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Abstract. Twin-width is a structural width parameter and matrix in-
variant introduced by Bonnet et al. [FOCS 2020], that has been gaining
attention due to its various fields of applications. In this paper, inspired
by the SAT approach of Schidler and Szeider [ALENEX 2022], we pro-
vide a new SAT encoding for computing twin-width. The encoding aims
to encode the contraction sequence as a binary tree. The asymptotic size
of the formula under our encoding is smaller than in the state-of-the-art
relative encoding of Schidler and Szeider. We also conduct an experi-
mental study, comparing the performance of the new encoding and the
relative encoding.
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1 Introduction

Twin-width is a graph and matrix invariant recently introduced by Bonnet et
al [7], [4], [5]), inspired by a width invariant defined on permutations by Guille-
mot and Marx [9]. Since its inception, twin-width received tremendous interest
in the scientific community. From the algorithmic perspective, the benefits of
twin-width are twofold. First, many diverse graph families are known to have
bounded twin-width, for example graphs of bounded treewidth or clique-width,
graphs excluding a fixed minor, planar graphs, posets of bounded width (in par-
ticular, unit interval graphs) [7]. Second, many NP-hard problems are solvable
in polynomial time on graphs of bounded twin-width.

The latter property is formalized by Bonnet et al [7] as follows: Given an n-
vertex graph G, a witness that its twin-width is at most d, and a first-order sen-
tence ϕ, it can be decided whether ϕ holds on G in f(d, ϕ)n time, where f is some
computable function. It is worth noting, that this result does not give directly
algorithms with practical running times since f is an extremely fast-growing
function; this is a common drawback of algorithmic meta-theorems. However,
several important NP-hard problems that are expressible by a first-order sentence
⋆ Corresponding author.
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of bounded size, are also known to be solvable on graphs of bounded twin-width
directly via dynamic programming with efficient running times; in particular,
k-Clique, k-Dominating Set, and k-Ones SAT for bounded k [5],[8].

Given the above, the natural question is, whether the twin-width of a graph
can be computed exactly. That is, given a graph G, can we find the smallest d
such that d-contraction sequence exists? Unfortunately, in the general case this
turns out to be intractable: even deciding whether a graph has twin-width 4 is
NP-complete [2]. While for many graph classes twin-width is bounded, very few
results are known for computing (or approximating) twin-width even when the
given graph comes from a special graph class. For example, Král and Lamaison
[11] showed that planar graphs have twin-width at most 8; however it is wide
open whether we can compute the twin-width of a given planar graph (since it
may also be smaller than 8). This motivates turning our attention to heuristic
methods of computing twin-width. The high demand for such results is also illus-
trated by the 2023 edition of the PACE challenge3, which focuses exclusively on
computing twin-width. For the purpose of this work we only consider algorithms
that yield a provably optimal contraction sequence; however, the running time
is not necessarily bounded by a polynomial in n in general.

This line of research was pioneered by Schidler and Szeider [14], who devised
a SAT encoding for computing twin-width. By supplying that encoding to a
SAT solver, they were able to identify the exact value of twin-width for a variety
of named graphs. In fact, they presented two different SAT encodings called
absolute and relative. Interestingly, in all their tests the relative encoding vastly
outperforms the absolute encoding, despite the fact that the formula in the
relative encoding is larger: O(n4) clauses versus O(n3) clauses for the absolute
encoding for an n-vertex graph. To the best of our knowledge, no other SAT
encodings for computing twin-width were studied so far.

Our contribution. In this work we propose an alternative SAT encoding for
computing twin-width, which is conceptually different from the encodings of
Schidler ans Szeider [14]. We prove formally the correctness of the encoding, and
argue that the size of the formula in the encoding is only O(n3) clauses, which is a
asymptotically smaller than Ω(n4) in the relative encoding of [14]. We also supply
an implementation of the encoding, and conduct empirical tests comparing the
performance of our encoding to that of the state-of-the-art relative encoding.
The results show that there are cases where the new encoding allows to compute
twin-width much faster, although the converse happens as well. We highlight
that our main contribution is presenting a new SAT-encoding based on a binary
contraction tree that is significantly different than the encoding presented so far.
In the context of our theoretical analysis, we prove the correctness of our SAT-
encoding and analyze the big-O size of the formula, while the experimental part
is mainly to empirically validate the correctness and feasibility of the encoding.
3 PACE stands for Parameterized Algorithms and Computational Experiments;

the challenge is dedicated to bringing the gap between theoretical and
practical parameterized algorithms. The official website of the challenge is
https://pacechallenge.org/2023/.
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Related work. Here we list some of the known results on twin-width. Graphs
of twin-width 0 are exactly cographs, and can be recognized in poly-time [7].
Later it was shown that graphs of twin-width 1 can also be recognized in poly-
time [6]. Jacob and Pilipczuk [10] show, among other results, that twin-width of
a graph is at most 3 · 2tw−1, where tw is the treewidth of the graph; it is also
known that twin-width can be exponential in treewidth [3]. Balabán and Hliněný
[1] show that twin-width is linear in the poset width, which implies that twin-
width of unit interval graphs is at most two, and can be computed in poly-time.
Twin-width of planar graphs is at most 8 [11], and can be as high as 7 [12].

2 Preliminaries

All graphs mentioned in this paper are simple, undirected and finite and we use
standard graph-theoretic notations. In particular, given a graph G, we denote by
V (G) and E(G) its set of vertices (or nodes) and edges respectively. Moreover,
given a vertex set S ⊆ V (G) we denote by G[S] and G−S, the graph induced by
the vertices of S and the graph induced by the vertices V (G) − S respectively.
When referring to the open neighborhood of a vertex v ∈ V (G), i.e. the set of
neighbors of v without v, we write NG(v), while we omit G when the graph
we refer to is clear from the context. Similarly, we denote by NG[v] the closed
neighborhood of v, i.e. NG(v)∪ v. Two distinct vertices u, v are called false twins
if N(u) = N(v) and true twins if N [u] = N [v]. Given a pair u, v ∈ V (G) we
characterize the process of deleting those vertices and creating a new one with
neighborhood N(u) ∪ N(v) as contraction of u, v. The graph that occurs from
G after the contraction of u, v is denoted by G/u, v.

We now proceed in defining twin-width, following the definition of Bonnet et
al in [7]: A graph G = (V,B,R) is a trigraph if B and R are two disjoint sets
of edges on V (referred to as black and red respectively). Note that an ordinary
graph is a trigraph where B = E(G) and R = ∅. A trigraph (V,B,R) such
that (V,R) has maximum degree d is called a d-trigraph. The neighborhood of
a vertex v on a trigraph is all of its adjacent vertices, regardless of the color
of the edge that connects them. Given a trigraph G = (V,B,R) and a pair
of distinct vertices u, v ∈ V (G) we define the trigraph G′ = G/u, v such that,
for the neighbors of the vertex w that occur from the contraction the following
holds: A vertex x ∈ N(w) is connected to w through a black edge if and only if
it was connected through a black edge to both u, v in G. Otherwise (if at least
one was already connected through a red edge or if x was not adjacent to both
of the contracted vertices), the edge connecting x to w in G′ is red.

A sequence of d-contractions for a trigraph is a sequence of d-trigraphs
G0, G1, . . . , Gn−1, where G0 = G, |V (Gn−1)| = 1 and Gi for i ≥ 1 is obtained
from Gi−1 by a contraction (see Figure 1 for an example). The twin-width of a
graph is the smallest d for which a d-sequence exists and is denoted by tww(G).
Such a sequence is called a d-contraction sequence.

Since the main result of this paper is based on encoding a contraction se-
quence as a binary tree, we also define what the Conjunctive Normal Form (CNF)
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of a formula is. A literal is a (propositional) variable or the negation of it, and
we call a clause a disjunction of literals. A formula ϕ is in Conjunctive Normal
Form (CNF) if it is the conjunction of clauses.
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Fig. 1. A 2-contraction sequence of a graph.

3 Binary SAT Encoding

To obtain our binary SAT encoding of the d-contraction sequence problem we
express all restrictions into propositional logic and then convert them to CNF.
Throughout the description of our encoding we refer to V (G) as vertices, and to
V (T ) as nodes.

Let G = (V,E) be the input graph and consider an initialization of E, de-
noting by ¬edgei,j the non-existing edges between vertices i, j, by edgei,j the
existing ones, and by ¬redi,j the absence of red edges on the input graph. ∧

i,j∈[n],j>i
ij ̸∈E

¬edgei,j

 ∧

 ∧
i,j∈[n],j>i

ij∈E

edgei,j

 ∧

 ∧
i,j∈[n],j>i

¬redi,j


Observe that a contraction sequence can be represented by a rooted binary

tree, where the leaves correspond to the vertices of G, internal nodes to sub-
sequent contractions, and the root corresponds to the final contraction. Since
twin-width is always at most d when the number of vertices does not exceed
d + 1, we can avoid encoding the final d + 1 contractions in the sequence. In
terms of the tree representation, this corresponds to removing the nodes of the
tree representing the final d + 1 contractions, which results in a binary forest
with at most d+2 trees. We refer to the binary forest of the sought-after optimal
contraction sequence as T . We note that |V (T )| ≤ 2n − d − 2 since the whole
contraction tree contains 2n− 1 nodes as a binary tree with n = |V (G)| leaves,
and the nodes corresponding to the final d+ 1 contractions are not considered.

To encode T we define variables lci,j and rci,j for each pair of vertices, which
are true if and only if j is the left child of i and j is the right child of i respectively.
Using these variables we ensure that T is binary by encoding the following:
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– Each node has at most one parent.

∧
i∈[2n−d−3]

〈
2n−d−2∑

j=max(i+1,n+1)

(lcj,i + rcj,i) ≤ 1

〉

Note that the final vertex is not included in this encoding.
– Each parent node has exactly one left and one right child.

∧
j∈[n+1,2n−d−2]

〈∑
i∈[j]

rcj,i = 1

〉 ∧
j∈[n+1,2n−d−2]

〈∑
i∈[j]

lcj,i = 1

〉

Lemma 1. The encoding above produces a binary forest on 2n− d− 2 nodes.

Proof. Assume that there is a node vi that has at least two parents vx, vy,
where x, y > i. Then the clause

∧
i∈[2n−d−3]

〈∑2n−d−2
j=max(i+1,n+1)(lcj,i + rcj,i) ≤ 1

〉
corresponding to vi is false since

∑2n−d−2
j=max(i+1,n+1)(lcj,i + rcj,i) includes (lcx,i +

rcx,i) + (lcy,i + rcy,i) which is equal to 2, leading to contradiction. Note that
we construct those clauses only considering values greater than n, since all the
vertices of G correspond to leaf nodes.

Regarding the fact that each parent has exactly one left and one right child,
we do not consider the leaves and hence we start from n+ 1. Here it suffices to
note that for each possible parent node we check all the possible right and left
children to ensure that it has exactly one of each.

We proceed with encoding the already contracted vertices through the variable
vanishp,i. In particular, we define this variable to be true if i is contracted to
any vertex with number at most p. Intuitively, this variable is true if and only
if at the time when the node p is formed through some contraction, the node i
doesn’t exist any more. To implement the semantics we encode the following:

– Each leaf node is vanished at the moment its parent node is formed and
hence, for each i ∈ [n]

vanishn+1,i ⇐⇒ lcn+1,i ∨ rcn+1,i

– Iteratively defined, an internal node i is already vanished when p is formed,
either if it is one of its children or if it has been vanished in some previous
contraction, due to it being a child of some other contracted node. Hence,
for each p ∈ [n+ 2, 2n− d− 2], i ∈ [p− 1]

vanishp,i ⇐⇒ lcp,i ∨ rcp,i ∨ vanishp−1,i

– Lastly, in order to ensure that no node is considered to be “contracted to
itself" at the time it is formed, we set for each p ∈ [n+ 1, 2n− d− 2]

¬vanishp,p
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We now encode the edges of G between the children of some node and the
other nodes. In particular, the left adjacency of i, p, denoted lai,p, means that
there is an edge between the vertex represented by the left child of p and the one
represented by i. Similarly the right adjacency of i, p is defined, and denoted by
rai,p. In the list encoding these adjacencies below, the first argument refers to
the child of p while the second denotes whether or not an edge (red or black) to
vertex c exists. The minimum value is placed first when choosing the edge, to be
consistent with how we initially encoded E(G). For each p ∈ [n+ 1, 2n− d− 2],
c ∈ [p− 1], i ∈ [p− 1] such that i ̸= c, and similarly for their negation

lcp,c ∧ edgemin(i,c),max(i,c) ⇒ lai,p, rcp,c ∧ edgemin(i,c),max(i,c) ⇒ rai,p

lcp,c ∧ redmin(i,c),max(i,c) ⇒ lri,p, rcp,c ∧ redmin(i,c),max(i,c) ⇒ rri,p

lcp,c ∧ ¬edgemin(i,c),max(i,c) ⇒ ¬lai,p, rcp,c ∧ ¬edgemin(i,c),max(i,c) ⇒ ¬rai,p
lcp,c ∧ ¬redmin(i,c),max(i,c) ⇒ ¬lri,p, rcp,c ∧ ¬redmin(i,c),max(i,c) ⇒ ¬rri,p

Using the right and left adjacencies of each node, we are able to encode the
edges created from the contractions. In particular, an edge connecting node i
that occurs from some contraction to another node j exists, if any of the children
of i (the ones that get contracted in order to create i) is adjacent in G to j, and
j still exists at the moment i is created. Moreover, this edge is red if exactly one
of those children is adjacent to j. Formally, this is encoded as follows:

For each i ∈ [n+ 1, 2n− d− 2], j ∈ [i− 1]

edgej,i ⇐⇒ (laj,i ∨ raj,i) ∧ ¬vanishi,j

redj,i ⇐⇒ edgej,i ∧ (lrj,i ∨ rrj,i ∨ (laj,i ⊕ raj,i))

The encoding of the edges occurring from the contraction we described above
edgej,i ⇐⇒ (laj,i ∨ raj,i) ∧ ¬vanishi,j is converted to CNF as follows:

(¬edgej,i ∨ laj,i ∨ raj,i) ∧ (¬vanishi,j ∨ ¬edgej,i) ∧ (¬laj,i ∨ edgej,i ∨ vanishi,j)

∧(¬raj,i ∨ edgej,i ∨ vanishi,j))

Similarly for the encoding of the red edges, redj,i ⇐⇒ edgej,i ∧ (lrj,i ∨ rrj,i ∨
(laj,i ⊕ raj,i)) we have:

redj,i ⇐⇒ edgej,i ∧ (lrj,i ∨ rrj,i ∨ ((laj,i ∨ raj,i) ∧ (¬laj,i ∨ ¬raj,i)))

redj,i ⇐⇒ (edgej,i) ∧ (lrj,i ∨ rrj,i ∨ laj,i ∨ raj,i)

∧(lrj,i ∨ rrj,i ∨ ¬laj,i ∨ ¬raj,i)

⇒(¬redj,i ∨ edgej,i) ∧ (¬redj,i ∨ lrj,i ∨ rrj,i ∨ laj,i ∨ raj,i)

∧ (¬redj,i ∨ lrj,i ∨ rrj,i ∨ ¬laj,i ∨ ¬raj,i)
⇐(redj,i ∨ ¬edgej,i ∨ ¬lrj,i) ∧ (redj,i ∨ ¬edgej,i ∨ ¬rrj,i)

∧ (redj,i ∨ ¬edgej,i ∨ ¬laj,i ∨ raj,i) ∧ (redj,i ∨ ¬edgej,i ∨ ¬raj,i ∨ laj,i)
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Now, in order to encode the red un-vanished edges at the moment of a contrac-
tion, to be able to restrict the maximum degree we introduce a new variable
reduvi,j,k. This is created at the moment node i is formed, and a red edge be-
tween the nodes j and k exists (and the nodes j and k of course still have not
vanished). For each i ∈ [n+1, 2n− d− 2], for each j ∈ [i], for each k ∈ [j +1, i],

reduvi,j,k ⇐⇒ ¬vanishi,j ∧ ¬vanishi,k ∧ redj,k

This is expressed in CNF as:

(¬vanishi,j ∨ ¬reduvi,j,k) ∧ (¬vanishi,k ∨ ¬reduvi,j,k) ∧ (redj,k ∨ ¬reduvi,j,k)
∧(vanishi,j ∨ vanishi,k ∨ ¬redj,k ∨ reduvi,j,k)

Lastly we need to ensure that the maximum red degree at any point is at most
d which is expressed as

∧
i∈[n+1,2n−d−2],

j∈[i]

〈 ∑
k∈[i],j ̸=k

reduvi,min(j,k),max(j,k) ≤ d

〉

b c
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Fig. 2. The contraction forest and the sequence up to 2n− d− 2 for d = 2 that occurs
through the binary encoding for the 2-contraction sequence of Figure 1. Observe that
for d = 2 we stop once 4 vertices remain since after the next contraction a graph on 3
vertices occurs which can have at most 2 red degree.

Theorem 1. Given a graph G of order n and an integer d, we construct in
polynomial time a CNF formula which is satisfiable if and only if tww(G) ≤ d,
and has O(n3) clauses.

Proof. We first prove that given an assignment of the variables that satisfies the
SAT formula corresponding to a graph G, we are able to build a d-contraction
sequence for G. First, we create the contraction tree following the parent-child
relations occuring by the assignment values for the variables lci,j , rcj,i. Then,
we construct a contraction sequence based on the children of n1, . . . , 2n− d− 2.
By the construction of our formula we ensure that all edges of G are encoded.
Also, for every contraction node i, the assignment denoting whether an edge
between its children and other nodes exists, and the red edges created though
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the contraction of a pair of nodes, are counted, as the clauses equivalent to
edgej,i ⇐⇒ (laj,i ∨ raj,i) ∧ ¬vanishi,j are satisfied. Lastly, if during this con-
traction sequence the red degree becomes greater than d, the clauses equivalent
to

∧
i∈[n+1,2n−d−2],

j∈[i]

∑
k∈[i],j ̸=k reduvi,min(j,k),max(j,k) ≤ d are not satisfied, lead-

ing to a contradiction. Hence, the sequence occurring from contracting the child
nodes of n+ 1, . . . , 2n− d− 2 is indeed a d-contraction sequence of G.

Given a d-contraction sequence of G we construct an assignment that sat-
isfies the formula corresponding to G as follows: For the ith-contraction pair,
with the contracted vertices being x and y, where i ≤ 2n − d − 2 we assign 1
to lcx,n+i, rcy,n+i and 0 for the other values of i. Hence, we have “built" our
contraction tree. We also initialize edgei,j to 1 for the adjacent pairs of ver-
tices in G, and redi,j to 0 for all pairs of vertices, to encode G. Similarly for
right and left adjacencies of the nodes of T . We then follow the changes each
contraction causes on G, and assign truth values to the respective variables.
For example, for each variable vanishp,i if the vertex i has been contracted
when it is p’s turn to participate in some contraction, we assign 1 to it. Simi-
larly, we assign 1 to reduvi,j,k for the red edges that survive each contraction.
Notice that because a d-contraction sequence of G is given, due to the construc-
tion of our formula, the assignment created so far also satisfies the clauses of∧

i∈[n+1,2n−d−2],
j∈[i]

∑
k∈[i],j ̸=k reduvi,min(j,k),max(j,k) ≤ d, satisfying the CNF cor-

responding to G.
We now analyze the size of the CNF formula created from a graph G and

an integer d, by counting the clauses occurring from each information encoding.
For initializing E(G), we use one variable for each edge, one for each non-edge
and one to denote the absence of red edges, hence O(n2) in total. To encode the
contraction tree we use, for the “one-parent property", for each i ∈ [2n− d− 3]
at least 2(n − d − 2) variables, meaning O(n2), and for the “binary property",
for each j ∈ [n+ 1, 2n− d− 2], j variables for each child, hence O(n2) in total.
When converted to CNF (the same holds for bounding the red degree by d, by
[13]) we get O(n2) clauses. For vanishp,i we get two literals for each leaf, at
most 2n− d− 2 for each of the internal nodes 2n− d− 2 for the “self variables",
meaning O(n2) in total. To encode right and left adjacencies (edges between the
vertices represented by the children of a node and vertices represented by other
nodes) we have O(n2) variables to choose which child to refer to, and O(n),
meaning O(n3) in total.

When encoding the existence of an edge as a relation of right and left adja-
cencies and the variable vanish, we get 4 clauses for each edge variable, and 4 for
the existence of each red edge, so O(n2) clauses in total. Similarly 4 clauses are
created for each variable reduv that represents the existence of red edges at the
moment of a contraction, making them O(n3) in total. Lastly, for bounding the
maximum red degree by d we need at most O(n2) variables, which also produce
O(n2) clauses. Hence, the size of the formula produced by our encoding is O(n3).
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name n m tww binary relative name n m tww binary relative
EX_001 19 64 6 12.86 9.23 ER_0.1 30 44 3 304.23 37.23
EX_002 20 69 6 4.27 1.15 ER_0.2 30 100 6 100.81 933.68
EX_003 25 97 6 48.64 85.84 ER_0.3 30 120 7 587.99 703.2
EX_004 25 181 7 107.33 68.72 ER_0.4 - - - - -
EX_006 28 131 7 1390.23 480.01 ER_0.5 30 236 9 375.13 319.4
EX_007 28 205 7 178.24 181.24 ER_0.6 - - - - -
EX_008 28 210 10 26.83 8.68 ER_0.7 30 293 8 409.17 -
EX_009 28 228 7 98.99 68.77 ER_0.8 30 342 6 502.77 -
EX_010 28 235 6 735.61 438.79 ER_0.9 30 381 4 - 1418.76
EX_011 29 174 8 - 1077.78 P_013 13 39 6 0.25 0.1
EX_012 29 180 8 - 1163.65 P_017 17 68 8 0.83 0.25
EX_013 30 155 8 - 1498.19 P_029 29 203 14 14.27 7.52
EX_014 30 175 8 1026.46 873.93 P_037 37 333 18 85.19 35.83
EX_015 30 178 8 414.99 858.01 P_041 41 410 20 175.01 58.7
EX_016 30 195 8 - 1527.49 P_053 53 689 26 660.1 352.25
EX_017 30 207 8 - 409.64
EX_018 31 52 3 648.12 175.37
EX_019 32 90 5 1578.88 -
EX_031 48 80 3 974.02 1206.32
EX_034 51 240 4 484 16.66
EX_035 52 53 2 253.07 135.8

Table 1. Results for the PACE dataset, random graphs, and Paley graphs. The num-
bers under “binary” and “relative” are the running times of the encodings, in seconds.

name n m tww time, absolute time, binary factor
tiny001.gr 10 9 1 1.48 0.09 x16
tiny002.gr 10 10 2 3.7 0.13 x29
tiny005.gr 25 40 3 >10 hours 21.35 >x2000
tiny007.gr 14 13 2 3131.77 1.16 x2689
tiny008.gr 10 15 4 65.80 0.07 x937
tiny009.gr 7 7 1 0.01 0.03 x0.33

Table 2. Comparison between binary encoding and absolute encoding on the tiny
dataset of PACE.

4 Experiments

We implemented the binary SAT encoding presented above and run it on several
datasets. For the implementation, we used Python 3.10.12 with PySAT 3.1.0,
and Cadical as the specific SAT solver. The tests were run on a PC with AMD
Ryzen 7 6800HS CPU, 16 GB RAM, and Ubuntu 22.04, using only a single
thread. We also include an implementation of the relative encoding of [14], and
compare the performance of our binary SAT encoding with the relative encoding.
To make a fair comparison, both encodings were run using exactly the same
settings and auxiliary code. We generally do not compare with the absolute
encoding of [14] (except for Table 2), as it is hopelessly inefficient compared to
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both relative encoding and our binary encoding. We also implemented modular
decomposition as the standard preprocessing step for computing twin-width; for
detailed description of the preprocessing see [14]. The implementations and the
testing data are provided in the supplementary material.

Next, we describe the datasets that were used for testing, and provide tables
that compare performance of the binary encoding and the relative encoding. In
all tests the computed twin-width value is the same for both encodings (as both
are shown to output the optimal value of twin-width), so we only compare the
time used by each encoding. In the results that we list, time is always measured
in seconds. All tests were run with a time limit of 30 minutes (1800 seconds) and
a memory limit of 10 gigabytes. Entries marked with “-” are used to denote that
the solver exceeded time and/or memory limit on the corresponding instance.

Random graphs. We first construct Erdős–Rényi graphs G(n, p) where n = 30,
and p ranges from 0.1 to 0.9 win an increment of 0.1. The graph G(n, p) contains
n vertices, and each edge is created with probability p. The results for Erdős–
Rényi graphs are listed in Table 1 in the “ER” rows. It is interesting to note
that while the relative encoding performs slightly better in the uniform setting
(p = 0.5), and considerably better when the graph is very sparse (p = 0.1)
or very dense (p = 0.9), the binary encoding vastly outperforms the relative
encoding in the intermediate cases (p ∈ {0.2, 0.3, 0.7, 0.8}).

Moreover, the performance of both solvers is worse for larger p compared
to smaller p; this implies that neither encoding is exploiting to the fullest the
property that the twin-width of a graph is always equal to the twin-width of
its complement. That is, computing the twin-width of G(n, p) should be equally
hard as computing the twin-width of G(n, 1 − p), since in the complement of
G(n, p) each edge exists independently with probability 1− p.

PACE 2023 challenge. We next compare the encodings on several instances
from the PACE challenge. We first compare the binary encoding and the absolute
encoding of [14] on the “tiny” sample set of the challenge4. The results are shown
in Table 2, and highlight that the performance of the absolute encoding is much
worse that that of the binary encoding, despite the same asymptotic size of the
encoding. For this reason, we do not include absolute encoding in the other tests.

Table 1 then shows the result of comparison between the binary and the
relative encoding on the regular instances of the challenge, see rows starting
with “EX”. While the original dataset contains 200 graphs5, we only list the
instances where at least one of the two solvers was able to compute the twin-
width under the time and memory limit of 30 minutes and 10GB. While the
relative encoding is generally faster on this dataset, the binary encoding is still
able to perform considerably better on several instances. This further shows that
the binary encoding is conceptually different from the relative, and may be used
to deal with the instances where the relative encoding is not efficient.
4 https://pacechallenge.org/2023/tiny-set.pdf
5 All instances are available at https://pacechallenge.org/2023/.
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Paley graphs. Finally, following the experiments of [14], we test the encodings
on Paley graphs. We construct Paley graphs for several prime numbers; for a
prime p with p ≡ 1(mod 4), Paley graph is a p−1

2 -regular graph on p vertices.
The vertices of the Paley graph are associated with the elements of the unique
finite field of order p, and the edge between x and y appears if and only if x− y
is a square in the field; in the case p ≡ 1(mod 4), x − y is a square if and only
if y − x is a square so the edges are symmetric. Last part of Table 1 lists the
results. While the relative encoding is generally faster, it is interesting to observe
that the memory usage of the binary encoding is lower on the Paley graphs. This
may be attributed to the smaller size of the encoding, although this effect does
not show on the other instances.

5 Conclusion

In this work, we introduced a novel SAT encoding for computing twin-width of a
graph. Theoretically, we have shown that the encoding is sound, and that the size
of the encoding is smaller than that of the state-of-the-art relative encoding of
[14]. Further, we conducted experiments on several datasets, comparing the per-
formance of the binary encoding, and the relative and absolute encoding of [14].
Similar to relative encoding, binary encoding vastly outperforms the absolute
encoding. Comparing the binary and relative encoding, the results suggest that
neither encoding dominates the other, while in many cases the binary encoding
is much more efficient than the relative encoding (although the converse also
happens). Therefore, the introduction of the binary encoding indeed improves
the ability to compute twin-width in practice. This also motivates further work
on comparing different twin-width encodings empirically, identifying families of
instances where twin-width can be computed efficiently with either encoding.
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