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a b s t r a c t

Finding cliques in graphs is a classical problem which is in general NP-hard and
parameterized intractable. In typical applications like social networks or biological
networks, however, the considered graphs are scale-free, i.e., their degree sequence follows
a power law. Their specific structure can be algorithmically exploited andmakes it possible
to solve clique much more efficiently. We prove that on inhomogeneous random graphs
with n nodes and power law exponent β , cliques of size k can be found in time O(n) for
β ≥ 3 and in time O(nek

4
) for 2 < β < 3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The proliferation of scale-free network models has recently been propelled by experimental findings: Many real-world
graphs like social networks, electricity maps, biological networks, co-author graphs, sex graphs, etc. have been found to
exhibit similar properties even though they stem from vastly different fields and sources [8,19,21]. They all have a power
law degree distribution, meaning that the number of vertices with degree k is proportional to k−β , where β is a constant
intrinsic to the network.

Following this discovery, an abundance of different theoretical models for these networks has been proposed, among
which the probably most well known are the Preferential Attachment [3] and the Inhomogeneous Random Graphs [23].
There has been a significant bodyof researchdevoted to findingmore similarities between thesenetworks (e.g. lowdiameter,
large clustering); there has been little work, however, on how to exploit these properties for algorithmic problems. In fact,
many such problems like k-Clique that are believed to be intractable were originally inspired by scale-free networks—even
though at the time the term ‘‘clique’’ was coined, the notion of scale-free networks did not yet exist [17].

It is therefore natural to investigate these real-world inspired problems on power law graphs. In this paper, we present
different algorithms for finding fully connected subgraphs (cliques) of size k in inhomogeneous random graphs. It has been
well studied that on general inputs, k-Clique is NP-complete [15]. An efficient polynomial time algorithm is therefore
unlikely to exist. In fact, the combinatorial explosion of this problem is in bothparametersn and k: A runtimeO(f (k)·poly(n))
that scales arbitrarily in the problem parameter k, but only polynomially in the input size n is considered to be unachievable,
as this problem is alsoW [1]-complete [11].

Recent findings, however, suggest that things look differently on scale-free networks: Although there can be cliques of
polynomial size [4], Janson, Łuczak, and Norros [14] proved formally that one can retrieve a 1 − o(1) approximation of
the largest clique with high probability when given the underlying theoretical model of the graph. Eppstein and Strash [10]
furthered this intuition experimentally by enumerating allmaximal cliques on several data sets in feasible time. In this paper,
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we show that there exist exact algorithms that only need the graph as input and no further metainformation. In particular –
in contrast to previous theoretical results – these algorithms do not require access to the generally unknown node weights.
Results. The behavior of scale-free networks depends significantly on the exponent β of the power law degree distribution.
In the case β > 3 (e.g. sexual contacts, citations or electronic circuits [8,20]), the expected maximal size of a clique is
constant [5,14]. This implies that large cliques are unlikely, but does not imply a fast algorithm that always answers correctly.
The difficulty is certifying a negative answer. We prove the following theorem.

Theorem 1. The k-Clique problem can be solved in expected time O(n) on inhomogeneous random graphs with power law
exponent β ≥ 3.

Throughout this paper, all asymptotic notation is given in both parameters n and k, but hides constants like average
degree δ and power law exponent β . Consequently, the runtime of our algorithm does not depend on k and is therefore
asymptotically optimal. Our algorithm is deterministic and always returns the correct answer. Moreover, it does not use
any underlying information of themodel (e.g. weights). Note that this theorem implies that k-Clique, which is NP-complete
in general, in this setting becomes avgP, which is the average-case analog of P [16]. The best result so farwasO(n4) by Janson
et al. [14] and an algorithm with O(n2) runtime by the conference version [13] of this paper. Note that an application of a
Markov bound yields the following high probability bound on the runtime.

Corollary 2. Let f (n) be any function such that grows asymptotically slower than n, i.e. f (n) ∈ ω(n). Then, the k-Clique problem
can be solved in time f (n) on inhomogeneous random graphs with power law β ≥ 3 with high probability.

On the other hand, many scale-free networks (e.g. co-actors, protein interactions, internet, peer-to-peer [20]) have a
power law exponent β with 2 < β < 3. In this case, the expected maximal size of a clique diverges [5,14] and there exists
a core. The core is a subgraph that has a diameter of O(log log n) and contains a dense Erdős–Rényi graph [7,23]. As this is a
known hard problem, we cannot expect similarly good results as for β ≥ 3. We prove the following theorem.

Theorem 3. The k-Clique problem can be solved in time O(n exp(k4)) with overwhelming1 probability on inhomogeneous
random graphs with power law exponent 2 < β < 3.

While in general k-Clique is not believed to be parameterized tractable, i.e. in FPT, the above theorem shows that in
this setting k-Clique is typically parameterized tractable, i.e. in typFPT, which is an average-case analog of FPT as defined
in [12]. We are confident that this result extends to exponents β ≤ 2, but as those networks exhibit significantly different
properties and are rare in reality compared to the above mentioned cases, we did not investigate them formally.

2. Preliminaries

In order to achieve high general validity, we use the inhomogeneous random graphmodel of van der Hofstad [23], which
generalizes the models of Chung–Lu [7,1,2] and Norros–Reittu [22] as well as the generalized random graphs. The model
has two adjustable parameters: the exponent of the scale-free network β and the average degree δ. Depending on these two
parameters, each node i has a weight wi. This determines the edge probability pij := Pr[{i, j} ∈ E], which intuitively should
be set proportional to wiwj.

Weights wi. A simple way to fix the weights would be for example wi = δ(n/i)
1

β−1 . However, we aim for a more general
setting and proceed differently. Given the weights wi, we can use the empirical complementary cumulative distribution
function (CCDF) Fn(w) = 1

n

n
i=1 1 [wi ≥ w]. This gives us Fn(w) = Pr[W ≥ w], where W is a random variable chosen

uniformly from the weights w1, . . . , wn. Instead of fixing wi, it is now easier to start from Fn(w) and assume the following.

Definition 4 (Power-Law Weights). We say that an empirical CCDF Fn(w) follows the power law with exponent β , if there
exist two positive constants α1, α2 such that

α1w
−β+1

≤ Fn(w) ≤ α2w
−β+1.

Then, we require theweightsw1, . . . , wn to have the empirical CCDF Fn(w). Following van der Hofstad [23], wemoreover
require that the empirical CCDF Fn satisfies the following properties.

Definition 5 (Regularity Conditions for Node Weights).
(1) Weak convergence of node weights. There exists a function F such that limn→∞ Fn(x) = F(x).
(2) Convergence of average node weight. LetWn andW have distribution functions Fn and F , respectively. Then, it holds that

limn→∞ E[Wn] = E[W ]. Furthermore, E[W ] > 0.

1 We use the terms high probability for probability 1 − o(1), negligible probability for probability 1/f (n), and overwhelming probability for probability
1− 1/f (n), where f (n) is any superpolynomially increasing function.
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The regularity of Fn guarantees that the intuition Fn(w) = Pr [W ≥ w] indeed holds. Furthermore, it guarantees that the
average degree in the inhomogeneous random graphs converges, and that the largest weight is asymptotically bounded by
o(n), i.e. maxi∈{1,...,n}wi = o(n). Both assumptions are sufficient to generate a scale-free network [23].
Edge probability pij. Other inhomogeneous random graph models use the following definitions:

pij = min


wiwj
n

k=1
wk

, 1

 (Chung–Lu)

pij =
wiwj

n
k=1

wk + wiwj

(Generalized Random Graph)

pij = 1− exp

−
wiwj
n

k=1
wk

 (Norros–Reittu).

Since we restrict the weights wi in Definition 4, it is possible to encompass these edge probability functions with the
following definition.

Definition 6. We call pij the edge probability between nodes i and j of the inhomogeneous random graph, if it is 0 for i = j,
and otherwise fulfills

pij = O
wiwj

n


and pij = Ω


wiwj

n+ wiwj


.

In order to see that for our weights wi this is a generalization of all aforementioned scale-free random graph models, we
observe that when β ≥ 2, wmin = Θ(1) and w

−β+2
min > w

−β+2
max and compute

n
k=1

wk = n · E[W ] = n ·
 wmax

wmin

Fn(w) dw = Θ(n · w−β+2
min ) = Θ(n). (1)

Notation. We use GSF (β) to refer to the probability space of inhomogeneous random graphs that were created as described
above, andG to represent a graph drawn fromGSF (β). By deg(v,G)we refer to the degree of a node v in a graphG.Whenever
it is clear from the context which graph we are referring to, we writeµi for the expected degree of node i. For the purpose of
the analysis of the algorithms, the n vertices are identified by 1, . . . , n such that wi ≤ wj whenever i ≤ j. We point out that
this is only to simplify our presentation and our algorithms do not use this implicit ordering. Finally, we use the induced
subgraph Gi := G[i, . . . , n] that describes an inhomogeneous random graph G← GSF where nodes j ∉ {i, . . . , n} have been
subsequently removed from the node set.
Expected degree. It is useful to observe that the expected degree of each node can be asymptotically upper bounded by its
weight:

E [deg(i,G)] =
n

j=1

pij = O
wi

n

n
j=1

wj


= O(wi). (2)

This bound is in fact tight, as shown by the following lemma.

Lemma 7. Let G = (V , E) be a random graph drawn from GSF (β). Then, E [deg(i,G)] = Θ(wi) for β ≥ 2.

Proof. Recall that we write µi for the expected degree E [deg(i,G)] of node i. It is left to prove µi = Ω(wi). To this end, we
compute

µi =

n
j=1

pij = Ω


n

j=1

wiwj

n+ wiwj



= Ω

 
j∈{1,...,n}
wiwj<f (n)

wiwj

n

1+ wiwj

n

 = Ω


wi

n


j∈{1,...,n}
wiwj<f (n)

wj


.

In the third step above, we remove all summands that do not fulfill the requirement wiwj < f (n). For f (n), we choose a
function which lies asymptotically between wi and n, i.e., it fulfills both f ∈ o(n) and wi ∈ o(f ). Such a function indeed
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exists: Since we assumed that wj = o(n) for all j, we can set f (n) :=
√

win. Then wi ∈ o(f ), since wi/
√

win =
√

wi/n→ 0.
Conversely, f ∈ o(n) holds by the same argument.

We compute the resulting sum by looking at the random variableW that is uniformly chosen from w1, . . . , wn:

µi = Ω


wi

n
·


j∈{1,...,n}
wiwj<f (n)

wj


= Ω


wi · E


W · 1


W <

f (n)
wi



= Ω


wi · Pr


W <

f (n)
wi


· E

W
W <

f (n)
wi



= Ω


wi ·


1− F


f (n)
wi


  

=1−o(1)

·

 wn

w1

1− Pr

W < w

W <
f (n)
wi


dw


.

The term F (f (n)/wi) = Θ((wi/f (n))β−1) is in o(1) since wi ∈ o(f ). We split the integral in two parts, and make a case
distinction:

(1) w <
f (n)
wi

. The conditional probability simplifies to

Pr[W < w]

Pr[W < f (n)/wi]
=

1− Fn(w)

1− Fn(f (n)/wi)
.

(2) w ≥
f (n)
wi

. Then, conditional probability yields 1.

We therefore can further simplify the expected degree as follows. Recall that 1− F (f (n)/wi) = 1− o(1) = Θ(1) vanishes
in a constant.

µi = Ω


wi ·

 f (n)/wi

w1

1−
1− Fn(w)

1− Fn(f (n)/wi)
dw +

 wn

f (n)/wi

1− 1 dw


= Ω


wi

1− Fn(f (n)/wi)
·

 f (n)/wi

w1

Fn(w)− Fn(f (n)/wi) dw


= Ω


wi ·


c1(−w−β+2)− c2w ·


f (n)
wi

−β+1
f (n)/wi

w1



= Ω


wi ·


c1(w

−β+2
1 )− c2


f (n)
wi

−β+2


= Ω(wi). �

3. Analysis for power-law exponent β ≥ 3

In this section,we describe the algorithm to solve the clique problem inO(n) on averagewhenever the scale-free network
exhibits an exponent of β ≥ 3. Note that this is a runtime improvement by a factor of n compared to the conference
version [13].

We exploit the scale-free structure by processing low-degree nodes first. To this end, we repeat the following simple
steps: Determine the smallest degree node v from the graph. If there is a (k − 1)-subset of neighbors of v that is a clique,
return the resulting k-clique. Otherwise, remove v from the graph. This suggests that when the algorithm reaches the high-
degree nodes, the graph is almost empty, which means that those nodes too are of low degree.

To prove that this algorithm runs in expected linear time, we analyze an intermediary approach that orders the nodes by
their weights instead of their degrees. Lemma 7 then shows that the degree of a node is a suitable surrogate for its weight.
Implementation details. We use adjacency lists to store the edges; and an array D of length n to remember which nodes have
been deleted from the graph. Whenever we want to delete a node i during the algorithm, we set D[i] := 1. When checking
for potential cliques during the algorithms, we simply omit nodes i for which D[i] = 1.

A careful implementation allows for efficiently finding the node with minimum degree: An array A of length n stores in
each position i all nodes of degree i. Bymemorizing an index in the array, one can extract the currently smallest degree node
in constant time. To remove the currently smallest node, we have to update A at all positions of its neighbors; the overall
runtime for updating the graph is proportional to the sum of all degrees. By Eq. (2), this is O(n).
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Using this, we show that the greedy algorithm has an overall expected runtime of O(n). We begin by examining the
expected degree of a node i when all nodes jwith smaller weight are removed from the graph.

Lemma 8. Let G = (V , E) be a random graph drawn from GSF (β), where β ≥ 3, and let Gi = G[i, . . . , n]. Then, we have

E [deg(i,Gi)] = O(1).

Proof. We use the indicator variable 1[{i, j} ∈ E], which attains value 1 if {i, j} is an edge and 0 otherwise. Whenever
possible, we hide constants in O(1).

E [deg(i,Gi)] =
n

j=i+1

E [1[{i, j} ∈ E]] =
n

j=i+1

pij = O
wi

n

n
j=1

wj · 1[wj > wi]


.

We now use the random variableW as described in Eq. (1), yielding

E [deg(i,Gi)] = O

wi · E [W · 1[W ≥ wi]]


= O


wi · Pr[W ≥ wi] · E [W | W ≥ wi]


= O


wi · Fn(wi) ·

 wn

w1

Pr[W ≥ w | W ≥ wi] dw

.

To determine the probability that a weight W drawn uniformly at random admits W ≥ w given that W ≥ wi holds, we
distinguish two cases:

(1) w ≤ wi: Since we know thatW ≥ wi, it is also larger than w.
(2) w > wi: The conditional probability simplifies to Pr[W≥w]

Pr[W≥wi]
=

Fn(w)

Fn(wi)
.

This simplifies the integral and yields

E [deg(i,Gi)] = O


wi · Fn(wi) ·

 wi

w1

1 dw +
 wn

wi

Fn(w)

Fn(wi)
dw


= O


wi(wi − w1) · Fn(wi)+

wi

−β + 2


w−β+2wn

wi


= O


w
−β+3
i + w

−β+3
i − wiw

−β+2
n


= O(w

−β+3
i ).

For β ≥ 3, this term is constant, as the weights wi are in Ω(1). �

Lemma 8 proves that a node i has constant degree if all nodes with smaller weight have been deleted from the graph.
If the greedy algorithm ordered the nodes by increasing weights instead of smallest degree, this would be sufficient for
proving linear runtime. As the weights of the model are not given, however, we show that processing the smallest degree
node in a graph is as good as ordering the nodes by weight.

Proof of Theorem 1. Let G̃i be an induced subgraph of G such the greedy algorithm processes node i next. The node with
smallest degree in G̃i is therefore node i.

Let T be the running time of the greedy algorithm. The runtime for processing a single node i during the algorithm is
denoted by Ti. We recall that extracting the minimum degree node n times runs in overall O(n) time, which we omit from
the computation below.

The number of (k − 1)-subsets of vertices a node with x neighbors allows is
 x
k−1


≤ 2x, and the time needed to check

whether a subset is a clique is (k− 1)2 ≤ x2. Thus, we get

E[T ] = O


n

i=1

E [Ti]



≤ O


n

i=1

n
x=1

2x
· x2 · Pr


deg(i, G̃i) ≥ x


. (3)

Now we show that Pr[deg(i, G̃i) ≥ x] decreases exponentially. Let s be the smallest weight node in G̃i. It is possible (but not
necessary) that i = s. Consider now the graph Gs which is the induced subgraph of Gwhere all nodes with weight less than
ws have been removed. Since s is also the smallest weight node in G̃i, we have G̃i ⊆ Gs. Using that i is the smallest degree



T. Friedrich, A. Krohmer / Discrete Applied Mathematics 184 (2015) 130–138 135

node in G̃i, we can conclude

Pr[deg(i, G̃i) ≥ x] ≤ Pr[deg(s, G̃i) ≥ x] ≤ Pr[deg(s,Gs) ≥ x]. (4)

Recall that the expected degree E[deg(s,Gs)] is denoted by µs. As deg(s,Gs) is a sum of independent binary variables, we
can apply a Chernoff bound [9] and obtain

Pr [deg(s,Gs) ≥ x] ≤


exp


x
µs
− 1


x
µs

x/µs
µs

.

By Lemma 8, µs is constant for all s. This leaves us with

E[T ] = O


n

i=1

∞
x=1

(2eµs)
xx2−x


,

where s = s(i). Since the inner sum converges to a constant, E[T ] = O(n). �

Let us briefly discuss the implications of this result. We concluded that the expected runtime of the greedy algorithm is
linear. This, however, does not imply that the runtime is also linear with high probability. In fact, Corollary 2 only states the
slightlyweaker result that any runtime f (n)which is asymptotically slower thanO(n) can be achievedwith high probability.
Because of the intricate dependencies between the subgraphs G̃i and between the degrees of nodes it is difficult to show a
better result.

Themain issue in proving a runtime ofO(n)with high probability lies in proving an analog of Lemma 8. It is hard to show
that a processed node has constant degree with high probability since e.g. Chernoff only gives an upper bound of Θ(log n).
It is even harder to show that the bound holds for each step in the algorithm, since the degrees of subsequently processed
nodes heavily depend on one another. As these complex techniques would only result in a minor improvement over the
simple Markov bound in Corollary 2, we decided to leave this as an open question.
The role of the maximum degree. Another interesting question is how the maximum degree dmax of the graph affects the
performance of our algorithm. Typically, dmax can be inferred from Definition 4 as follows.

Fn(wn) = Θ(w−β+1
n ) =

1
n
⇔ wn = Θ(n

1
1−β ).

Since E[dmax] = Θ(wn), this gives the immediate answer that whenever dmax = O(
√
n) the greedy algorithm yields

polynomial time and when dmax = ω(
√
n), it uses exponential time.

Finally, we would like to point out that the above proofs can easily be adjusted to show that the degeneracy [6] of an
inhomogeneous random graph with exponent β ≥ 3 is constant in expectation.

4. Analysis for power-law exponent β ∈ (2, 3)

Using the greedy algorithm of the previous section in the case 2 < β < 3 would imply a superpolynomial runtime
of poly(n)k since the neighborhood sizes in the algorithm increase with n. This only yields the result that k-Clique is in
expectation in the parameterized class XP [11]. We therefore present a different algorithm to prove a better result. Instead
of exploiting that therewill be few edges and therefore cliques, we inspect the core of the graph, a dense subgraph consisting
only of high-weight nodes. We show that the probability of the core containing a k-clique is high. This approach, however,
is only feasible for small values of k which shows that k-Clique is parameterized tractable for the parameter k with high
probability.
Partitioning algorithm. To find a k-clique, the partitioning algorithm first removes all nodes with degree below

√
n/ log log n.

The obtained subgraphG′ = (V ′, E ′) is arbitrarily partitioned into components of size k. Each component is then individually
checked to determine if it is a clique. If no clique is found, the algorithm searches exhaustively all k-subsets of V . It is easy
to see that this algorithm is correct.

We now want to prove that when k is small, the exhaustive search is triggered only with negligible probability. For this,
we first show that there are polynomially many nodes in V ′ and that their mutual edge probabilities are≥1/ log n. We then
use this to prove that one of the partitions is likely to be a clique. As in the previous section, the analysis would be much
easier if, when choosing V ′, the algorithm was allowed to choose the nodes according to their weight, but unfortunately it
only has access to their degree in the given graph. We do know, however, that the weight and the expected degree of a node
are equal up to a constant factor. Using that, we can prove the two following Lemmas.

Lemma 9 (Partitioning Algorithm Keeps Polynomially Many Nodes). Let β ∈ (2, 3), and G = (V , E) be a scale-free graph drawn
from GSF (β). Then,

Pr

∃i > n− n

3−β
2 : deg(i,G) <


n/ log log n


≤ exp


−Θ(
√
n)

.
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Proof. For the sake of readability, let a := 3−β

2 . Then, using the union and a Chernoff bound, we have

Pr

∃i > n− na

: deg(i,G) <


n
log log n


<


i>n−na

exp

−

µi
2 +


n

log log n


.

We now compute a lower bound on µi. Since µi = Θ(wi) by Lemma 7, we can use a lower bound on the weight of node
i (where i ≥ n − na). Recall that the weights w1, . . . , wn are monotonically increasing. Hence, there should only be n − i
nodes with a weight larger than wi.

1
n

(n− i) = Fn(wi) = Θ(w
−β+1
i )

⇒ wi = Θ(1) ·


n
n− i

 1
β−1

≥ Θ

n

2−3+β
2(β−1)


= Θ

√
n

.

We now apply the lower bound for µi from Lemma 7 and obtain

Pr

∃i > n− na

: deg(i,G) <


n
log log n


< n · exp


Θ


−
√
n+


n

log log n


.

The negative term is asymptotically larger than the positive term, and the factor n = elog n vanishes in exp(−Θ(
√
n)). We

can therefore conclude that

Pr

∃i > n− na: deg(i,G) <


n/ log log n


< exp


−Θ(
√
n)

. �

In a similar fashion, we show that the remaining nodes in the core are of high weight.

Lemma 10 (Partitioning Algorithm Keeps Only High-Weight Nodes). Let β ∈ (2, 3), and G = (V , E) be a scale-free graph drawn
from GSF (β). Then,

Pr

∃i ∈ V ′:wi <


α1n/ log n


≤ exp


−Θ(n

1
3 )

.

Proof. For the sake of readability, let b := n
3−β
2 (log n)

β−1
2 . We first compute a lower bound for the weight of all nodes

j ≥ n− b. The empirical CCDF gives us

1
n

(n− j) = Fn(w) ≥ α1w
−β+1
j

⇒ wj ≥


α2n
n− j

 1
β−1

≥


α2n1− 3−β

2 (log n)−
β−1
2

 1
β−1

>


α1n/ log n.

It now suffices to show that every node i < n− b is not contained in V ′ with high probability, i.e. we show

Pr

∃i < n− b: deg(i,G) ≥


n/ log log n


≤ exp


−Θ(n

1
3 )

.

We once again proceed using the union and a Chernoff bound.

Pr

∃i < n− b: deg(i,G) ≥


n/ log log n


≤


i<n−b

exp

−

µi
3 min

√
n/ log log n

µi
− 1


,
√

n/ log log n
µi

− 1
2

.

Lemma 7 givesµi = Θ(1)·wi. In a similar fashion as above, we can derive that for all i < n−b, wi < α2
√
n/ log n. Therefore,

we can simplify the term to

Pr

∃i < n− b: deg(i,G) ≥


n/ log log n


≤


i<n−b

exp

−Θ

√
n/ log log n
√
n/ log n

− 1


n/ log n


= exp

−Θ(


n/ log log n)


< exp(−Θ(n

1
3 )). �

It remains to show that the partitioning algorithm needsmore than k2n time only with negligible probability, if k is small
enough. The idea is that the core V ′ of the scale-free network has larger edge probabilities than a dense Erdős–Rényi random
graph, which is known to allow finding cliques fast [12].

Proof of Theorem 3. If k > log
1
3 n, then n < ek

3
, which implies that the exhaustive search of the partitioning algorithm

runs in time nk < ek
4
and proves the claim. We can therefore assume k ≤ log

1
3 n.
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(a) Average runtime in seconds for the greedy
algorithm sorting nodes by degrees (blue) and by
weight (red) on scale-free graphs with β = 3.

(b) Average size of largest clique the partitioning
algorithm finds in polynomial time (straight line)
and average size of largest clique in the graph
(dashed line) for β = 2.3, 2.5, and 2.7 (red,
blue, and green).

Fig. 1. Experimental results for scale-free graphs with (a) β = 3 and (b) 2 < β < 3. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

As excluding unlikely events does not affect small failure probabilities, we can condition on the statements of Lemmas 9
and 10 and assume that there are more than n

3−β
2 nodes in V ′ and all nodes in V ′ have weight ≥

√
α1n/ log n. This implies

that wiwj ≥
α1n
log n and the edge probability between nodes i, j ∈ V ′ is

pij = Ω


wiwj

n+ wiwj


= Ω


1

log n


.

By choosing g(n) = log log n−Θ(1)
log n suitably, we can bound the edge probability by pij ≥ n−g(n) =: p.

A k-partition is a k-clique with probability≥p


k
2


. The probability of not finding a clique before the exhaustive search is

thus

≤


1− p


k
2

n 3−β
2 /k


≤ exp


−


n

3−β
2

k


p


k
2



≤ exp


−

n
3−β
2

2k
p


k
2


= exp


−

n
3−β
2 −g(n)


k
2


2k


,

since we have k ≤ log
1
3 n ≤ n

3−β
2 /2 for large n and therefore ⌊n

3−β
2 /k⌋ ≥ n

3−β
2 /k− 1 ≥ n

3−β
2 /(2k).

We now want to bound the expression n
3−β
2 −g(n)


k
2


from the above term. To this end, consider

g(n)

k
2


≤ g(n)k2 =

log log n−Θ(1)
log n

k2 = O


(log log n)(log n)2/3

log n


= o(1).

Therefore n
3−β
2 −g(n)


k
2


≥ n

3−β
2 −o(1). It follows that the probability of doing the exhaustive search is

≤ exp


−

n
3−β
2 −g(n)


k
2


2k


≤ exp


−

n
3−β
2 −o(1)

2 log1/3 n


.

Since the inner expression grows polynomially, the algorithm enters exhaustive search with negligible probability, which
proves the statement. �

5. Experiments

To check for the practical applicability of our theorems, we studied the empirical performance of the presented
algorithms. To do so, we generated scale-free networks as described in Section 2with Chung–Lu edge probabilities [18]. Our
implementation is done in Java and run on a Dell PowerEdge M610 Blade Server with Intel Xeon E5620 CPUs (2.40 GHz).
Each data point is averaged over 1000 runs.

Fig. 1(a) depicts the runtimes of the greedy algorithm versus n for β = 3 when ordering the nodes by smallest degree
or by smallest weight, respectively. One can see that both these versions run in linear time; and the runtime is fast even for
large graphs (n = 600 000). Moreover, ordering the nodes by smallest degree slightly outperforms the approach that uses
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(the practically not available) node weights. This is in line with Eq. (4) where we show that processing the smallest degree
node is not worse than processing the smallest weight node. In fact, while the smallest weight node might be an outlier and
have a degree of up to Θ(log n), it is highly unlikely that the whole remaining graph contains no node with constant degree.

For the case 2 < β < 3, the partitioning algorithm always finds the largest clique, but uses potentially exponential
time in k. We are interested in the results that can be achieved in polynomial time (without the last step of an exhaustive
search) as those are more relevant in practice. In Fig. 1(b) we compare, for different β ∈ (2, 3), the average size of the
largest clique found by the partitioning algorithm without exhaustive search against the average size of the largest clique.
The plot demonstrates that the algorithm yields competitive results for different n and β; and even though the formal proof
only guarantees finding a clique of size k ≤ log1/3 n without exhaustive search, the empirical results suggest that we find a
clique which is only off by a few nodes to the largest clique in polynomial time. We evaluated this algorithm only on small
graphs since it becomes hard to extract the (optimal) maximum clique for larger n.

From a practical point of view, this algorithm can easily be improved heuristically. For instance, one can increase the
size of a found clique by simply making it maximal, i.e. adding nodes that connect to all current nodes in the clique until
no further addition is possible. Another way would be to group the partitions together by their degrees: Put all k highest
degree nodes in one subset, the next k highest degrees in the next subset, and so forth. This should increase the chance for
finding a k-clique in Chung–Lu graphs, although in our experience this intuition does not translate to real graphs. In fact, it
might be more effective to just repeat the partitioning step with random partitions for a sufficient amount of time and take
the best result.

6. Conclusion

Social networks are becoming ubiquitous. There is a significant body of research on the structural properties of such
networks, but very little on how this can be exploited algorithmically. We have shown that for scale-free networks with n
nodes and power law exponent β , the notoriously hard k-Clique problem admits a linear time algorithm for β ≥ 3 (runtime
O(n)).

For the case 2 < β < 3 – where cliques of polynomial size appear [14,5] – we proved that the problem admits an exact
algorithm that runs inO(nek

4
) timewith overwhelming probability. It remains an open question if an exact polynomial time

algorithm can be found in this case. A more general open question is whether other NP-hard combinatorial problems (e.g.
from bioinformatics) show similarly good average-case behavior on scale-free networks.
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