smallest radial coordinate among all neighbors
of the preceding node.

We first show that the diameter is asymptotically bounded by the longest
upwards path in the graph. Afterwards, we prove that an upwards path is at
most of length O(log n) with high probability by investigating a random walk
whose hitting time dominates the length of the upwards path. A simple union
bound over all nodes will conclude the proof.

We start by stating a bound that shows that if v is between two nodes u,w
that are connected by an edge, then v is either connected to u or v, or one
of these nodes has a radial coordinate at least 1 smaller than v. Due to space
constraints, this and all following proofs can be found in the long version.

Lemma 10. Let u, v, w be nodes in the outer band such that v lies between u
and w. Furthermore, let {u,w} ∈ E, but {u, v}, {v, w} �∈ E. Then, for large n,
at least one of the following holds: ru � rv − 1 or rw � rv − 1.

Similarly to Lemma 9, we say that an edge {u,w} passes over v, if the
requirements of Lemma 10 are fulfilled. Before we introduce the formal definition
of an upwards path, we define the notion of a straight path.

Definition 11. Let π = [v1, . . . , vk] be a path in the hyperbolic random graph
where ∀i, vi ∈ BO. We say that π is straight, if ∀i ∈ {2, . . . , k − 1} the node vi

lies between vi−1 and vi+1.

The definition of a straight path captures the intuitive notion that the path
does not “jump back and forth”. Next, we define an upwards path, which is a
special case of a straight path.

Definition 12. Let v ∈ BO be a node in the hyperbolic random graph and define
ϕ̃u := (π + ϕu − ϕv)mod 2π. Furthermore, we define the neighbors to the right
of u as

Γ̃ (u) := Γ (u) ∩ {w ∈ BO | ϕ̃w � ϕ̃u}. (6)
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Then we say that πv = [v = v0, v1, . . . , vk] is an upwards path from left to right
from v if ∀i ∈ {0, . . . , k − 1} : vi+1 = argmaxu∈˜Γ (vi)

{ru}, and there is no longer
upwards path π′

v � πv.
Analogously, we define an upwards path from right to left by replacing ϕ̃w �

ϕ̃u by ϕ̃w � ϕ̃u in equation (6).

Observe that there are two upwards paths from each node: One from right
to left, and the other from left to right. An upwards path also only uses nodes
in BO. The exclusion of BI can only increase the diameter of a component in
the outer band.

The next Lemma shows that the length of the longest upwards path asymp-
totically bounds the length of all straight shortest paths in the outer band.

Lemma 13. Assume that for all nodes v ∈ BO, the upwards paths in both direc-
tions are of length |πv| � f(n). Let π = [u1, u2, . . . , uk] be a straight shortest path.
Then, |π| � 2 · f(n) + 1 = O(f(n)).

We proceed by arguing that all upwards paths in the outer band are of
length O(log n) at most. In fact, we show a stronger statement by deriving an
exponential tail bound on the length of an upwards path. To this end, we model
an upwards path as a random walk. Consider for some node v all neighbors to
the right of v. Among those, the neighbor in the largest layer (or equivalently,
the smallest radial coordinate) is the neighbor on which any upwards path from
left to right will continue. We formulate a probability that the upwards path
jumps into a certain layer and analyze the probability that after T steps, the
random walk modeled by this process is absorbed, i.e. we reach a node that has
no further neighbors in this direction.

Let the random variables [u = V0, V1, . . .] describe the upwards path from u,
and let Xi := � if Vi is in layer L�, and Xi := 0 if the upwards path consists
of < i nodes. Without loss of generality, the upwards path is from left to right.
Then, we have

Pr[Xi+1 = m | X1, . . . , Xi] � 1
2 Pr[∃w ∈ Lm such that d(Vi, w) � R]

· Pr[� ∃m′ > m such that ∃w′ ∈ Lm′ with d(Vi, w
′) � R] (7)

Note that in Pr[Xi+1 = m | X1, . . . , Xi] we implicitly condition on the fact that
some preceding node Vi′ with i′ < i on the upwards path was not connected
to Vi+1; which technically excludes some subset of BR(Vi). We fix this issue by
considering the Poisson point process and exposing the randomness as follows.
First, we assume that there are no preconditions on Pr[Xi+1 = m] (i.e. the
upwards path begins in Vi). Then, the above formula is exact. We now expose
all neighbors of Vi, and obtain w ∈ Lm as the neighbor in the uppermost layer.
Now we expose the conditions. This is possible, since in the Poisson point model,
each area disjoint from other areas can be treated independently. The exposing
of the conditions can only delete nodes. In this process, w might be deleted,
lowering the probability of Pr[Xi+1 = m].

Therefore, our stated formula is indeed an upper bound.
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Lemma 14. Let the random variables [u = V0, V1, . . .] describe the upwards path
from u, and let ∀i,Xi := � if Vi is in layer L�, and Xi := 0 if the upwards path
consists of < i nodes. Then, if C is large enough, we have E[Xi+1] � 0.99 · Xi.

Lemma 14 shows that Xi has a multiplicative drift towards 0. Let T :=
min{i | Xi = 0} be the random variable describing the length of an upwards
path. We now bound T by a multiplicative drift theorem as presented by Lehre
and Witt [20, Theorem 7] and originally developed by Doerr and Goldberg [9,
Theorem 1] for the analysis of evolutionary algorithms. For the sake of complete-
ness, we restate their result.

Theorem 15 (from [9,20]). Let (Xt)t�0 be a stochastic process over some
state space {0} ∪ [xmin, xmax], where xmin > 0. Suppose that there exists some
0 < δ < 1 such that E[Xt − Xt+1 | X0, . . . , Xt] � δXt. Then for the first hitting
time T := min{t | Xt = 0} it holds

Pr[T � 1
δ (ln(X0/xmin) + r) | X0] � e−r for all r > 0.

In our case, X0 � log R
1−α + c and xmin = 1. Using Lemma 14 this shows that

Pr[T � 101 · (log log log n + r)] � e−r. (8)

Hence, with probability 1 − O(n−3) the random walk process described by Xi

terminates after O(log n) steps. By a union bound we have that all upwards
paths in G are of length O(log n) with probability 1 − O(n−2). To show that
all shortest paths are of length O(log n), however, we need a slightly stronger
statement, namely that the sum of O(log log n) upwards paths is at most of
length O(log n).

Lemma 16. Let (Ti)i=1...X be distributed according to equation (8), where X =
c log log n. Then, with probability 1 − O(n−3),

∑X
i=1 Ti � O(log n).

To conclude our result on the diameter, it is left to investigate shortest paths
in BO that are not straight. The general proof strategy for those paths is as
follows. First, we show that such a path has edges that switch directions. Such
an edge must pass over all preceding (or all following) nodes, as will become
apparent in the next Lemma.

Lemma 17. Consider a shortest path π = [u1, . . . , uk] that is not straight. In
particular, π then has one or more sequence of nodes ui−1, ui, ui+1 such that ui

is not between ui−1 and ui+1. Then, for all such positions i it holds that either

1. ∀j < i : uj is between ui and ui+1, or
2. ∀j > i : uj is between ui and ui−1.

By Lemma 10, we know that can only be O(log log n) changes of directions;
and Lemma 16 lets us conclude that the total path length is still O(log n). This
can be used to show that all shortest paths are of length O(log n).
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Lemma 18. Let π = [u1, u2, . . . , uk] be a shortest path where ∀i, ui ∈ BO. Then,
with probability 1 − O(n−3/2), |π| = O(log n) .

Lemma 18 in conjunction with Lemma 7 then proves Theorem 2, i.e. that
the diameter of the hyperbolic random graph is O(log n) if the average degree
is a small enough constant.

5 Conclusion

We derive a new polylogarithmic upper bound on the diameter of hyperbolic
random graphs; and show that it is O(log n) if the average degree is small. We
further prove a matching lower bound. This immediately yields lower bounds
for any broadcasting protocol that has to reach all nodes. Processes such as
bootstrap percolation or rumor spreading therefore must run at least Ω(log n)
steps until they inform all nodes in the giant component.

Our work focuses on power law exponents 2 < β < 3, but we believe that
our proof can be extended to bound the diameter for β > 3 by Θ(log n). For
other scale-free models it was also interesting to study the phase transition at
β = 2 and β = 3. Another natural open question is the average distance (also
known as average diameter) between two random nodes. We conjecture that the
average distance is Θ(log log n), but leave this open for future work.

Acknowledgements. We thank Konstantinos Panagiotou for many useful discus-
sions, and suggesting a layer-based proof as in Lemma 6.
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