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Abstract Large real-world networks typically follow a power-law degree dis-
tribution. To study such networks, numerous random graph models have been
proposed. However, real-world networks are not drawn at random. Therefore,
Brach, Cygan, Lacki, and Sankowski [SODA 2016] introduced two natural de-
terministic conditions: (1) a power-law upper bound on the degree distribution
(PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of
neighbors of each vertex is also upper bounded by a power law (PLB-N). They
showed that many real-world networks satisfy both properties and exploit them
to design faster algorithms for a number of classical graph problems.

We complement their work by showing that some well-studied random
graph models exhibit both of the mentioned PLB properties. PLB-U and PLB-N
hold with high probability for Chung-Lu Random Graphs and Geometric
Inhomogeneous Random Graphs and almost surely for Hyperbolic Random
Graphs. As a consequence, all results of Brach et al. also hold with high
probability or almost surely for those random graph classes.

In the second part we study three classical NP-hard optimization
problems on PLB networks. It is known that on general graphs with maximum
degree ∆, a greedy algorithm, which chooses nodes in the order of their
degree, only achieves a Ω(ln ∆)-approximation for Minimum Vertex Cover
and Minimum Dominating Set, and a Ω(∆)-approximation for Maximum
Independent Set. We prove that the PLB-U property with β > 2 suffices for
the greedy approach to achieve a constant-factor approximation for all three
problems. We also show that these problems are APX-hard even if PLB-U,
PLB-N, and an additional power-law lower bound on the degree distribution
hold. Hence, a PTAS cannot be expected unless P=NP. Furthermore, we prove
that all three problems are in MAX SNP if the PLB-U property holds.
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1 Introduction

A wide range of real-world networks exhibit a degree distribution that
resembles a power-law [4, 39]. This means that the number of vertices with
degree k is proportional to k−β , where β > 1 is the power-law exponent, a
constant intrinsic to the network. This applies to Internet topologies [24], the
Web [7, 35], social networks [1], power grids [43], and literally hundreds of
other domains [40]. Networks with a power-law degree distribution are also
called scale-free networks and have been widely studied.

To capture the degree distribution and other properties of scale-free net-
works, a multitude of random graph models have been proposed. These models
include Preferential Attachment [7], the Configuration Model [2], Chung-Lu
Random Graphs [18] and Hyperbolic Random Graphs [34]. Despite the multi-
tude of random models, none of the models truly has the same set of properties
as real world networks.

This shortcoming of random graph models motivates studying deterministic
properties of scale-free models, as these deterministic properties can be checked
for real-world networks. To describe the properties of scale-free networks without
the use of random graphs, Aiello et al [2] define (α, β)-Power Law Graphs. The
problem of this model is that it essentially demands a perfect power law degree
distribution, whereas the degree distributions of real networks normally exhibit
slight deviations from power-laws. Therefore, (α, β)-Power Law Graphs are too
constrained and do not capture most real networks.

To allow for those deviations in the degree distribution Brach et al. [11]
define buckets containing nodes of degrees

[
2i, 2i+1). If the number of nodes in

each bucket is at most as high as for a power-law degree sequence, a network
is said to be power-law bounded, which we denote as a network with property
PLB-U. They also define the property of PLB neighborhoods: A network has
PLB neighborhoods if every node of degree k has at most as many neighbors
of degree at least k as if those neighbors were picked independently at random
with probability proportional to their degree. This property we abbreviate as
PLB-N. PLB-U and PLB-N allow some degrees of parameterization: Both
properties assume a power law distribution with power-law exponent β > 2,
a possible shift t > 0, and a scaling factor c1 and c3 respectively. A shift of t
means that the number of nodes of degree k is proportional to (k + t)−β . A
formal definition of both properties can be found in Section 3. Brach et al. [11]
showed experimentally that PLB-(U,N) properties hold for many real-world
networks, which implies that the mentioned graph problems can be solved
faster on these real-world networks than worst-case lower bounds for general
graphs suggest.
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2 Our Contribution

2.1 PLB properties in power-law random graph models

The PLB-(U,N) properties are designed to describe power-law graphs in a
way that allows analyzing algorithms deterministically. As already mentioned,
there is a multitude of random graph models [2, 7, 18, 34], which can be
used to generate power-law graphs. Brach et al. [11] proved that the Erased
Configuration Model [2] with a power-law degree distribution follows PLB-U
and w. h. p. also PLB-N. In the Configuration Model a graph with a given
degree sequence is sampled uniformly at random. This is done by generating
deg(v) stubs for each node v ∈ V and then matching these stubs independently
and uniformly at random to create edges. In the Erased Configuration Model
loops and multiple edges are removed in order to generate a simple graph. Since
the Erased Configuration Model has a fixed degree sequence, it is relatively
easy to prove the PLB-U property, but it is quite technical to prove the PLB-N
property. There are other power-law random graph models, which are based
on expected degree sequences, e.g. Chung-Lu Random Graphs [18]. Brach et
al. argued that for showing the PLB-U property on these models, a typical
concentration statement does not work, as it accumulates the additive error
for each bucket. They leave it as a challenging open question, whether other
random graph models also produce graphs with PLB-(U,N) properties with
high probability1.

The models we consider in Section 4 are Geometric Inhomogeneous Random
Graphs, Hyperbolic Random Graphs, and Chung-Lu Random Graphs.

Geometric Inhomogeneous Random Graphs satisfy PLB-(U,N):
Geometric Inhomogeneous Random Graphs (GIRGs) [12, 13, 33] consider an
expected degree vector and an underlying geometry.

In GIRGs, all nodes draw a position uniformly at random and each edge (i, j)
exists independently with a probability depending on wi·wj

W and the distance
of i and j in the underlying geometry. We show:

Theorem 4.11 Let G be a GIRG whose weight sequence ~w follows a general
power-law with exponent β′ > 2. Then, for all 2 < β < β′ and t = 0 there are
constants c1 and c3 such that G fulfills PLB-U and PLB-N with high probability.

Hyperbolic Random Graphs satisfy PLB-(U,N): Hyperbolic Ran-
dom Graphs (HRGs) [34] assume an underlying hyperbolic space. Each node is
positioned uniformly at random in this space and connected to other nodes with
a probability proportional to its hyperbolic distance to them. For Hyperbolic
Random Graphs we show the following:

Theorem 4.14 Let G be a HRG with αH > 1
2 . Then, G almost surely fulfills

PLB-U and PLB-N with β = 2αH + 1 − η, t = 0, any constant η > 0, and
some constants c1 and c3.

1 We say that an event E holds w. h. p., if there exists a δ > 0 such that Pr[E] > 1−O(n−δ),
and almost surely if it holds with probability Pr[E] > 1− o(1).
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Chung-Lu Random Graphs satisfy PLB-(U,N): Chung-Lu Random
Graphs (CLRGs) [18] assume a sequence of expected degrees w1, w2, . . . , wn
and each edge (i, j) exists independently at random with probability
min(1, wi·wjW ), where W =

∑n
i=1 wi. We show the following theorem:

Theorem 4.16 Let G be a CLRG whose weight sequence ~w follows a general
power-law with exponent β′ > 2. Then, for all 2 < β < β′ and t = 0 there are
constants c1 and c3 such that G fulfills PLB-U and PLB-N with high probability.

2.2 Algorithmic Results

The above results imply that all results of Brach et al. [11] also hold w. h. p.
for Geometric Inhomogeneous Random Graphs and Chung-Lu Random Graphs
and almost surely for Hyperbolic Random Graphs. Therefore, the problems
transitive closure, maximum matching, determinant, PageRank, matrix inverse,
counting triangles and maximum clique have faster algorithms on Chung-Lu
and Geometric Inhomogeneous Random Graphs w. h. p. and on Hyperbolic
Random Graphs almost surely.

In this work we additionally consider the three classical NP-complete prob-
lems Minimum Dominating Set(MDS), Maximum Independent Set(MIS)
and Minimum Vertex Cover(MVC) on PLB-U networks. For the first two
problems, positive results are already known for (α, β)-Power Law Graphs,
which are a special case of graphs with the PLB-U property and an additional
power law lower bound on the degree distribution (PLB-L). Note that this
deterministic graph class is much more restrictive and does not cover typical
real-world graphs. On the contrary, our positive results only assume the PLB-U
property. Our algorithmic results can therefore be applied to real-world net-
works after measuring the respective constants of the PLB-model. In section 5
we prove our main lemma, Lemma 5.2 (the Potential Volume Lemma). Using
the Potential Volume Lemma, we prove lower bounds for the size of MDS,
MIS and MVC in the order of Θ(n) on PLB-U networks with exponent β > 2.
This essentially means, even taking all nodes as a solution gives a constant
factor approximation. Furthermore, in Theorem 5.7 we prove that the greedy
algorithm actually achieves a better constant approximation ratio for Min-
imum Dominating Set. The positive results from Section 5 also hold for
(α, β)-Power Law Graphs.

Brach et al. [11] proved that for PLB-(U,N) networks with β > 3 finding
a maximum clique is solvable in polynomial time. This result gives rise to
the question whether the PLB-N property can be helpful in solving other
NP-complete problems on power-law graphs in polynomial time. In Section 6
we consider the mentioned NP-Complete problems MDS, MIS and MVC and
prove that these problems are APX-hard even for PLB-(U,L,N) networks with
β > 2. Therefore, at least for the three problems we considered, even the PLB-N
property is not enough to make those problems polynomial-time solvable. As a
side product we also get a lower-bound on the approximability of the respective
problems under some complexity theoretical assumptions. Since the negative
results for (α, β)-Power Law Graphs imply the same non-approximability on
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graphs with PLB-(U,L), we only consider simple graphs with PLB-(U,L,N) in
Section 6.

Finally, we show that all three problems are in MAX-SNP for graphs with
PLB-U and β > 2. This implies that, if we reduce any of those problems to Max
3-Sat, there exists an fpt−algorithm where the parameter is the maximum
number of satisfiable clauses minus a lower-bound on this number, which is
linear in the total number of clauses. This parameter can be considerably
smaller than the solution size of the original problem.

Dominating Set: Given a Graph G = (V,E), a Minimum Dominating
Set (MDS) is a subset S ⊆ V of minimum size such that for each v ∈ V either
v or a neighbor of v is in S. MDS cannot be approximated within a factor of
(1 − ε) ln|V | for any ε > 0 [25] unless NP ⊆ DTIME(|V |log log|V |) and not to
within a factor of ln ∆− c ln ln ∆ for some c > 0 [16] unless P = NP, although
a simple greedy algorithm achieves an approximation ratio of 1 + ln ∆ [32].
We also know that even for sparse graphs, MDS cannot be approximated
within a factor of o(ln(n)), since we could have a graph with a star of n−

√
n

nodes to which an arbitrary graph of the
√
n remaining nodes is attached [36].

Furthermore, if we parameterize Dominating Set with the size of the solution
as a parameter, it is W[2]−complete [21].

MDS has already been studied in the context of (α, β)-Power Law Graphs.
Ferrante, Pandurangan, and Park [26] showed that the problem remains NP-
hard for β > 0. Shen, Nguyen, Xuan, and Thai [46] proved that there is no(

1 + 1
3120ζ(β)3β

)
-approximation2 for β > 1 unless P = NP. They also showed

that the greedy algorithm achieves a constant approximation factor for β > 2,
showing that in this case the problem is APX-hard. Gast, Hauptmann, and
Karpinski [29] also proved a logarithmic lower bound on the approximation
factor when β 6 2.

For graphs with the PLB-U property and power law exponent β > 2 we
will show a lower bound on the size of the minimum dominating set in the
range of Θ(n), which already gives us a constant factor approximation by
taking all nodes. This also means that any brute-force algorithm which runs in
exponential time is in FPT when we take the solution size as a parameter.

In contrast to (α, β)-Power Law Graphs the PLB-U property captures a
wide range of real networks, making it possible to transfer our results to them.
All our upper bounds are in terms of the following two expressions, which
depend on the parameters c1, β and t of the PLB-U property (cf. Definition 3.1):

aβ,t :=

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 and

bc1,β,t :=
(
c1
β − 1
β − 2 · 2

β · (t+ 1)β−1
) 1
β−2

.

2 Throughout the paper, ζ refers to the Riemann zeta function.
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In the rest of the paper we assume the parameters c1, β and t to be constants,
which implies that aβ,t and bc1,β,t are constant as well.

Theorem 5.3 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the minimum
dominating set is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

Furthermore, we will show that the greedy algorithm actually achieves a
lower approximation factor than the one we get from the bound in Theorem 5.3
(see Figure 3 for a comparison).

Theorem 5.7 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the classical greedy
algorithm for Minimum Dominating Set (cf. [22]) has an approximation
factor of at most

log3(5) · aβ,t ln (bc1,β,t + 1) + 1 = Θ(1).

Note that in networks with PLB-U the maximum degree can be
∆ = Θ(n

1
β−1 ). That means the simple bound for the greedy algorithm gives us

only an approximation factor of ln(∆ + 1) = Θ(logn).

In Minimum Connected Dominating Set we are looking for a smallest
dominating set S with the extra property that the induced subgraph of S
in G is connected. For this related problem we prove the following constant
approximation factor for the greedy algorithm introduced by Ruan et al. [44].

Theorem 5.8 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the greedy algorithm
for Minimum Connected Dominating Set (cf. [44]) has an approximation
factor of at most

2 + ln (2 · aβ,t · bc1,β,t + 1) = Θ(1).

Furthermore, we show that Minimum Dominating Set remains APX-
hard on networks with PLB-U and β > 2, even with the PLB-L and PLB-N
property. Finally, we prove that on networks with PLB-U and β > 2, Minimum
Dominating Set is in MAX SNP.

Independent Set: For a graph G = (V,E), Maximum Independent
Set (MIS) consists of finding a subset S ⊆ V of maximum size, such that
no two different vertices u, v ∈ S are connected by an edge. MIS cannot be
approximated within a factor of ∆ε for some ε > 0 unless P = NP [6], although
a simple greedy algorithm achieves an approximation factor of ∆+2

3 [30]. We
also know from Turán’s Theorem that every graph with an average degree of
d̄ has a maximum independent set of size at least n

d̄+1 . This lower bound can

3 Both these results hold for the näıve greedy algorithm based on node degrees, not the
one based on constructing a maximal matching, which achieves an approximation factor of 2
on general graphs.
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Problem General Graph Graphs with PLB-U
MDS O(ln ∆) [32] Θn(1) [Theorem 5.7]
MVC O(ln ∆)3 [Theorem 5.15] Θn(1) [Corollary 5.17]
MIS O(∆) [22] Θn(1) [Corollary 5.14]
MCDS O(ln ∆) [44] Θn(1) [Theorem 5.8]

Table 1 Comparison of the approximation ratios achieved by greedy algorithms on networks
with an upper bound on the power-law degree distribution (PLB-U) and exponent β > 2 and
on general graphs. While on general graphs, greedy achieves only a logarithmic or polynomial
approximation in the maximum degree, greedy achieves a constant-factor-approximation on
graphs with PLB-U and β > 2.

already be achieved by the same greedy algorithm [30, Theorem 1]. When we
consider parameterized Independent Set with solution size as the parameter,
it is W[1]-complete [21].

MIS has also been studied in the context of (α, β)-Power Law Graphs.
Ferrante et al. [26] showed that the problem remains NP-hard for β > 0. Shen
et al. [46] proved that for β > 1 there is no

(
1 + 1

1120ζ(β)3β − ε
)

-approximation
unless P = NP and Hauptmann and Karpinski [31] gave the first non-constant
bound on the approximation ratio of MIS for β 6 1.

Since the PLB-U property with β > 2 induces a constant average degree,
the greedy algorithm already gives us a constant approximation factor for
Maximum Independent Set on networks with these properties. Although
we can not give better bounds for the maximum independent set, Theorem 5.3
immediately implies a lower bound for the size of all maximal independent sets.

Theorem 5.13 In a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, every maximal
independent set is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

It is easy to see that these lower bounds do not hold in sparse graphs in
general, since in a star the center node also constitutes a maximal independent
set.

Furthermore, we show that Maximum Independent Set remains APX-
hard in networks with PLB-U and β > 2, even with the PLB-L and PLB-N
property. Finally, we prove that on networks with PLB-U and β > 2, Maximum
Independent Set is also in MAX SNP.

Vertex Cover: Given a graph G = (V,E), Minimum Vertex Cover
(MVC) consists of finding a subset S ⊆ V of minimum size such that each
edge e ∈ E is incident to at least one node from S. MVC cannot be approx-
imated within a factor of 10

√
5 − 21 ≈ 1.3606 unless P=NP, whereas the

simple algorithm which greedily constructs a maximal matching achieves an
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Problem General Graph Graph with PLB-(U,L,N)
MDS Ω(ln ∆) [16] 1 + Ω(1) [Theorem 6.8]
MVC > 1.3606 [20] 1 + Ω(1) [Theorem 6.12]
MIS Ω(poly(∆)) [6] 1 + Ω(1) [Theorem 6.10]

Table 2 Comparison of the approximation lower bounds for polynomial-time algorithms
(assuming P 6= NP) on networks with an upper (PLB-U) and lower (PLB-L) bound on the
power-law degree distribution and with PLB neighborhoods (PLB-N) with the approximation
lower bounds on general graphs. Even with the additional properties of PLB-L and PLB-N
the problems on graphs with PLB-U remain APX-hard, i.e. these problems cannot admit a
PTAS. The actual lower bounds for each problem can be found in the respective theorem.
Here Ω(1) hides the PLB-L parameters β, t and c2.

approximation ratio of 2 [41]. Unfortunatly, the greedy algorithm based on
node degrees only achieves an approximation factor of ln ∆ (Theorem 5.15).

Minimum Vertex Cover has also been studied in the context of (α, β)-
Power Law Graphs. Shen et al. [46] proved that there is no PTAS for β > 1
under the Unique Games Conjecture.

We can show that in networks with PLB-U and without isolated vertices
the minimum vertex cover has to have a size of at least Θ(n). This follows
immediately from Theorem 5.3, since in a graph without isolated nodes every
vertex cover is also a dominating set:

Theorem 5.16 In a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the minimum vertex
cover is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n.

Also, we show that Minimum Vertex Cover remains APX-hard in net-
works with PLB-U and β > 2, even with the PLB-L and PLB-N property. After
that we prove that on networks with PLB-U and β > 2, Minimum Vertex
Cover is in MAX SNP.

3 Preliminaries and Notation

We mostly consider undirected multigraphs G = (V,E) without loops, where
V denotes the set of vertices and E the multiset of edges with n = |V |. In the fol-
lowing we will refer to multigraphs as graphs and state explicitly if we talk about
simple graphs. Throughout the paper we use deg(v) to denote the degree of node
v. Furthermore, we use dmin and ∆ to denote the minimum and maximum de-
gree of the graph respectively. For a set S ⊆ V , we let vol(S) =

∑
v∈S deg(v)

denote the volume of S. We use bi to denote the set of nodes v ∈ V with
deg(v) ∈ [2i, 2i+1). For v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} denote the
exclusive neighborhood of v and we let N+(v) = {u ∈ V | u = v ∨ {u, v} ∈ E}
denote the inclusive neighborhood of v. Analogously, for a set S ⊆ V , we let
N+(S) = {v ∈ V | ∃u ∈ S: v ∈ N+(u)} denote the inclusive neighborhood of S
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and we let N(S) = N+(S) \ S denote the exclusive neighborhood of S. Further-
more, for v ∈ V we let Nr(v) = {u ∈ V | dist(u, v) 6 r} denote the r-closed
neighborhood of v, where dist(u, v) denotes the length of a shortest path from
u to v in G. Analogously, for a set of nodes S ⊆ V we let Nr(S) =

⋃
v∈S N

r(v)
denote the r-closed neighborhood of S. If not stated otherwise log denotes the
logarithm of base 2 and ln denotes the natural logarithm.

Now we give a formal definition of the PLB-U, PLB-L and PLB-N properties.

Definition 3.1 (PLB-U [11]) Let G be an undirected n-vertex graph and
let c1 > 0 be a universal constant. We say that G is power law upper-bounded
(PLB-U) for some parameters 1 < β = O(1) and t > 0 if for every integer
d > 0, the number of vertices v, such that deg(v) ∈

[
2d, 2d+1) is at most

c1n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

Definition 3.2 (PLB-L) Let G be an undirected n-vertex graph and let
c2 > 0 be a universal constant. We say that G is power law lower-
bounded (PLB-L) for some parameters 1 < β = O(1) and t > 0 if for
every integer blog dminc 6 d 6 blog ∆c, the number of vertices v, such that
deg(v) ∈

[
2d, 2d+1) is at least

c2n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

Since the PLB-U property alone can capture a much broader class of
networks, for example empty graphs and rings, this lower-bound is important
to restrict networks to real power-law networks. In the definition of PLB-L
dmin and ∆ are necessary because in real world power law networks there are
no nodes of lower or higher degree, respectively.

It is also noteworthy, that not all values of c1 (respectively c2) are eligible,
given t, β, and n. These constants have to be big (small) enough for the buckets
to encompass all n nodes. If this is the case, we call c1 (c2) admissable.

Definition 3.3 (PLB-N [11]) Let G be an undirected n-vertex graph
with PLB-U for some parameters 1 < β = O(1) and t > 0. We say
that G has PLB neighborhoods (PLB-N) if for every vertex v of de-
gree k, the number of neighbors of v of degree at least k is at most
c3 max

(
logn, (t+ 1)β−2k

∑n−1
i=k i(i+ t)−β

)
for some universal constant c3 > 0.

Brach et al. [11] assume that PLB-U and PLB-N for the same graph have
the same values of t and β. This makes sense, since both bounds describe the
same (power-law) degree sequence. Henceforth, in the rest of this paper, we
will assume that PLB-U, PLB-N, and PLB-L for the same graph also have the
same values of t and β. How well the degree distributions of real networks and
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(a) Youtube Network fitted with β = 2.34,
c1 = 1.46, c2 = 0.20, and t = 1.76.
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(b) Epinion Network fitted with β = 2.08,
c1 = 1.92, c2 = 0.03, and t = 3.84.
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(c) HepPh fitted with β = 3.22, c1 = 3.43,
c2 = 0.30, and t = 24.14.
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(d) DBLP Network fitted with β = 3.34,
c1 = 3.61, c2 = 0.03, and t = 14.64.
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(e) CondMat Network fitted with β = 4.28,
c1 = 4.62, c2 = 0.27, and t = 29.12.
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(f) Hyperbolic Random Graph fitted with
β = 2.38, c1 = 2.11, c2 = 0.41, and t = 0.

Fig. 1 Total number of nodes with degrees in ranges
[
2i, 2i+1

)
for i > 0 for the giant

components of some real-world networks from the SNAP dataset [37] and a Hyperbolic
Random Graph. Upper bounds (H) fitted to function PLB-U (see Definition 3.1). Lower
bounds (N) fitted to function PLB-L (see Definition 3.2) with t and β the same as for
PLB-U. As can be seen the constants c1, c2, β, and t of PLB-U and PLB-L are rather
small. Additionally, in most cases c1 and c2 are close together, which indicates a good fit.
Furthemore, our constants differ from those by Brach et al. [11], since they first converted
their networks to directed graphs, which is not necessary in our case.
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randomly generated power-law graphs fit into the PLB-U and PLB-L bounds
can be seen in Figure 1.

Throughout the paper we will also make repeated use of the following
Lemma, which is a more precise version of [11, Lemma 2.2]. It will help us
relate power-law bounds to the bucketed bounds of the PLB properties.

Lemma 3.4 Let 1 6 a 6 b/2, for a, b ∈ N, and let c > 0 be a constant. Then

a−c 6
c

1− 2−c
b−1∑
i=a

i−c−1.

Proof

b−1∑
i=a

i−c−1 >
∫ b

a

x−c−1 dx = 1
c

(
a−c − b−c

)
>

1− 2−c

c
· a−c.

ut

Furthermore, we will use the following standard Chernoff Bounds (cf. [23,
Theorem 1.1]) to show that our random models generate graphs with PLB-U
and PLB-N.

Theorem 3.5 Let X :=
∑
i∈[n]Xi, where Xi for i ∈ [n] are independently

distributed in [0, 1]. Then, for 0 < ε < 1,

Pr (X > (1 + ε)E [X]) 6 exp
(
−ε

2

3 E [X]
)

and

Pr (X < (1− ε)E [X]) 6 exp
(
−ε

2

2 E [X]
)
.

If t > 2 · e · E [X], then
Pr (X > t) 6 2−t.

4 Power-Law Random Graphs and the PLB properties

In this section we analyze some well-known power law random graph models
and prove that w. h. p. or almost surely graphs generated by these models
have PLB-U and PLB-N properties. We consider (α, β)-Power Law Graphs,
Chung-Lu Random Graphs, Geometric Inhomogeneous Random Graphs, and
Hyperbolic Random Graphs, because they are common models and rather easy
to analyze. Furthermore, they assume independence or some geometrically
implied sparseness of edges, which is important for establishing the PLB-N
property.
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4.1 (α, β)-Power Law Graph

First, we consider (α, β)-Power Law Graphs. Note that (α, β)-Power Law
Graphs are no random graph model. Instead, they are classes of graphs whose
degree distributions follow a power-law with scaling eα and exponent β. We
show that this already ensures the PLB-U property. We will also see that they
satisfy PLB-N if they are generated with the Erased Configuration Model. This
follows with a result by Brach et al [11].

Formally, (α, β)-Power Law Graphs are defined as follows.

Definition 4.1 ((α, β)-Power Law Graph [3]) An (α, β)-Power Law Graph
is an undirected multigraph with the following degree distribution depending
on two given values α and β. For 1 6 i 6 ∆ =

⌊
eα/β

⌋
there are yi =

⌊
eα

iβ

⌋
nodes of degree i.

Intuitively those graphs already satisfy PLB-U by definition. The following
theorem confirms this intuition. Remember that throughout the paper ζ denotes
the Riemann zeta function.

Theorem 4.2 The (α, β)-Power Law Graph with β > 1 has the PLB-U prop-
erty with c1 = 1

ζ(β) , t = 0 and exponent β.

Proof It holds that the number of nodes of degree between 2d and 2d+1 − 1 is
at most

eα
2d+1−1∑
i=2d

i−β 6
n

ζ(β)

2d+1−1∑
i=2d

i−β

due to the definition of the degree distribution and the fact that n = bζ(β)eαc
for β > 1. ut

Since the degree sequence of those graphs follow a power-law, we can show
that PLB-L holds as well.

Theorem 4.3 The (α, β)-Power Law Graph with β > 1 has the PLB-L prop-
erty with c1 = 1

2ζ(β) , t = 0 and exponent β.

Proof The number of nodes of degree i is exactly
⌊
eα

iβ

⌋
. Since i 6

⌊
eα/β

⌋
, this

number is at least one. Therefore
⌊
eα

iβ

⌋
> 1

2
eα

iβ
. It now holds that the number

of nodes of degree between 2d and 2d+1 − 1 is at least

eα

2

2d+1−1∑
i=2d

i−β = n

2ζ(β)

2d+1−1∑
i=2d

i−β

due to the definition of the degree distribution and the fact that n = ζ(β)eα
for β > 1. ut
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Since (α, β)-Power Law Graphs describe classes of graphs with given degree
distributions, PLB-N is not satisfied automatically. However, one can sample
those graphs randomly with the Erased Configuration Model [2] to guarantee
PLB-N with high probability. The Configuration Model gets a degree sequence
as input and randomly generates a multigraph with this sequence. This is done
by creating deg(u) many stubs for each node u and then connecting stubs
uniformly at random. In the Erased Configuration Model loops and multi-edges
are erased after this process in order to generate simple graphs. Brach et al [11]
proved that random networks created by the Erased Configuration Model whose
prescribed degree sequence follows PLB-U, also follow PLB-U and PLB-N with
high probability. This yields the following lemma, which concludes our section
on (α, β)-Power Law Graphs.

Lemma 4.4 ([11]) A random (α, β)-Power Law Graph with β > 1 created
with the Erased Configuration Model has the PLB-U and PLB-N properties
with high probability.

4.2 Geometric Inhomogeneous Random Graphs

In this section we consider the very general model of Geometric Inhomoge-
neous Random Graphs (GIRGs), which was introduced by Bringmann et al [12].
In this model, nodes are distributed uniformly at random on some underlying
ground space. The probability of creating an edge between two nodes then
depends on given weights for those nodes and on their distance in the ground
space. Formally, the model is defined as follows.

Definition 4.5 (Geometric Inhomogeneous Random Graphs
(GIRGs) [12, 14]) A Geometric Inhomogeneous Random Graph is a
simple graph G = (V,E) with the following properties. For |V |= n let
w = (w1, · · · , wn) be a sequence of positive weights. Let W =

∑n
i=1 wi be

the total weight. For any vertex v, draw a point xv uniformly at random
from the d-dimensional torus Td = Rd \ Zd with d ∈ N+. We connect vertices
u 6= v independently with probability puv = puv(r), which depends on the
weights wu, wv and on the positions xu, xv, more precisely, on the distance
r = ‖xu − xv‖. For some fixed constant α > 1 the edge probability is

puv = Θ
(
min

{ 1
||xu − xv||αd

(wuwv
W

)α
, 1
})
.

The definition of GIRGs lends itself to encompass a multitude of models
with a high degree of freedom regarding expected degree distributions and
underlying geometries. Thus, we need additional constraints to show that this
model generates instances that are power-law bounded. One straightforward
condition is that the expected node degrees are power-law distributed. The
following definition captures this condition formally.

Definition 4.6 (General Power-law [12]) A weight sequence ~w is said to
follow a general power-law with exponent β > 2 if wmin := min {wv | v ∈ V } =
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Ω(1) and if there is a w̄ = w̄(n) > nω(1/log logn) such that for all constants
η > 0 there are ε1, ε2 > 0 with

ε1
n

wβ−1+η 6 |{v ∈ V | wv > w}| 6 ε2
n

wβ−1−η ,

where the first inequality holds for all wmin 6 w 6 w̄ and the second holds for
all w > wmin.

Note that the former definition states that for any choice of η > 0 one can find
constants c1 and c2 with the desired properties. However, for PLB-L, PLB-U,
and PLB-N to hold it is sufficient to choose a fixed η and constants ε1 and ε2
that satisfy the property. Another property implied by the general power-law
is that the maximum degree is ∆ = O

(
n1/(β−η−1)). We will use this property

in the proof of Theorem 4.11.
We are now going to prove that GIRGs fulfill PLB-U and PLB-N. For this

we need the following theorem and auxiliary lemmas by Bringmann et al. [13].

Theorem 4.7 ([13]) Let G be a GIRG with a weight sequence that follows a
general power-law with exponent β and average degree Θ(1). Then, with high
probability the degree sequence of G follows a general power law with exponent
β and average degree Θ(1), i.e for all constants η > 0 there exist constants
ε3, ε4 > 0 such that w. h. p.

ε3
n

kβ−1+η 6 |{v ∈ V |deg(v) > k}|6 ε4
n

kβ−1−η ,

where the first inequality holds for all 1 6 d 6 w̄ and the second holds for all
d > 1.

The following three lemmas are necessary to prove Theorem 4.11. Lemma 4.8
states that the marginal edge probability between two nodes u and v is essen-
tially min

{
1, wuwvW

}
. Furthermore, even conditioned on a node’s position xu,

all edges between u and other nodes are present independently.

Lemma 4.8 ([13]) Fix u ∈ [n] and xu ∈ Td. All edges {u, v}, u 6= v, are
independently present with probability

Pr [u ∼ v | xu] = Θ(Pr [u ∼ v]) = Θ( min
{

1, wuwv
W

}
).

In the proof of Theorem 4.11 we will only use the marginal edge proba-
bility from the former lemma. Lemma 4.9 bounds the expected node degrees
asymptotically.

Lemma 4.9 ([13]) For any v ∈ [n] in a Geometric Inhomogeneous Random
Graph, we have

E[deg(v)] = Θ(wv).

The former two lemmas imply that we can use standard Chernoff bounds to
bound node degrees, but we also need the following auxiliary lemma. It bounds
the expected volume of nodes with given maximum or minimum weights.
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Lemma 4.10 ([13]) Let ~w be a general power-law weight sequence with ex-
ponent β and let W>w =

∑
~wv :~wv>w ~wv and W6w =

∑
~wv:~wv6w ~wv. Then the

total weight satisfies W = Θ(n). Moreover, for all sufficiently small η > 0,

(i) W>w = O(nw2−β+η) for all w > wmin,
(ii) W>w = Ω(nw2−β−η) for all wmin 6 w 6 w̄,

(iii) W6w = O(n) for all w, and
(iv) W6w = Ω(n) for all w = ω(1).

We are now ready to prove our first main theorem: For GIRGs whose weight
sequence follows a general power-law with exponent β′, we can always find
constants c1 and c2 such that PLB-U and PLB-N are satisfied for t = 0 and
any power law exponent 2 < β < β′. Intuitively, this holds, since PLB-U and
PLB-N only demand upper bounds on the number of nodes in a bucket or the
neighborhood of a node. By decreasing the power-law exponent in PLB-U and
PLB-N, these upper bounds only get less restrictive.

The proof works as follows. First, we show that Theorem 4.7 implies PLB-U.
Second, we show PLB-N by bounding the ranges of node degrees depending
on weights. We show that only nodes of sufficiently high weights can have a
degree of at least k. It now suffices to consider those nodes with high weights
as potential neighbors of a degree-k node. Since the edges between a degree-
k node and its potential neighbors are drawn independently, we can use a
Chernoff bound to show that the number of neighbors of degree at least k
is concentrated around its expected value. All these statements hold with
high probability. Thus, we can simply collect the error probabilities without
considering dependencies. This shows PLB-N.

Theorem 4.11 Let G be a GIRG whose weight sequence ~w follows a general
power-law with exponent β′ > 2. Then, for all 2 < β < β′ and t = 0 there are
constants c1 and c3 such that G fulfills PLB-U and PLB-N with high probability.

Proof First, we show that G fulfills PLB-U with high probability. Let k = 2d.
It now holds that

|{v ∈ V | deg(v) > k}| 6 ε4
n

kβ′−1−η

6 ε4n
β′ − 1− η

1− 2−β′+1+η

2k−1∑
i=k

i−β
′+η

due to Theorem 4.7 and Lemma 3.4. This means that G has the PLB-U
property with β = β′ − η, t = 0 and c1 = ε4

β′−1−η
1−2−β′+1+η .

Now we show that G also fulfills PLB-N with high probability. To this
end, we consider a node v with weight wv. We first bound the range into
which the degree deg(v) of v can fall with high probability. We pessimistically
assume that deg(v) takes its lower bound, because then the number of possible
neighbors of degree at least deg(v) is maximized. Further, we assume that all
other nodes’ degrees take their respective upper bounds. Within these bounds,
only nodes with high enough weights can reach a degree of at least deg(v).
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We call these nodes potential neighbors of v. Finally, we bound the number of
edges between v and its potential neighbors. This can be done with a standard
Chernoff bound, since all edges between v and its potential neighbors are drawn
independently.

Due to Lemma 4.8 we can use standard Chernoff bounds as stated in
Theorem 3.5 to bound the degrees of nodes. According to Lemma 4.9 there are
constants c7, c8 > 0 such that

c7 · wv 6 E[deg(v)] 6 c8 · wv

holds for all v ∈ V . Let c be an appropriately chosen constant. For a node
v ∈ V with wv > c lnn it holds that

Pr
(

deg(v) > 3
2 · E [deg(v)]

)
6 e−

E[deg(v)]
12 6 e−

c7·wv
12 6 n−

c·c7
12

and

Pr
(

deg(v) < 1
2 · E [deg(v)]

)
6 e−

E[deg(v)]
8 6 e−

c7·wv
8 6 n−

c·c7
8 .

For a sufficiently large constant c it holds w. h. p. that

1
2 · c7 · wv 6

1
2 · E [deg(v)] 6 deg(v) 6 3

2 · E [deg(v)] 6 3
2 · c8 · wv. (1)

Thus, the degrees of nodes with weights at least logarithmic in n are concen-
trated around their weights. However, this does not hold for nodes with smaller
weights. Therefore, we will consider them separately. First, we show that nodes
with smaller weights cannot reach much higher degrees than c · lnn. Thus, for
nodes of high weight and high degree they do not have to be considered as
neighbors. This is because PLB-N is only concerned with neighbors of same or
higher degree. Second, we show that nodes with smaller weights also comply
with PLB-N. Remember that PLB-N allows a node of degree k to have c3 · logn
neighbors of degree at least k. Since nodes with small weights of at most c · lnn
have at most O(logn) neighbors in total with high probability, this property
holds.

Let us now consider nodes v ∈ V with low weights wv < c lnn. Due to the
third statement in Theorem 3.5 it holds that

Pr (deg(v) > 2e · c8 · c lnn) 6 2−2e·c8·c lnn = n
− 2e·c·c8

log2(e) ,

since 2e·c8 ·c lnn > 2e·c8 ·wv > 2e·E [deg(v)]. If we choose c sufficiently large, it
holds w. h. p. that the degrees of these nodes are at most 2e·c8 ·c lnn = O(logn).
Thus, nodes with low weights already comply with the bound from PLB-N.
Also, 2e · c8 · c lnn is smaller than the lower bound from inequality (1) for nodes
with weight wu > 4e c8c7 c lnn.

Therefore, with high probability no node of weight wu > 4e c8c7 c lnn can
have a node with weight wv < c lnn as a neighbor of same or higher degree.
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Before we focus on nodes with high weight wu > 4e c8c7 c lnn, we still have
to consider nodes v ∈ V with intermediate weights c lnn 6 wv < 4e c8c7 c lnn.
Since the degrees of those nodes are concentrated around wv, it holds that
deg(v) 6 6e c8

2

c7
c lnn = O(logn) w. h. p. due to inequality (1). This also complies

with the bounds from PLB-N.
It remains to show that PLB-N also holds for nodes v ∈ V with high weights

wv > 4e c8c7 c lnn. Again, we can assume deg(v) > 1
2c7 · wv > 2e · c8 · c lnn. As

we have seen, no node u with wu < c lnn can reach a degree of deg(v) with
high probability. That means, the only nodes that can reach a degree of at
least deg(v) w. h. p. are those with

wu >
1
3 ·

c7
c8
· wv =: ŵ

due to inequality (1). These are the potential neighbors of v with degree at
least deg(v). Let X be the number of edges between v and these potential
neighbors. Now it holds that

E [X] = Θ
(wv
W
·W>ŵ

)
6 O(wv · ŵ2−β′+η) = O(w3−β′+η

v )

due to Lemma 4.8 and Lemma 4.10. We can assume that the expected value is
at most c9 ·w3−β′+η

v . Again, we can use the Chernoff bounds from Theorem 3.5
to bound the number of these edges. If c9 · w3−β′+η

v < c lnn it holds that

Pr (X > 2 · e · c lnn) 6 22·e·c lnn.

In that case the number of neighbors with degree at least deg(v) is at most
2 · e · c lnn with high probability. As in the case of low weight nodes, this
complies with PLB-N. If c9 · w3−β′+η

v > c lnn it holds that

Pr
(
X >

3
2 · c9 · w

3−β′+η
v

)
6 e−

c9·w
3−β′+η
v
12 6 n−

c·c9
12 .

This is a high probability if c is chosen appropriately high. It now holds w. h. p.
that

X 6
3
2 · c9 · w

3−β′+η
v 6

4 · c9
9 · c3−β′+η8

· deg(v)3−β′+η = c10 · deg(v)3−β′+η

due to inequality (1). In order to get an expression that resembles PLB-N,
we use Lemma 3.4. Although deg(v) is a random variable, for all realizations
deg(v) = k within our high probability bounds, we can apply the lemma with
a = k, b = n, and c = β′ − η − 2. The requirement 1 > a > b/2 holds, since
1 > k holds due to inequality (1) and a 6 ∆ = O

(
n1/(β′−η−1)

)
= o(n) is

implied by the general power law. Lemma 3.4 now yields

deg(v)2−β′+η = O

 n−1∑
i=deg(v)

i1−β
′+η

 .
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This implies that the number of neighbors of v with degree at least deg(v) is
at most O

(
deg(v)

∑n−1
i=deg(v) i

1−β′+η
)

, which is at most

c3 · (t+ 1)β
′−η−1 deg(v)

n−1∑
i=deg(v)

i(i+ t)−β
′+η

for β = β′− η, a suitable constant c3 and t = 0. Thus, in all cases PLB-N holds
as desired. ut

We have proven that GIRGs with a power-law weight sequence generate
power-law bounded graphs with high probability. There are two other random
graph models which are highly related to GIRGs and for which we can show
PLB-(U,N) as well. First, Hyperbolic Random Graphs, which were shown
to be a special case of GIRGs by Bringmann et al [12]. Second, Chung-Lu
Random Graphs, which generate random instances in a very similar way
to Geometric Inhomogeneous Random Graphs, but without an underlying
geometry. Therefore, we consider both of these models as special cases of
GIRGs and analyze them in the following subsections.

4.2.1 Hyperbolic Random Graphs

In this section we show PLB-U and PLB-N in Hyperbolic Random Graphs
(HRGs). In HRGs, nodes are uniformly distributed on the hyperbolic plane.
Then, two nodes are connected with probability proportional to their hyperbolic
distance. The following definition formalizes the model.

Definition 4.12 (Hyperbolic Random Graph (HRG) [34]) Let αH > 0, CH ∈
R, TH > 0, n ∈ N and R = 2 logn + CH . The Hyperbolic Random Graph
GαH ,CH ,TH (n) is a simple graph with vertex set V = [n] and the following
properties:

– Every vertex v ∈ [n] draws coordinates (rv, φv) independently at random,
where the angle φv is chosen uniformly at random in [0, 2π) and the radius
rv ∈ [0, R] is random according to density f(r) = αH sinh(αHr)

cosh(αHR)−1 .
– Every potential edge e = {u, v} ∈

([n]
2
)

is present independently with
probability

pH(d(u, v)) =
(

1 + e
d(u,v)−R

2TH

)−1
,

where d(u, v) is the hyperbolic distance between u and v, i.e. the non-negative
solution of the equation

cosh (d(u, v)) = cosh (rx) cosh (ry)− sinh (rx) sinh (ry) cos (φx − φy).

Bringmann et al [12] show that this model is a special case of GIRGs with
input parameters

d := 1, β := 2αH + 1, α := 1/TH
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and
wv := e

R−rv
2 and xv := φv

2π
for v ∈ V . They also show this this weight sequence follows a general power
law.

Lemma 4.13 ([12]) Let αH > 1
2 . Then for all η = η(n) = ω( log logn

logn ), with
probability 1− n−Ω(n) the induced weight sequence ~w follows a power law with
parameter β = 2αH + 1.

Thus, we can apply Theorem 4.11 to show that HRGs also satisfy PLB-U
and PLB-N.

Theorem 4.14 Let G be a HRG with αH > 1
2 . Then, G almost surely fulfills

PLB-U and PLB-N with β = 2αH + 1 − η, t = 0, any constant η > 0, and
some constants c1 and c3.

4.2.2 Chung-Lu Random Graphs

In this section we consider another random graph model related to GIRGs,
Chung-Lu Random Graphs (CLRGs). As in GIRGs, nodes have weights which
influence the edge probability. However, there is no notion of distance between
nodes. The following formal definition makes this clear.

Definition 4.15 (Chung-Lu Random Graph (CLRG) [17]) A Chung-
Lu Random Graph is a simple graph G = (V,E). Given a weight sequence
w = (w1, w2, . . . , wn) the edges between nodes vi and vj exist independently
with probability pij proportional to min

(
1, wiwjW

)
, where W =

∑n
i=1 wi.

Geometric Inhomogeneous Random Graphs and Chung-Lu Random Graphs
are highly related. In fact, the definition of GIRGs was originally inspired by the
one for CLRGs. We can see that the same properties we used to show PLB-(U,N)
for GIRGs also hold for CLRGs. Most importantly, we used the marginal edge
probability between each pair of nodes in a Geometric Inhomogeneous Random
Graph. However, this marginal probability is exactly the edge probability
of Chung-Lu Random Graphs. From this property and the independence of
edges in CLRGs one can derive all lemmas in exactly the same way, but for
CLRGs instead of GIRGs. Especially, we can derive PLB-(U,N) as stated in
the following theorem.

Theorem 4.16 Let G be a CLRG whose weight sequence ~w follows a general
power-law with exponent β′ > 2. Then, for all 2 < β < β′ and t = 0 there are
constants c1 and c3 such that G fulfills PLB-U and PLB-N with high probability.

5 Greedy Algorithms

In this section we try to understand why simple greedy algorithms work effi-
ciently on power-law bounded graphs. The problems we consider are Minimum
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Dominating Set, Minimum Vertex Cover, and Maximum Independent
Set. We will show that graphs with PLB-U only have dominating sets, vertex
covers, and maximal independent sets of size Θ(n). This already implies that
greedy algorithms for these problems achieve a constant approximation factor.
However, for MDS and some variants of it, we can derive better approximation
factors for greedy algorithms than the ones implied by our lower bounds on the
solution size. We are able to derive these results with the help of the Potential
Volume Lemma (Lemma 5.2), which we introduce in the next section.

Definition 5.1 A greedy algorithm is an α-approximation for problem P if it
produces a solution set S with α > |S|

|opt| if P is a minimization problem and
with α > |opt|

|S| if P is a maximization problem.

5.1 Analysis of Greedy Algorithms on PLB-U Networks

This section will be dedicated to proving our main lemma, the Potential
Volume Lemma (Lemma 5.2).

The idea of the lemma is inspired by lower-bounding the size of a dominating
set as done by Shen et al. [46] and by Gast et al. [29] in the context of
(α, β)-Power-Law Graphs: In order to dominate all nodes, the volume of the
dominating set has to be high enough, more precisely

∑
x∈S deg(x) + 1 > n

for any dominating set S. However, in a power-law bounded graph at least a
constant fraction of nodes are necessary to reach such a high volume.

The Potential Volume Lemma generalizes this idea and gives us upper
bounds on the volume of sets of nodes depending on their size. Moreover, the
lemma also works for other well-behaved non-decreasing functions on node
degrees. It essentially states that for a graph with PLB-U, a set of nodes S,
and a nice non-decreasing function h∑

x∈S
h(deg(x)) . (n/vol(S))1/(β−2) · |S|.

This property can be used to derive lower bounds on the size of optimal
solutions. For some greedy algorithms we can also derive upper bounds on the
solution size in terms of

∑
x∈opt h(deg(x)). We can then use the lemma with

S = opt to derive upper bounds on the greedy solution size with respect to
the size and volume of an optimal solution, yielding improved approximation
ratios.

The proof of the lemma can be outlined as follows. First, for any set S it
holds that

∑
x∈S h(deg(x))/|S|6

∑
x∈S′ h(deg(x))/|S′| for any set S′ of size

at most |S| that contains the |S′| nodes of highest degree. This is intuitively
clear if we interpret these expressions as average values of h(deg(·)) per node
and remember that h is non-decreasing. Thus, we can achieve an upper bound
by considering the average over the highest buckets which contain at most
|S| nodes in total. Using PLB-U and assuming that each bucket d contains
as many nodes as possible and that those nodes all have maximum permitted
degree 2d − 1, we get an upper bound on this average.
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Fig. 2 Comparison of aβ,t ( ) and bc1,β,t ( ) for t = 0, c1 = 1, and β ∈ [2.5, 3].

Before we state the lemma formally, remember that we use the following
shorthand notations:

aβ,t :=

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 and

bc1,β,t :=
(
c1
β − 1
β − 2 · 2

β · (t+ 1)β−1
) 1
β−2

.

To get a feeling of how big aβ,t and bc1,β,t are, let us consider the ”ideal” case
c1 = 1 and t = 0. For β → 2 both values approach infinity, although aβ,t is
orders of magnitude smaller. For β →∞ it holds that

lim
β→∞

a(β, t) = 2 and lim
β→∞

b(c1, β, t) = 2 · (t+ 1).

Figure 2 shows how large these values are for intermediate power-law exponents
β ∈ [2.5, 3].

In the lemma, we assume the graph to have a certain minimum number of
nodes, which is not a big restriction. Further, we assume the feasible solution
to be of size at most |V |−1. When applying the lemma we will always use
S = opt. Having |S|= |opt|6 n− 1 is not a big restriction, since |opt|= n is
usually a degenerate case. For MDS and MIS |opt|= n would imply a graph
without edges. This cannot be the case, since we forbid isolated vertices. For
MVC it always holds that |opt|6 n− 1.

Lemma 5.2 (Potential Volume Lemma) Let G = (V,E) be a graph
without loops and isolated vertices. Also, let G have the PLB-U property for
some β > 2, some constant c1 > 0, and some constant t > 0, and let

|V |= n >

(
c1 · (t+ 1)β−1 β

β − 12β−1
) 1
β−2

.
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Let S ⊆ V be a feasible solution with |S|< n, let g:R+ → R+ be a continuously
differentiable function and let h(x) := g(x) + C for some constant C such that

(i) g non-decreasing,
(ii) g(2x) 6 c · g(x) for all x > 2 and some constant c > 0,

(iii) g′(x) 6 g(x)
x for all x > 1,

then it holds that∑
x∈S

h(deg(x)) 6
(
c · aβ,t · g

(
bc1,β,t ·

(
n

2 ·M(n)

) 1
β−2
)

+ C

)
· |S|,

where M(n) > 1 is chosen such that
∑
x∈S deg(x) >M(n).

Proof Without loss of generality assume the nodes of G were or-
dered by increasing degree, i.e. V (G) = {v1, v2, . . . , vn} with
deg(v1) 6 deg(v2) 6 . . . 6 deg(vn). Let n′ := 2blog(n−1)c+1 − 1. This is
the maximum degree of the bucket an (n− 1)-degree node is in. For j ∈ N let

D(j) := c1 · n(t+ 1)β−1
n′∑
i=2j

(i+ t)−β ,

i.e. the maximum number of nodes of degree at least 2j that G can have
according to the PLB-U property, and let

s(`) := min {j ∈ N | D(j) 6 `} .

We can interpret s(`) as the index j of the smallest bucket, such that the total
number of nodes in buckets j to blog(n− 1)c is at most `.

It now holds for all ` ∈ R with ` 6 |S| that∑
x∈S h(deg(x))
|S|

6

∑b`c
i=1 h(deg(vi)) + (`− b`c)h(deg(vd`e))

`

due to the fact that g, and therefore also h, is non-decreasing. To upper bound
the numerator on the right-hand side we assume that in each bucket we have
the maximum (fractional) number of nodes of maximum degree, leading to at
most
blog(n−1)c∑
j=s(`)

(
c1n(t+ 1)β−1

2j+1−1∑
i=2j

(i+ t)−β
)
h(2j+1 − 1)+(`−D(s(`)))h(2s(`)−1).

Now let k := s(|S|). It has to hold that k > 1, since otherwise the total upper
bounds from all buckets would sum up to at most |S|< n. For ` = D(k) we get

c1 · n(t+ 1)β−1∑blog(n−1)c
j=k h(2j+1 − 1)

∑2j+1−1
i=2j (i+ t)−β

D(k) |S|

=

c1 · n(t+ 1)β−1∑blog(n−1)c
j=k g(2j+1 − 1)

∑2j+1−1
i=2j (i+ t)−β

D(k) + C

 |S|,
(2)
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since h(x) = g(x) + C for some constant C and the numerator for that second
term just sums up to C ·D(k). One more note of caution: W.l.o.g. we assume
|S|> 1. In the case of equality, we need s(1) 6 blog(n− 1)c. Otherwise the last
bucket already contains more nodes than our solution, i.e. we could not take
any complete bucket. For the desired inequality to hold, we must ensure

D(blog(n− 1)c) = c1 · n(t+ 1)β−1
n′∑

i=2blog(n−1)c

(i+ t)−β 6 1.

It holds that

c1 · n(t+ 1)β−1
n′∑

i=2blog(n−1)c

(i+ t)−β

6 c1 · n(t+ 1)β−1
(

(2blog(n−1)c + t)−β + 1
β − 1(2blog(n−1)c + t)1−β

)
6 c1 · n(t+ 1)β−1 β

β − 12β−1n1−β ,

since 2blog(n−1)c > n
2 . We can see that this is at most 1 for

n >

(
c1 · (t+ 1)β−1 β

β − 12β−1
) 1
β−2

.

We start estimating equation (2) by deriving an upper bound on the
numerator. Using properties (i) and (ii) we derive

g(2j+1 − 1) 6 g(2j+1) 6 c · g(2j) 6 c · g(i+ t).

Plugging this into the numerator gives

c1 · n(t+ 1)β−1
blog(n−1)c∑

j=k
g(2j+1 − 1)

2j+1−1∑
i=2j

(i+ t)−β

6 c · c1n(t+ 1)β−1
blog(n−1)c∑

j=k

2j+1−1∑
i=2j

(i+ t)−β · g(i+ t)

= c · c1n(t+ 1)β−1
2blog(n−1)c+1−1∑

i=2k
(i+ t)−β · g(i+ t). (3)

It is easy to check that the function g(x) · x−β is non-increasing by property
(iii) and the fact that β > 2. We can now estimate the sum in equation (3) by
an integral
n′∑
i=2k

(i+ t)−β · g(i+ t) 6 (2k + t)−β · g(2k + t) +
∫ n′

x=2k
(x+ t)−β · g(x+ t) dx

= (2k + t)−β · g(2k + t) +
∫ n′+t

x=2k+t
x−β · g(x) dx. (4)
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Using integration by parts we get

∫ n′+t

x=2k+t
x−β · g(x) dx

= 1
1− β

[
x1−β · g(x)

]n′+t
2k+t −

1
1− β

∫ n′+t

2k+t
x1−β · g′(x) dx

6
1

β − 1(2k + t)1−βg(2k + t) + 1
β − 1

∫ n′+t

2k+t
x1−βg′(x) dx,

since β > 2. Due to property (iii) it holds that x1−β · g′(x) 6 x−β · g(x), giving
us ∫ n′+t

2k+t
x1−β · g′(x) dx 6

∫ n′+t

2k+t
x−β · g(x) dx

and therefore∫ n′+t

x=2k+t
x−β · g(x) dx 6

1
β − 2(2k + t)1−β · g(2k + t)

by plugging it into the integration by parts. Thus, equation (4) yields

n′∑
i=2k

(i+ t)−β · g(i+ t)

6 (2k + t)−β · g(2k + t) + 1
β − 2(2k + t)1−β · g(2k + t).

Plugging this into equation (3) now gives

c1 · n(t+ 1)β−1
blog(n−1)c∑

j=k
g(2j+1 − 1)

2j+1−1∑
i=2j

(i+ t)−β

6 c · c1n(t+ 1)β−1 · g(2k + t)
(

(2k + t)−β + 1
β − 2 · (2

k + t)1−β
)
. (5)

Now we still need a lower bound on D(k). It holds that

D(k) = c1 · n(t+ 1)β−1
n′∑
i=2k

(i+ t)−β

> c1 · n(t+ 1)β−1
1−

(
t+2
t+1

)1−β

β − 1 (2k + t)1−β , (6)
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where the last line follows by observing
n′∑
i=2k

(i+ t)−β >
2k+1−1∑
i=2k

(i+ t)−β

>
∫ 2k+1

2k
(i+ t)−β

= 1
β − 1

(
(2k + t)1−β − (2k+1 + t)1−β)

>
1

β − 1

(
1−

(
t+ 2
t+ 1

)1−β
)

(2k + t)1−β .

This holds because 2k+1+t
2k+t > 2+t

1+t , since 2k > 1.
Plugging equation (5) and equation (6) into equation (2) and lower-bounding∑n′

i=2k (i+ t)−β with (2k + t)−β gives us an upper bound of∑
x∈S

h(deg(x))

6

c · c1n(t+ 1)β−1 · g(2k + t)
(

(2k + t)−β + (2k+t)1−β

β−2

)
c1 · n(t+ 1)β−1∑n′

i=2k (i+ t)−β
+ C

 · |S|
6

c
1 + β − 1

β − 2
1

1−
(
t+2
t+1

)1−β

 · g(2k + t) + C

 · |S|
=
(
c · aβ,t · g(2k + t) + C

)
· |S| (7)

It now suffices to find an upper bound for 2k+t, since g(2k+t) is non-decreasing.
Due to

∑
x∈S deg(x) >M(n) and the choice of k it holds that

c1 ·n(t+1)β−1
blog(n−1)c∑
j=k−1

(2j+1 − 1)
2j+1−1∑
i=2j

(i+ t)−β >
∑
x∈S

deg(x) >M(n). (8)

To upper bound the left-hand side, we can use equation (5) with g(x) = x
and 2k−1 in place of 2k. It is easy to check, that this function satisfies (i), (ii)
with c = 2 and (iii) as needed. This yields

M(n) 6 2 · c1
β − 1
β − 2n(t+ 1)β−1 · (2k−1 + t)1−β · (2k−1 + t)

6 2 · c1
β − 1
β − 2n(t+ 1)β−1 · 2β−2 · (2k + t)2−β

or equivalently

(2k + t) 6
(
c1
β − 1
β − 2

n

M(n) · 2
β−1 · (t+ 1)β−1

) 1
β−2

= bc1,β,t ·
(

n

2 ·M(n)

) 1
β−2

.

(9)
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Now we can plug equation (9) into equation (7) to get the result as desired.
ut

5.2 Minimum Dominating Set

As we have stated in Section 5.1, the idea for lower-bounding the size of
dominating sets is the same as the one by Shen et al. [46] and by Gast et
al. [29]: Every dominating set S has to satisfy n 6

∑
x∈S deg(x) + 1. If we

assume PLB-U, the Potential Volume Lemma tells us how big S has to be in
order to satisfy this inequality.

Theorem 5.3 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the minimum
dominating set is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

Proof Let opt denote an arbitrary minimum dominating set. It holds that∑
x∈opt

deg(x) + 1 > n

and since we assume that there are no nodes of degree 0, it also holds that∑
x∈opt

deg(x) > n

2 ,

giving us M(n) := n
2 . We can choose h(x) := x + 1 with g(x) = x. Now g

satisfies (i), (ii) with c = 2 and (iii). With Lemma 5.2 we can now derive

n 6
∑
x∈opt

deg(x) + 1 =
∑
x∈opt

h(deg(x))

6

(
c · aβ,t · g

(
bc1,β,t ·

(
n

2 ·M(n)

) 1
β−2
)

+ C

)
· |opt|

= (2 · aβ,t · bc1,β,t + 1) · |opt|,

which proves the theorem. ut

The theorem implies that one is guaranteed a constant approximation factor
by simply taking all nodes.

Corollary 5.4 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, every dominating
set has an approximation factor of at most

2 · aβ,t · bc1,β,t + 1
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Algorithm 1 Greedy Dominating Set
Require: undirected graph G = (V,E)

1: C ← ∅
2: D ← ∅
3: while |D|< |V | do
4: u← argmaxv∈(V \C) (|N+(v) \D|)
5: C ← C ∪ {u}
6: D ← D ∪N+(u)
7: end while
8: return C

However, we can show that using the classical greedy algorithm (c.f. Al-
gorithm 1) actually guarantees a better approximation factor under PLB-U
(see Figure 3). This is the case, because the greedy algorithm is guaranteed to
find a solution C with C 6

∑
x∈opt Hdeg(x)+1. We can then use the Potential

Volume Lemma to upper-bound this expression in terms of |opt|, resulting in
a better approximation factor. The rest of this section is dedicated to showing
this result.

The following inequality can be derived from an adaptation of the proof
for the greedy Set Cover algorithm to the case of unweighted Dominating
Set.

Theorem 5.5 ([32]) Let C be the solution of the greedy algorithm and let
opt be an optimal solution for Dominating Set. Then it holds that

|C|6
∑
x∈opt

Hdeg(x)+1,

where Hk is the k-th harmonic number.

Proof The idea of the proof is to distribute the cost of taking a node v ∈ C
amongst the nodes that are newly dominated by v. For example, if the algorithm
chooses a node v which newly dominates v, v1, v2 and v3, the four nodes each
get a cost of 1/4. At the end of the algorithm it holds that

∑
v∈V c(v) = |C|.

Now we look at the optimal solution opt. Since all nodes v ∈ V have to be
dominated by at least one x ∈ opt, we can assign each node to exactly one
x ∈ opt in its neighborhood, i.e. we partition the graph into stars S(x) with
the nodes x of the optimal solution as their centers.

Now let us analyze how the greedy algorithm constructs its solution. Choose
one x ∈ opt arbitrary but fixed. Let us have a look at the time a node u ∈ S(x)
gets dominated. Let d(x) be the number of non-dominated nodes from S(x)
right before u gets dominated. Due to the choice of the algorithm, a node v had
to be chosen which dominated at least d(x) nodes. This means u gets a cost
c(u) of at most 1/d(x). Now we look at the nodes from S(x) in reverse order
of them getting dominated in the algorithm. The last node to get dominated
has a cost of at most 1, the next-to-last node gets a cost of at most 1/2
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and so on. Since |S(x)|6 deg(x) + 1 the costs to cover S(x) are at most
1

deg(x)+1 + 1
deg(x) + . . .+ 1 = Hdeg(x)+1. This gives us the inequality

|C|=
∑
v∈V

c(v) =
∑
x∈opt

∑
u∈S(x)

c(u) 6
∑
x∈opt

Hdeg(x)+1

as desired. ut

From the former theorem, one can easily derive the following corollary.

Corollary 5.6 The greedy algorithm gives a H∆+1-approximation for Domi-
nating Set, where ∆ is the maximum degree of the graph.

The problem of the corollary is, that it assumes all nodes of an optimal
solution to have maximum degree ∆. However, if we assume PLB-U, we can
get a better bound on the degrees of nodes in an optimal solution. By using
the inequality from Theorem 5.5 together with the Potential Volume Lemma,
we can derive the following approximation factor for the greedy algorithm.

Theorem 5.7 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the classical greedy
algorithm for Minimum Dominating Set (cf. [22]) has an approximation
factor of at most

log3(5) · aβ,t ln (bc1,β,t + 1) + 1 = Θ(1).

Proof From the analysis of the greedy algorithm we know that for its solution
C and an optimal solution opt it holds that

|C|6
∑
x∈opt

Hdeg(x)+1 6
∑
x∈opt

ln(deg(x) + 1) + 1,

where Hk denotes the k-th harmonic number. We can now choose h(x) = g(x)+1
with g(x) = ln(x+ 1). g(x) satisfies (i), (ii) with c = log3(5) and (iii). As we
assume there to be no nodes of degree 0, it holds that∑

x∈opt
deg(x) > n

2 =: M(n),

since all nodes have to be covered. We can now use Lemma 5.2 with S = opt
to derive that

(10)|C|6 (log3(5) · aβ,t · ln (bc1,β,t + 1) + 1) |opt|.
ut

It is not easy to see that this is an improvement over the approximation
factor implied by the lower bound. Figure 3 displays both approximation
factors for several realistic parameter settings. Note that for β → 2 both factors
approach infinity, although the one of the greedy algorithm does so much slower.
For β →∞ the approximation factor from the lower bound approaches

8 · (t+ 1) + 1
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(a) Approximation factor 2 · aβ,t · bc1,β,t + 1 of
MDS with PLB-U for t = 0 and β ∈ (2.5, 3).
We compare c1 = 1 ( ), c1 = 5 ( ), and
c1 = 10 ( ).
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(b) Approximation factor log3(5) · aβ,t ·
ln
(
bc1,β,t + 1

)
+ 1 of greedy MDS with

PLB-U for t = 0 and β ∈ (2.5, 3). Again,
we compare c1 = 1 ( ), c1 = 5 ( ), and
c1 = 10 ( ).

Fig. 3 Comparison of the two approximation factors for Minimum Dominating Set with
PLB-U: trivial approximation from Corollary 5.4 (left) and greedy approximation from
Theorem 5.7 (right). The parameter sets for both plots are the same.

Graph Parameters Lower Bound Greedy
β c1 t Approximation Approximation

Youtube 2.34 1.46 1.76 27.98 · 106 352.27
Epinion 2.08 1.92 3.84 8.24 · 1036 11925.88
HepPh 3.22 3.43 24.14 453068.69 422.94
DBLP 3.34 3.61 14.64 75450.87 221.28
CondMat 4.28 4.62 29.12 34285.62 214.18

Table 3 Trivial and Greedy approximation factors for Minimum Dominating Set with
PLB-U and parameters from some real-world networks. The fit of those parameters is
visualized in Figure 1.

and the approximation factor of the greedy algorithm approaches

log3(5) · 2 · ln(2(t+ 1) + 1) + 1.

We also calculated both factors for the fitted PLB-U bounds from Figure 1.
See Table 5.2 for a comparison: For all real-world networks the approximation
factor guaranteed by the greedy algorithm is orders of magnitude better than
the trivial bound.

For Minimum Connected Dominating Set we get a very similar bound.
In this variant of Minimum Dominating Set we are looking for a smallest
dominating set S whose induced subgraph in G is connected.
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Theorem 5.8 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the greedy algorithm
for Minimum Connected Dominating Set (cf. [44]) has an approximation
factor of at most

2 + ln (2 · aβ,t · bc1,β,t + 1) = Θ(1).

Proof From [44, Theorem 3.4] we know that for the solution C of the greedy
algorithm and an optimal solution opt it holds that

|C|6
(

2 + ln
(

n

|opt|

))
|opt|6

(
2 + ln

(∑
x∈opt deg(x) + 1
|opt|

))
|opt|.

We can now choose h(x) = g(x) + 1 with g(x) = x. g(x) satisfies (i), (ii) with
c = 2 and (iii). As we assume there to be no nodes of degree 0, it holds that∑

x∈opt
deg(x) > n

2 =: M(n),

since all nodes have to be covered. We can now use Lemma 5.2 with S = opt
to derive that

(11)|C|6 (2 + ln (2 · aβ,t · bc1,β,t + 1)) |opt|.
ut

Our main lemma can be used to improve upon a multitude of results. An-
other example are algorithms which use only local information for optimization
problems: Borgs, Brautbar, Chayes, Khanna, and Lucier [10] consider sequen-
tial algorithms where the graph topology is unknown and only vertices from
the local neighborhood can be added to the solution. We call an algorithm an
r+-local algorithm if its local information is limited to Nr(S) plus the degree
of the vertices in Nr(S).

First, we analyze the 1+-local algorithm for Minimum Dominating Set
from [10] (Algorithm 2). The following theorem is from the original paper by
Borgs et al. [10].

Theorem 5.9 ([10]) Let S be the solution of Algorithm 2 and let opt be an
optimal solution for Minimum Dominating Set. Then it holds that

E[|S|] 6 2 ·
∑
x∈opt

(
Hdeg(x) + 1

)
and that

P

[
|S|> 2 ·

∑
x∈opt

(
Hdeg(x) + 2

)]
6 e−|opt|

Similar to Theorem 5.7 we can show the following result.

Theorem 5.10 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, let S be the solution
of Algorithm 2 and let opt be an optimal solution for Dominating Set. Then
it holds that

P[|S|> 2 (2 · aβ,t · ln (bc1,β,t) + 3) |opt|] < e−Ω(n).
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Algorithm 2 1+-Local Algorithm for (Connected) Dominating Set (1+-DS)
Require: undirected graph G = (V,E)

1: Initialize S = {u}, u is an arbitrary node in graph G.
2: D ← ∅
3: while |D|< |V | do
4: u← argmaxv∈(N(S)) (|N+(v) \D|).
5: S ← S ∪ {u}
6: D ← D ∪N+(u)
7: if N(u) \ S 6= ∅ then
8: Choose v ∈ N(u) \ S uniformly at random and add v to S.
9: end if

10: end while
11: return S

Proof Due to Theorem 5.9 with probability at least 1− e−|opt| it holds that

|S|6 2 ·
∑
x∈opt

(
Hdeg(x) + 2

)
6 2 ·

∑
x∈opt

(ln(deg(x)) + 3) ,

where Hk denotes the k-th harmonic number. From Theorem 5.3 we know that
|opt|= Θ(n), so this probability is 1− e−Ω(n). Now we choose h(x) = g(x) + 3
with g(x) = ln(x). g(x) satisfies (i), (ii) with c = 2 and (iii). We still assume
our graph to not have isolated nodes. It therefore holds that∑

x∈opt
deg(x) > n

2 =: M(n),

because all nodes have to be covered. We use Lemma 5.2 with S = opt to get
that

(12)|S|6 2 (2 · aβ,t · ln (bc1,β,t) + 3) |opt|.
ut

5.3 Maximum Independent Set

In this section we consider Maximum Independent Set on networks with
PLB-L or PLB-U. We are going to derive lower bounds on the size of maximum
and maximal independent sets linear in n as well as a constant approximation
factor.

In general graphs the greedy approximation gives us the following result.

Theorem 5.11 ([45]) The greedy algorithm which prefers smallest node de-
grees gives a (∆ + 1)-approximation for MIS in graphs of degree at most ∆.

However, if we assume PLB-L we can achieve lower bounds on the size of a
maximum independent set linear in n.
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Lemma 5.12 A graph with the PLB-L property with parameters β > 2, c2 > 0
and t > 0, has an independent set of size at least c2(t+1)β−1

(t+dmin)β(dmin+1) · n or of
size at least c2

(t+1) · n if we assume G to be connected and dmin = 1.

Proof This is easy to see by just counting the number of nodes of degree dmin.
There are at least

c2n(t+ 1)β−1(t+ dmin)−β = c2(t+ 1)β−1

(t+ dmin)β n

of these nodes. Since each of these nodes can have at most dmin other nodes
of the same degree as a neighbor, the independent set is at least of size

c2(t+1)β−1

(t+dmin)β(dmin+1)n. If dmin = 1 and G is connected, none of the degree-1 nodes
can be neighbors, thus giving us c2n(t+ 1)β−1(t+ dmin)−β = c2

(t+1)n. ut

This is also a lower bound on the solution size a greedy algorithm can
achieve, if it chooses nodes of minimum (remaining) degree first. We can even
go a step further and show that all maximal independent sets have to be quite
big, even if we only have the PLB-U property. This holds since every maximal
independent set is also a dominating set.
Theorem 5.13 In a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, every maximal
independent set is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

Proof It holds that every maximal independent set S is also a dominating set.
Due to Theorem 5.3, the size of the minimum dominating set is at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n),

giving us the result. ut
The former theorem implies that every maximal independent set is a

constant-factor approximation of the maximum independent set. This also
holds for the greedy algorithm.
Corollary 5.14 In a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, every maximal
independent set has an approximation factor of at most

2 · aβ,t · bc1,β,t + 1.
We can compare these bounds to the ones from Lemma 5.12. For dmin = 1,

it holds that the approximation factor (t+dmin)β(dmin+1)
c2(t+1)β−1 simplifies to 2(t+1)

c2
.

This is a realistic parameter as we can see in Figure 1. In Table 5.3 we also
compare the two approximation factors from Lemma 5.12 and Theorem 5.13
for the real-world networks we fitted in Figure 1. For all real-world networks
the approximation factor from Lemma 5.12 is better. However, the two results
have different requirements: Lemma 5.12 requires PLB-L, while Theorem 5.13
requires PLB-U. Thus, they are only comparable for graphs which have both
properties.
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Graph Parameters Lemma 5.12 Theorem 5.13
β c1 c2 t

Youtube 2.34 1.46 0.2 1.76 27.6 27.98 · 106

Epinion 2.08 1.92 0.03 3.84 322.667 8.24 · 1036

HepPh 3.22 3.43 0.3 24.14 167.6 453068.69
DBLP 3.34 3.61 0.03 14.64 1042.67 75450.87
CondMat 4.28 4.62 0.27 29.12 223.11 34285.62

Table 4 Approximation factors for Maximum Independent Set with PLB-U and PLB-L
parameters of some real-world networks. The fit of those parameters is visualized in Figure 1.

5.4 Minimum Vertex Cover

In this section we consider the Minimum Vertex Cover problem on
graphs with PLB-U. Again, we can achieve lower bounds on the size of a
minimum vertex cover linear in n by noticing that every vertex cover in a graph
without isolated vertices is also a dominating set. Although there is a very
easy 2-approximation for general graphs by greedily constructing a maximal
matching [27], our result implies that in power-law bounded graphs without
isolated vertices, every vertex cover is a constant-factor approximation of the
minimum vertex cover.

It has to be noted that one can use a greedy algorithm similar to Algorithm 1
to achieve the following result.

Theorem 5.15 The greedy algorithm which prefers highest node degrees gives
a H∆-approximation for Vertex Cover, where ∆ is the maximum degree of
the graph.

Proof We can analyze the algorithm in a similar manner as in Theorem 5.5.
The difference is that now the algorithm considers covered edges instead of
dominated vertices. The cost to add a node to the vertex cover is now distributed
among its newly covered edges. We can now consider an optimal solution opt
and partition the edges into sets E(x) with the nodes x ∈ opt as their common
incident nodes. Thus, for a vertex cover C and an optimal solution opt it holds
that

|C|=
∑
e∈E

c(e) =
∑
x∈opt

∑
e∈E(x)

c(e) 6
∑
x∈opt

Hdeg(x) 6 H∆ · |opt|,

Here, we only have Hdeg(x) instead of Hdeg(x)+1, since the costs are only
distributed among incident edges and not the inclusive neighborhoods of nodes.
This yields the approximation factor as stated. ut

We could now use the Potential Volume Lemma to get an approximation
factor similar to the one the greedy algorithm for dominating set achieves on
graphs with PLB-U, see Theorem 5.7. It is interesting to see that even this
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naive greedy algorithm based on node degrees achieves a constant-factor ap-
proximation on graphs with PLB-U, while it only achieves a H∆-approximation
on general graphs. However, the algorithm does not achieve an approximation
factor better than 2. Therefore, we concentrate on lower-bounding the size of
any vertex cover.

Theorem 5.16 In a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, the minimum vertex
cover is of size at least

(2 · aβ,t · bc1,β,t + 1)−1
n.

Proof The bound follows from Theorem 5.3, since every vertex cover in a graph
without isolated vertices is a dominating set. ut

Corollary 5.17 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, every vertex cover
has an approximation factor of at most

2 · aβ,t · bc1,β,t + 1.

6 Hardness of Approximation

In this section we show hardness of approximation for simple graphs with
the PLB-(U,L,N) properties. Let us start with a few definitions.

Definition 6.1 (NP optimization problem [19]) An NP optimization
problem (NPO) A is a fourtouple (I, sol,m, goal) such that
1. I is the set of instances of A and it is recognizable in polynomial time.
2. Given an instance x ∈ I, sol(x) denotes the set of feasible solutions of
x. These solutions are short, that is, a polynomial p exists such that, for
any y ∈ sol(x), |y|6 p(|x|). Moreover, it is decidable in polynomial time
whether, for any x and for any y such that |y|6 p(|x|), y ∈ sol(x).

3. Given an instance x and a feasible solution y of x, m(x, y) denotes the
positive integer measure of y. The function m is computable in polynomial
time is also called the objective function.

4. goal ∈ {max,min}.

We can see that MDS, MIS, and MVC are problems in NPO.

Definition 6.2 (Class APX [22]) APX is the class of all NPO problems that
have polynomial-time r-approximation for some constant r > 1.

The notion of hardness for the approximation class APX is similar to the
hardness of the class NP, but instead of employing a polynomial time reduction
it uses an approximation-preserving PTAS-reduction.

Definition 6.3 (APX-Completeness [22]) An optimization problem A is
said to be APX-complete iff A is in APX and every problem in the class APX
is PTAS-reducible to A.



36 Ankit Chauhan, Tobias Friedrich, Ralf Rothenberger

6.1 Approximation Hardness for Simple Graphs

In this section we prove hardness of approximation for the optimization
problems we consider. The following definition and lemma by Shen et al [46]
provide us with a framework to transfer inapproximability results on classes of
graphs to power-law bounded graphs. Note that both the definition and the
lemma assume an optimal substructure problem. Due to Shen et al [46] optimal
substructure problems are optimization problems whose optimal solution on a
graph is the union of all optimal solutions on the maximal connected components
of this graph. This includes the three problems we consider. Our idea to use this
framework is to ”‘hide”’ graphs from other classes inside power-law bounded
graphs. If the optimal solution size of the hidden graph is big enough, the
inapproximability of the class it belongs to carries over. The process of hiding
a graph inside another one constitutes an embedded-approximation-preserving
reduction as formalized in the following definition.

Definition 6.4 ([46]) Given an optimal substructure problem O, a reduction
from an instance on graph G = (V,E) to another instance on a (power law)
graph G′ = (V ′, E′) is called embedded-approximation-preserving if it satisfies
the following properties:

(1) G is a subset of maximal connected components of G′;
(2) The optimal solution of O on G′, opt(G′), is upper bounded by C·opt(G)

where C is a constant correspondent to the growth of the optimal solution.

Having shown an embedded-approximation-preserving reduction, we can
use the following lemma to show hardness of approximation.

Lemma 6.5 ([46]) Given an optimal substructure problem O and a graph
G such that no polynomial time algorithm with approximation factor ε ex-
ists for O on G unless P = NP . Let δ = εC

(C−1)ε+1 if O is a maximization
problem and let δ = ε+C−1

C if O is a minimization problem. If there exists
an embedded-approximation-preserving reduction from G to another graph G′,
where opt(G′) 6 C·opt(G), then no polynomial time algorithm with approxi-
mation factor δ exists for O on G′ unless P = NP .

We will use this framework as follows: First, we show how to reduce
cubic graphs to graphs with PLB-U, PLB-L and PLB-N via an embedded-
approximation-preserving reduction. Then, we derive the value of C as in
Definition 6.4 for each problem we consider. Last, we use Lemma 6.5 together
with the known inapproximability results on cubic graphs to derive the approx-
imation hardness on graphs with PLB-U, PLB-L and PLB-N.

We start by showing how to reduce cubic graphs to simple graphs with
PLB-U, PLB-L and PLB-N. Then we can use Lemma 6.5 to show inapprox-
imability. The idea of our reduction is as follows: First, we add the cubic graph
G. We choose the total number of nodes N of the constructed graph GPLB
high enough so that all n nodes of G fit into bucket 1 according to PLB-L and
PLB-U. Then, we fill each bucket d until it complies with PLB-L by adding
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stars S2d (star gadgets). If the nodes of degree one we add with star gadgets
reach their minimum according to PLB-L, we start adding cliques K2d (clique
gadgets) instead. This is done until all buckets barely comply with PLB-L.
Afterward the process is repeated until we reach or exceed N nodes in total for
the first time. At this point all buckets comply with both PLB-L and PLB-U.
We will show that we have to switch to clique gadgets only for buckets d, where
d is a constant. Hence, all nodes in our construction have at most a constant
number of neighbors of same or higher degree. Thus, the constructed graph
also satisfies PLB-N.

Lemma 6.6 Any cubic graph G with |V (G)|= n sufficiently large can be re-
duced to a simple graph GPLB having the PLB-U, PLB-L and PLB-N properties
for any β > 2, any t > 0, any c3, and any admissable c1 and c2. The reduction
takes polynomial time and produces a graph with N = c · n nodes, where

c =
(
c2(t+ 1)β−1

(
1

(2 + t)β + 1
(3 + t)β

))−1
.

Proof Suppose we are given β, t, and c1 > c2 > 0 admissable. Let n be the
number of nodes in graph G and let N ∈ N:N = cn be the number of nodes in
GPLB for some constant c to be determined. Like in Lemma 6.5 we have to
ensure a number of conditions to get a valid degree sequence. First, we have to
ensure that the bound PLB-U implies on bucket 1 is high enough to encompass
all n nodes of the cubic graph G. The only thing we can still choose in order
to do so is N = c · n. However, if we choose N so that n is very close to the
PLB-U bound, it might happen that we actually add more than N nodes. Thus,
we choose N so that n is at most as high as the bound implied by PLB-L on
bucket 1. Due to the admissability of c2 this means that the number of nodes
we added is smaller than N , or put differently, it ensures c > 1. This means
that PLB-U is satisfied for that bucket as well, since c1 > c2. It holds that

c2N(t+ 1)β−1
3∑
i=2

(i+ t)−β = c2N(t+ 1)β−1
(

1
(2 + t)β + 1

(3 + t)β

)
> n.

From this we get

c >

(
c2(t+ 1)β−1

(
1

(2 + t)β + 1
(3 + t)β

))−1
.

Moreover, we will choose c equal to that lower bound. Note that for this choice
of c it holds that c > 1, since c2 is supposed to be admissable and thus the
PLB-L lower bound for bucket 1 must be smaller than N . Then we choose the
maximum degree ∆ such that

∆(GPLB) = N
1

β−1

and dmin = 1.
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Since c1 and c2 are admissible, we can fit exactly N nodes between PLB-L
and PLB-U. First, we hide G in bucket 1. Then, we try and add for each bucket
d > 2 the number of stars of size 2d + 1 it needs to reach its lower bound. Since
bucket 0 gets all the degree-one nodes of these star gadgets, we have to be
careful not to overfill it. Therefore, we start with bucket blog2(∆)c and fill the
buckets with star gadgets until bucket 0 has reached its lower bound or we are
done. If bucket 0 is full, we switch to clique gadgets: Each bucket d > 1 then
gets enough (2d + 1)-cliques to comply to their lower bound. This does not
add any more degree-one nodes. In the end, we also fill bucket 0 with enough
2-cliques, if necessary. By filling a bucket d with stars we do not deviate from
the (admissable) lower bound of that bucket; by filling it with cliques we might
deviate by 2d − 1.

Now we want to know when we have to switch to clique gadgets. We will see
that this happens at some bucket x, which contains nodes of constant degrees.
This means, every node of degree at least 2x+1 is center of a star and thus
fulfills PLB-N. Nodes of smaller degree satisfy PLB-N as well, since they only
have a constant number of neighbors at all.

It holds that we add at most

blog ∆c∑
d=x

2d
c2 ·N · (t+ 1)β−1 ·

2d+1−1∑
i=2d

(i+ t)−β


6
blog ∆c∑
d=x

2d
1 + c2 ·N · (t+ 1)β−1 ·

2d+1−1∑
i=2d

(i+ t)−β


degree-one nodes if we start at bucket x. Since 2d 6 i, we get

2 ·∆ + c2 ·N · (t+ 1)β−1 ·
2blog ∆c+1−1∑

i=2x
(i+ t)−β+1

and upper-bounding this sum with an integral yields

2 ·∆ + c2 ·N · (t+ 1)β−1 · (2x + t)1−β
(

1 + 2x + t

β − 2

)
.

This term is at most c2
t+1N for a sufficiently large constant x and if n is

sufficiently large. This holds, since ∆ = N
1

β−1 = o(N). We can choose

x > max
(

log2(β − 2), 1− log2(β − 2) + β · log2 (t+ 1)
β − 2

)
for example. This means, we can fill each bucket d > x to its lower bound with
star gadgets. Smaller buckets (with high-degree nodes) can be filled with star
gadgets until PLB-L for bucket 0 is reached. Then, those buckets are filled
with clique gadgets. This means, we add at most 2d − 1 nodes above PLB-L
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for those buckets. Since d is constant, the gap between PLB-L and PLB-U for
bucket d is linear in N . Thus, for high enough n, the number of nodes in each
bucket still complies with both bounds.

It remains to show that the total number of nodes is proportional to c · n
for c as chosen before. If we would add a lot more nodes, PLB-L could increase
to a point where buckets d > x do not satisfy it anymore. A similar argument
can be made for PLB-U if we add fewer nodes. We know that all buckets are
filled to a point just above PLB-L, except for buckets d ∈ [2, x], which have a
total of at most

∑x
d=2 2d − 1 6 2x+1 extra nodes. Since this is constant, the

total number of nodes is now roughly the total of all PLB-L bounds. Due to
the requirement that c2 is admissable, N cannot be reached yet after filling all
buckets to PLB-L. Thus, we can continue to fill buckets with star gadgets and
clique gadgets as before as long as a bucket’s upper bounds from PLB-U are
not violated. As before, we start with bucket ∆ and switch to cliques at bucket
x− 1, until N is reached or exceeded for the first time. The bucket we switch
at stays the same, since the relation between high-degree nodes and degree-1
nodes in PLB-L and PLB-U is the same. This means, if adding stars such that
PLB-L is met does not exceed PLB-L for bucket 0, the same holds if we add
stars such that PLB-U is met.

We continue adding stars and cliques until N is met or exceeded for the
first time. In the worst case, this happens when adding a star for bucket ∆.
Therefore, we can exceed N by at most ∆, which does not change a bucket’s
lower and upper bounds by too much, as long as n is sufficiently large. After
adding these extra nodes, we set N to the exact number of nodes we have at
that point. We now have

c =
(
c2(t+ 1)β−1

(
1

(2 + t)β + 1
(3 + t)β

))−1

from the condition that G has to fit into bucket 1. ut

We are now ready to show inapproximability of Minimum Dominating
Set, Maximum Independent Set, and Minimum Vertex Cover on simple
graphs with PLB-L, PLB-U, and PLB-N. The inapproximability will carry
over from cubic graphs which can be reduced to power-law bounded graphs
without adding too many nodes and without increasing the solution size by too
much. In the next sections we will derive for each of these problems by which
factor C the size of an optimal solution increases. Together with the known
lower bounds ε on approximability in cubic graphs, Lemma 6.5 yields a lower
bound δ on approximability in power-law bounded graphs.

6.2 Dominating Set

In order to use the reduction framework as described, we need the following
inapproximability result.

Theorem 6.7 ([5, 16]) In graphs with maximum degree 3 it is NP-hard to
approximate MDS within a factor of 391

390 .
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We can now prove the desired hardness result:

Theorem 6.8 For every β > 2 and every t > 0 Minimum Dominating Set
cannot be approximated to within a factor of

1 +

390 ·

 4
c2(t+ 1)β−1

(
1

(2+t)β + 1
(3+t)β

) − 3

−1

on simple graphs with PLB-U, PLB-L and PLB-N unless P = NP.

Proof Lemma 6.6 gives us an embedded-approximation-preserving reduction
from a cubic graph G to a simple graph GPLB with the PLB-U, PLB-L and
PLB-N properties. Let opt(G) and opt(GPLB) denote the size of a minimum
dominating set for G and GPLB respectively. We know that opt(G) > n

4 , since
in a cubic graph each node dominates at most 4 new nodes and all nodes have
to be dominated. It now holds that

opt(GPLB) 6 opt(G) +N − n
6 opt(G) + (c− 1)n
6 opt(G) + 4(c− 1)opt(G)
= (4c− 3) · opt(G).

In the context of Definition 6.4 and Lemma 6.5 this means C = 4c− 3. Due to
Theorem 6.7 it also holds that ε = 391

390 in the context of Lemma 6.5. This gives
us an approximation hardness of

1 + ε− 1
C

= 1 + 1
390 · (4c− 3)

= 1 + 1

390 ·
(

4
(
c2(t+ 1)β−1

(
1

(2+t)β + 1
(3+t)β

))−1
− 3
)

= 1 +

390 ·

 4
c2(t+ 1)β−1

(
1

(2+t)β + 1
(3+t)β

) − 3

−1

due to our choice of c in Lemma 6.6. ut

6.3 Independent Set

To use the framework of Shen et al. [46] we need the following inapprox-
imability result for MIS.

Theorem 6.9 ([5, 8]) In 3-bounded graphs it is NP-hard to approximate MIS
within a factor of 140

139 − γ for any γ > 0.
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We can now state the following theorem:

Theorem 6.10 For every β > 2 and every t > 0 Maximum Independent
Set cannot be approximated to within a factor of

1 +
1

139 − γ

4
((

c2(t+ 1)β−1
(

1
(2+t)β + 1

(3+t)β

))−1
− 1
)( 140

139 − γ
)

+ 1

for any γ > 0 on simple graphs with PLB-U, PLB-L and PLB-N unless P = NP.

Proof As before we reduce a cubic graph G to a graph GPLB which fulfills
PLB-U, PLB-L and PLB-N using Lemma 6.6. Let opt(G) and opt(GPLB)
denote the size of a maximum independent set of G and GPLB respectively.
We know that opt(G) > n

4 . This follows if we greedily add a node to the
independent set and then remove it and all its neighbors from the graph. Since
every time we do this we remove at most 4 nodes, we get an independent set
of size at least n

4 . Now the following holds

opt(GPLB) 6 opt(G) +N − n
= opt(G) + (c− 1)n
6 opt(G) + 4 (c− 1) opt(G)
= (4c− 3) opt(G).

This results in C = 4c− 3 in the context of Definition 6.4 and Lemma 6.5. Due
to Theorem 6.9 it also holds that ε = 140

139 − γ for any γ > 0 in the context of
Lemma 6.5. This gives us an approximation hardness of

1 + ε− 1
(C − 1)ε+ 1

= 1 +
1

139 − γ
4(c− 1)

( 140
139 − γ

)
+ 1

= 1 +
1

139 − γ

4
((

c2(t+ 1)β−1
(

1
(2+t)β + 1

(3+t)β

))−1
− 1
)( 140

139 − γ
)

+ 1

due to our choice of c in Lemma 6.6. ut

6.4 Vertex Cover

Again, we need the following inapproximability result to use the framework.

Theorem 6.11 ([15]) In 3-regular graphs MVC is hard to approximate within
a factor of 100

99 unless P = NP.

Now we can derive the following result:
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Theorem 6.12 For every β > 2 and every t > 0 Minimum Vertex Cover
cannot be approximated to within a factor of

1 +

99 ·

 2
c2(t+ 1)β−1

(
1

(2+t)β + 1
(3+t)β

) − 1

−1

on simple graphs with PLB-U, PLB-L and PLB-N unless P = NP.

Proof We use Lemma 6.6 to reduce a cubic graph G to a graph GPLB which
fulfills PLB-U, PLB-L and PLB-N. Let opt(G) and opt(GPLB) denote the
size of a minimum vertex cover of G and GPLB respectively. We know that
opt(G) > n

2 for cubic graphs. This follows from a simple counting argument:
A cubic graph with n vertices has m = 3

2n edges due to the handshake lemma.
Since every vertex covers at most 3 edges, one needs at least n

2 vertices to cover
all edges. It now holds that

opt(GPLB) = opt(G) + opt(GPLB\G)
6 opt(G) +N − n
= opt(G) + (c− 1)n
6 opt(G) + 2(c− 1)opt(G)
= (2c− 1)opt(G),

which gives us C = 2c− 1 in the context of Definition 6.4 and Lemma 6.5. Due
to Theorem 6.11 it also holds that ε = 100

99 in the context of Lemma 6.5. This
gives us an approximation hardness of

1 + ε− 1
C

= 1 + 1
99 · C

= 1 + 1
99 · (2c− 1)

= 1 +

99 ·

 2
c2(t+ 1)β−1

(
1

(2+t)β + 1
(3+t)β

) − 1

−1

due to our choice of c in Lemma 6.6. ut

7 Parameterized Complexity

In this section we study the parameterized analogues of MDS, MIS and MVC.
We first briefly introduce the concepts concerning parameterized complexity.

Definition 7.1 A parameterized problem is a set P ⊆ Σ∗ × N, where Σ is a
finite alphabet. If (x, k) ∈ Σ∗ × N is an instance of a parameterized problem,
we refer to x as the input and to k as the parameter.

In the framework of parameterized complexity [21], the run-time of an algorithm
is viewed as a function of input size and parameter.
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Definition 7.2 A parameterized problem P ⊆ Σ∗ × N is fixed-parameter
tractable (FPT) if there is a computable function f : N→ N, a constant c ∈ R+

and an algorithm that, given a pair (x, k) ∈ Σ∗ × N, decides if (x, k) ∈ P in at
most f(k)nc steps, where n is the length of the input.

The class FPT contains all fixed-parameter tractable problems. There is also
a theory of parameterized intractability that allows to identify parameterized
problems which do not have fpt-algorithms. The parameterized intractable
hierarchy is represented by W[i] for i > 1. For an introduction and more details
see [21].

7.1 Solution Size as Parameter

One of the well-known parameters for parameterized problems is the solution
size. The parameterized version of dominating set is defined as follows:

Problem 7.3 (parameterized dominating set (p-dominating set))
Input: A graph G and a parameter k ∈ N.
Question: Does G have a dominating set of size at most k?

For general graphs p-dominating set is known to be W [2]−hard [21] i.e, one
can not expect an fpt-algorithm for this problem. However, for PLB-U graphs
there exists a simple fpt-algorithm for p-dominating set. The algorithm
works as follows: If the parameter k < (2 · aβ,t · bc1,β,t + 1)−1

n, then return no.
Otherwise, check all subsets of size less than k and return yes if one of them is a
dominating set. Clearly, the algorithm is correct as it is a brute-force algorithm.
It runs in FPT-time, because from Lemma 5.2 we know that the lower-bound
on the size of the minimum dominating set is Θ(n). Thus, the algorithm can
return yes only when k = Θ(n) and clearly it runs for at most O(2n) = 2O(k)

time, which is FPT. In the same manner we can get fpt-algorithms for minimum
vertex cover and maximum independent set.

7.2 Parameterization Above the Lower Bound

In the former section we consider the solution size as a parameter and prove
that the simple brute-force algorithm is an fpt−algorithm. Thus, considering
the solution size as a parameter does not seem to be right for PLB-U graphs.
Now we consider a different approach for parameterization, known as param-
eterization above the lower bound or above-guarantee parameterization. This
parameterization was first studied by Mahajan, Raman, and Sikdar [38]. The
idea is to have a lower bound k′ on the solution size and to use k − k′ as the
parameter instead of k. Mahajan et al [38] show that an FPT-algorithm in the
parameter k − k′ exists for all problems in the class MAX SNP.

The complexity class MAX SNP was defined by Papadimitriou and Yan-
nakakis [42] using logical expressiveness. It contains all problems with an
L-reduction (linear reduction) to an optimization problem on relational struc-
tures that can be expressed in a certain form, for example Max 3-SAT. Thus,
Max 3-SAT is also MAX SNP-complete. Papadimitriou and Yannakakis [42]
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showed that many interesting problems like Max 3-SAT and Max Cut are in
MAX SNP. Since we are also using L-reductions for our result, we define them
formally.

Definition 7.4 (L-reduction [38]) Let Q1 and Q2 be two optimization
problems. We say Q1 L-reduces to Q2 if there exist polynomial-time computable
functions f, g and constants γ, τ > 0 such that for each instance I1 of Q1:

1. f(I1) = I2 is an instance of Q2, such that opt(I2) 6 γ · opt(I1).
2. Given any solution y2 of I2, g maps (I2, y2) to a solution y1 of I1 such that
|c1(I1, y1)−opt(I1)|6 τ · |c2(I2, y2)−opt(I2)|, where c1, c2 are polynomial-
time computable cost functions.

In order to show that MDS, MVC and MIS have an above-guarantee
parameterization, we use a framework by Mahajan et al [38]. They prove that if
a problem Q is in MAX SNP, then there exists an fpt-algorithm for Q above its
Max 3-SAT lower-bound. Max k-SAT is the problem of finding an assignment
for a Boolean formula in conjunctive normal form with at most k literals per
clause that satisfies the maximum number of clauses. The Max 3-SAT lower
bound of a problem in MAX SNP is a lower bound on the optimal solution
size one gets from the L-reduction of that problem to Max 3-SAT. Such an
L-reduction is always possible, since Max 3-SAT is MAX SNP-complete. For
Max 3-SAT with m clauses one can find a solution of size

⌊
m
2
⌋

in polynomial
time. This lower bound on an optimal solution of the reduced instance implies
a lower bound on an optimal solution of the original instance.

Lemma 7.5 [38] Let Q be a problem in MAX SNP and (f, g, γ, τ) an L −
reduction from Q to Max 3-Sat. For an instance I of Q , let mI represent
the Max 3-SAT-lower bound of I. Then the following problems are in FPT:

– LQ = {(I, k) : I is an instance of Q and opt(I) > mI + k}, where Q is a
maximization problem.

– LQ = {(I, k) : I is an instance of Q and opt(I) 6 mI + k}, where Q is a
minimization problem.

Now we are ready to prove the main theorem of this section. We prove that
MDS, MVC and MIS on graphs with PLB-U are in MAX SNP by reducing
them to the MAX SNP-complete problem Max 2-SAT. This implies that all
three problems we consider have an above-guarantee parameterization due to
Lemma 7.5.

Theorem 7.6 For a graph without loops and isolated vertices and with the
PLB-U property with parameters β > 2, c1 > 0 and t > 0, MVC, MIS and
MDS are in MAX SNP.

Proof To prove this statement for Maximum Independent Set we reduce
MIS to Max 2-SAT using L-reduction. For a given instance I of MIS on a
PLB-U graph G = (V,E) create an instance F of Max 2-SAT in the following
way:
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(a) ∀v ∈ V create a clause (v)
(b) ∀(u, v) ∈ E create a clause (¬u ∨ ¬v)

Claim There exists an optimal assignment that satisfies all the clauses corre-
sponding to the edges.

Proof (Claim) It is easy to see that a solution which does not satisfy a clause
(¬u ∨ ¬v), can be converted to one that does by setting v = 0. This makes the
clause (v) not satisfied, but satisfies (¬u ∨ ¬v) and potentially other clauses
encoding an edge. Therefore, setting the variable v = 0 can not decrease the
number of satisfied clauses, hence it is a valid transformation. ut

Claim The vertices whose variable is set to 1 form an independent set.

Proof (Claim) We know that, if both vertices of an edge e are set to 1, then
the clause corresponding to e will be false, contradicting the former claim.
Hence, the vertices whose variables are set to 1 form an independent set. ut

It follows that opt(F ) = opt(I) + |E|. Let d̄ be the average degree of the
graph. Theorem 5.13 now yields

opt(F ) = opt(I) + |E|

= opt(I)
(

1 + |E|
opt(I)

)
6 opt(I)

(
1 + d̄ · n

2 · opt(I)

)

6 opt(I)
(

1 + d̄

2(2 · aβ,t · bc1,β,t + 1)
)

From the above mapping we get γ = (1 + d̄
2 (2 · aβ,t · bc1,β,t + 1)).

Now we give a polynomial time algorithm for function g. First, convert
the Max 2-SAT solution to a solution of no smaller size that satisfies all the
edge clauses by setting the first variable in each unsatisfied clause to 0. The
independent set is the set of nodes whose variables are set to 1. We get

|opt(I)− c1(y1, I)| = |(opt(I) + |E|)− (c1(y1, I) + |E|)|
6 |opt(F )− c2(y2, F )|.

Thus, taking τ = 1 satisfies the second condition of an L − reduction. This
implies that MIS on PLB-U graphs is in MAX SNP.

Similar to the above reduction we can give an L− reduction from Mini-
mum Vertex Cover to Max 2-SAT. We know that the complement of an
independent set is a vertex cover. For a given instance I of MIS on a PLB-U
graph G = (V,E) create an instance F of Max 2-SAT in the following way:

(a) ∀v ∈ V create a clause (v̄)
(b) ∀(u, v) ∈ E create a clause (u ∨ v)
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Now again, as proved in the above reduction, we can prove that there exists
an optimal assignment that satisfies all the clauses corresponding to the edges
and the variables set to 1 form a vertex cover. It follows that, opt(F ) =
n− opt(I) + |E| Thus, from Theorem 5.16 we get,

opt(F ) = n− opt(I) + |E|

6 opt(I)
(
n+ |E|
opt(I) − 1

)
6 opt(I)

(
( d̄2 + 1)n
opt(I) − 1

)

6 opt(I)
(

(2 · aβ,t · bc1,β,t + 1)
(
d̄

2 + 1
)
− 1
)
.

From the above mapping we get γ = (2 · aβ,t · bc1,β,t + 1)( d̄2 + 1)− 1.
Now we give a polynomial time algorithm for function g. First, convert the

Max 2-SAT solution to a solution of no smaller size that satisfies all the edge
clauses by setting the first variable in each unsatisfied clause to 1. The vertex
cover is the set of nodes whose variables are set to 1. It holds that

|c1(y1, I)− opt(I)| = |(n− opt(I) + |E|)− (n− c1(y1, I) + |E|)|
6 |opt(F )− c2(y2, F )|.

Taking τ = 1 now satisfies the second condition of an L − reduction. This
implies that MVC on PLB-U graphs is in MAX SNP.

In order to reduce Minimum Dominating Set to Max 2-SAT we first
reduce it to Max SAT, then to Max 3-SAT and finally to Max 2-SAT.

(a) ∀v ∈ V create a clause (v̄)
(b) ∀v ∈ V create a clause

(∨
u∈N+(v) u

)
Any solution that does not satisfy a clause encoding the neighborhood of v, can
be converted to one that does so by setting v to 1. This makes the clause (v̄)
become unsatisfied, while at the same time potentially satisfying the clauses
encoding other neighborhoods.T Since the number of satisfied clauses can not
decrease by this step, it is a valid transformation. After the transformation,
the variables set to 1 encode a minimum dominating set.

Now we can substitute each neighborhood clause (`1 ∨ `2 ∨ `3 ∨ . . . ∨ `k)
of size k > 4 by the clause group (`1 ∨ `2 ∨ y1) ∧ (ȳ1 ∨ `3 ∨ y2) ∧ . . . ∧
(ȳk−2 ∨ `k−1 ∨ `k). This substitutes each k-clause with k − 2 3-clauses and
introduces k − 2 new auxiliary variables. Now, if one of those clauses is not
satisfied, check if all variables of nodes from the same clause group are set to 0.
If so, it is possible to satisfy all of them by setting one of the neighborhood’s
node variables to 1 and setting the auxiliary variables appropriately. Other-
wise, only the auxiliary variables have to be set appropriately to satisfy all
clauses from the group. Setting the auxiliary variables appropriately can also
be done in polynomial time by going through the clause group and using an
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auxiliary variable to satisfy a clause if all other literals in the clause are set to
0. Therefore, this transformation is still valid.

The last reduction step is a reduction from Max 3-SAT to Max 2-SAT
as done by Garey, Johnson, and Stockmeyer [28]. We substitute each 3-clause
(`1 ∨ `2 ∨ `3) with the following group of 1- and 2-clauses: (z), (`1), (`2), (`3),(¯̀1 ∨ ¯̀2

)
,
(¯̀1 ∨ ¯̀3

)
,
(¯̀2 ∨ ¯̀3

)
, (z̄ ∨ `1), (z̄ ∨ `2), and (z̄ ∨ `3). If the original

clause is satisfied, 7 clauses from the new clause group can be satisfied. Other-
wise, only 6 of the new clauses are satisfiable. First, we go through the formula
and check, if we can increase the number of satisfied clauses by changing the
assignment of one of the newly introduced z-variables. The result should be
a formula, where each group has either 6 or 7 satisfied clauses. Then we can
check if one clause group belonging to a node neighborhood has only 6 satisfied
clauses. This means, that the original clause’s literals are all unsatisfied. If
this is the case, we can set one of the original clause’s node variables v to 1
and fix the y-variables and the z-variable appropriately. By doing so, we can
satisfy at least one more clause of the resulting formula, while making only (v̄)
unsatisfiable. Neighborhoods of sizes 1 and 2 are not transformed and can be
checked directly. Therefore, this is still a valid transformation.

Let ni be the number of nodes of degree i in the original graph G. In the
second transformation step, we add deg(v)− 1 many 3-clauses for each node
v with deg(v) > 2. These sum up to 2|E|−|V | 3-clauses in total, since we do
not have isolated vertices. After the next reduction step, we have 7 (2|E|−|V |)
satisfiable 2-clauses from 3-clauses. Furthermore, the n1 2-clauses for degree-1
nodes and n− |opt(I)| 1-clauses encoding the dominating set are satisfiable.
This gives us opt(F ) = n− opt(I) + n1 + 7 (2|E|−|V |). Let d̄ be the average
degree of G. With Theorem 5.3 it holds that

opt(F ) = |V |−opt(I) + n1 + 7 (2|E|−|V |)

= opt(I) ·
(

14|E|−6n+ n1

opt(I) − 1
)

6 opt(I) ·


(

7d̄− 6 + c1
t+1

)
n

opt(I) − 1


6 opt(I) ·

((
7d̄− 6 + c1

t+ 1

)
· (2 · aβ,t · bc1,β,t + 1)− 1

)
.

Now we get γ =
(

7d̄− 6 + c1
t+1

)
· (2 · aβ,t · bc1,β,t + 1) − 1. If we transform a

solution of the reduced Max 2-Sat problem to a dominating set as described,
we get the following:

|c1(y1, I)− opt(I)|
= |(n− opt(I) + n1 + 7 (2|E|−n))− (n− c1(y1, I) + n1 + 7 (2|E|−n)) |
6 |opt(F )− c2(y2, F )|.

This means, we can take τ = 1 to satisfy the conditions of an L− reduction
and conclude that MDS on PLB-U graphs is in MAX SNP. ut
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8 Discussion and future work

We showed that Chung-Lu Random Graphs, Geometric Inhomogeneous
Random Graphs, and Hyperbolic Random Graphs exhibit the PLB-U and
PLB-N properties. These results answer an open question posed by Brach et
al. [11] positively and imply that their results also hold for the random graphs
we considered.

In section 5 we proved that on graphs with the PLB-U property, Minimum
Dominating Set, Maximum Independent Set, Minimum Vertex Cover,
and some related problems like Connected Dominating Set have optimal
solutions of size Θ(n). This implies that even naive algorithms give a constant-
factor approximation on networks with this property.

In hopes of getting better results, i.e. getting a PTAS or making one of the
problems polynomial-time-solvable, we introduced the PLB-L property. This
property demands a lower bound on the degree distribution which complements
the upper bound given by PLB-U. Furthermore, we showed that a range of
real networks exhibit both PLB-U and PLB-L, as is evident from Figure 1.
However, we were able to prove that the three problems we consider still
remain APX-hard, even with all three properties, PLB-U, PLB-N, and PLB-L.
This means, these three properties alone do not suffice to get a PTAS for
Minimum Dominating Set, Maximum Independent Set, or Minimum
Vertex Cover. It would be interesting to see if other deterministic properties
that real-world networks exhibit, for example the axiomatic properties from [9],
can be used to design more efficient algorithms for the problems we consider.

Finally, we showed that MDS, MIS, and MVC are in MAX SNP on networks
with PLB-U. This is the first result which proves that any of these problems is
in MAX SNP for a class of power-law graphs. Our results also imply that there
is an fpt-algorithm which uses solution size above some linear lower bound
as the parameter. This algorithm could be considerably faster than a brute
force approach. Nevertheless, it remains to derive the exact run time of this
fpt-algorithm.
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Hyperbolic geometry of complex networks. Physical Review E 82(3):036,106

35. Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawling the web
for emerging cyber-communities. Computer Networks 31(11-16):1481–1493

36. Lenzen C, Wattenhofer R (2010) Minimum dominating set approximation in
graphs of bounded arboricity. In: 24th Intl. Symp. Distributed Computing
(DISC), pp 510–524

37. Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data

38. Mahajan M, Raman V, Sikdar S (2009) Parameterizing above or below
guaranteed values. Journal of Computer and System Sciences 75(2):137 –
153

39. Newman MEJ (2003) The structure and function of complex networks.
SIAM Review 45(2):167–256

40. Newman MEJ (2005) Random graphs as models of networks. Handbook of
Graphs and Networks pp 35–68

41. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algo-
rithms and complexity. Prentice-Hall

42. Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences 43(3):425–440



Greed is Good for Deterministic Scale-Free Networks 51

43. Phadke AG, Thorp JS (2009) Computer relaying for power systems. John
Wiley & Sons, Ltd

44. Ruan L, Du H, Jia X, Wu W, Li Y, Ko KI (2004) A greedy approximation
for minimum connected dominating sets. Theoretical Computer Science
329(1–3):325–330

45. Sakai S (2003) A note on greedy algorithms for the maximum weighted
independent set problem. Discrete Applied Mathematics 126:313–322

46. Shen Y, Nguyen DT, Xuan Y, Thai MT (2012) New techniques for approx-
imating optimal substructure problems in power-law graphs. Theoretical
Computer Science 447:107–119


