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Abstract. Finding cliques in graphs is a classical problem which is in
general NP-hard and parameterized intractable. However, in typical ap-
plications like social networks or protein-protein interaction networks,
the considered graphs are scale-free, i.e., their degree sequence follows a
power law. Their specific structure can be algorithmically exploited and
makes it possible to solve clique much more efficiently. We prove that
on inhomogeneous random graphs with n nodes and power law expo-
nent γ, cliques of size k can be found in time O(n2) for γ ≥ 3 and in
time O(n exp(k4)) for 2 < γ < 3.

1 Introduction

The clique problem numbers among the most studied problems in theoretical
computer science. Its decision version calls for determining whether a given graph
with n vertices contains a clique of size k, i.e., a complete subgraph on k vertices.
It is one of Karp’s original NP-complete problems [16] and is complete for the
class W[1], the parameterized analog of NP [8]. Its optimization variant is a
classical example of a problem that is NP-hard to approximate within a factor
of n1−ε for any ε > 0 [11, 31]. Also, on Erdős-Rényi random graphs, the problem
is believed to be intractable in general, which is even used for cryptographic
schemes [15]. For all functions p, Rossman [27] presented an average-case lower
bound of ω(nk/4) on the size of monotone circuits for solving k-Clique.

The term “clique” was first used 1949 by Luce and Perry [19], to describe
a group of mutual friends in a social network. Since then, social networks, and
likewise the study thereof, increased tremendously. There exist numerous models,
most of them having in common a so-called scale-free behavior. This means that
there is a constant γ such that the fraction of nodes that have degree d is
proportional to d−γ . Besides social networks, many other real-world networks
are scale-free, too. Examples are the internet, citation graphs, co-author graphs,
protein-protein interaction networks and power supply networks [7, 20, 22].

It is therefore natural to study the clique problem on scale-free graphs. This
is not only of theoretical interest, as this question occurs in different application
domains. One example for this is bioinformatics. Here, cliques in protein-protein
interaction networks are sought in order to identify clusters of proteins that in-
teract tightly with each other [29]. Another bioinformatics example is the clus-
tering of large scale gene expression data using cliques [4]. A different direction
is internet marketing, where it is e.g. valuable to find large cliques on Facebook.
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We are interested in the complexity of the clique problem on inhomoge-
neous random graphs, where each node i has a weight wi and an edge {i, j}
is present independently with probability proportional to wiwj . This is a gen-
eralization of several scale-free random graph models like Chung-Lu [1, 2, 6],
Norros-Reittu [23], and generalized random graphs [30].

Our Results

The behavior of scale-free networks depends significantly on the exponent γ of
the power law degree distribution. If γ > 3, the expected maximal size of a clique
is constant [5, 13]. This implies that large cliques are very unlikely, but does not
imply a fast algorithm that always answers correctly. The difficulty is certifying
a negative answer. We prove the following theorem.

Theorem 1. The k-Clique problem can be solved in expected time O(n2) on
inhomogeneous random graphs with power law exponent γ ≥ 3.

All our algorithms are deterministic and always return the correct answer. Note
that the above theorem implies that k-Clique, which is NP-complete in general,
in this setting becomes avgP, which is the average-case analog of P [18].

On the other hand, many scale-free networks (e.g. the internet) have a power
law exponent γ with 2 < γ < 3 [21]. In this case, the expected maximal size of
a clique diverges [5, 13]. and there exists a giant component of polynomial size,
the core. The core is a subgraph that has a diameter of O(log logn) and contains
a dense Erdős-Rényi graph [6, 30]. As this is a known hard problem, we cannot
expect similarly good results as for γ ≥ 3. We prove the following theorem.

Theorem 2. The k-Clique problem can be solved in time O(n exp(k4)) with
overwhelming1 probability on inhomogeneous random graphs with power law ex-
ponent 2 < γ < 3.

While in general k-Clique is not believed to be parameterized tractable, i.e.
in FPT, the above theorem shows that in this setting k-Clique is typically
parameterized tractable, i.e. in typFPT, which is an average-case analog of FPT
as defined in [9].

Related Work

Much previous research on cliques in random graphs focuses on Erdős-Rényi
random graphs [12]. Rossman [26, 27, 28] provides lower bounds for solving the
problem where he uses bounded-depth Boolean circuits and unbounded-depth
monotone circuits as the computation model. Using a greedy approach, a clique
of size logn can be found in a G(n, 1

2 ) [10], whereas Jerrum [14] showed that one
cannot use the Metropolis algorithm to find cliques of size (1+ε) logn in G(n, 1

2 ),

1 We use the terms high probability for probability 1 − o(1), negligible probability for
probability 1/f(n), and overwhelming probability for probability 1 − 1/f(n), where
f(n) is any superpolynomially increasing function.
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and Peinado [24, 25] proved that several randomized algorithms are also bound
to fail on this problem. Kučera [17] shows that a planted clique (i.e., a clique
which is explicitly added after drawing a random graph) of size Ω(

√
n logn) is

easy to find in the G(n, 1
2 ), and Alon et al. [3] further improve this bound to

Ω(
√
n).

The inspiration for our work was Fountoulakis et al. [9]. They introduce an
average-case analog of FPT and show that the k-Clique problem on G(n, p)
can be solved for all edge probabilities p(n) in expected FPT-time and in FPT-
time with high probability. Janson et al. [13] also showed that on Norros-Reittu
random graphs [23] a simple algorithm with access to the weights of the model
can find a (1− o(1))-approximation of maximum clique in polynomial time with
high probability.

2 Preliminaries

In order to achieve high general validity, we use the inhomogeneous random
graph model of van der Hofstad [30], which generalizes the models of Chung-Lu
[1, 2, 6] and Norros-Reittu [23] as well as the generalized random graphs. The
model has two adjustable parameters: the exponent of the scale-free network γ
and the average degree a. Depending on these two parameters, each node i has
a weight wi. This determines the edge probability pij := Pr[{i, j} ∈ E], which
should be set proportional to wiwj .

Weights wi. A simple way to fix the weights would be for example wi =

a(n/i)
1

γ−1 . However, we aim for a more general setting and proceed differ-
ently. Given the weights wi, we can use the empirical distribution function
Fn(w) = 1

n

∑n
i=1 � [wi ≥ w]. This gives us Fn(w) = Pr[W ≥ w], where W is

a random variable chosen uniformly from the weights w1, . . . , wn. Instead of
fixing wi, it is now easier to start from Fn(w) and assume the following.

Definition 1 (Power-Law Weights). We say that an empirical distribution
function Fn(w) follows the power law with exponent γ, if there exist two positive
constants α1, α2 such that

α1w
−γ+1 ≤ Fn(w) ≤ α2w

−γ+1.

Then, we require that weights w1, . . . , wn have the empirical distribution func-
tion Fn(w). Following van der Hofstad [30], we moreover require that the empir-
ical distribution function Fn satisfies the following properties.

Definition 2 (Regularity Conditions for Vertex Weights).

(1) Weak convergence of vertex weights. There exists a function F such
that limn→∞ Fn(x) = F (x).

(2) Convergence of average vertex weight. Let Wn and W have distribu-
tion functions Fn and F , respectively. Then, limn→∞ E[Wn] = E[W ] holds.
Furthermore, E[W ] > 0.
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The regularity of Fn guarantees that the intuition Fn(w) = Pr [W ≥ w] indeed
holds. Furthermore, it guarantees that the average degree in the inhomogeneous
random graphs converges, and that the largest weight is asymptotically bounded
by o(n), i.e. maxi∈{1,...,n} wi = o(n). Both assumptions are sufficient to generate
a scale-free network. [30]

Edge Probability pij. Other inhomogeneous random graph models use the fol-
lowing definitions:

pij = min
{

wiwj∑
n
k=1 wk

, 1
}

(Chung-Lu)

pij =
wiwj∑n

k=1 wk+wiwj
(Generalized Random Graph)

pij = 1− exp
{
− wiwj∑n

k=1 wk

}
(Norros-Reittu)

We use a more general approach and only assume the following.

Definition 3. We call pij the edge probability between nodes i and j of the
inhomogeneous random graph, if it is 0 for i = j, and otherwise fulfills

pij = O
(wiwj

n

)
and pij = Ω

(
wiwj

n+ wiwj

)

.

In order to see that this is a generalization of all aforementioned scale-free
random graph models, we observe that when γ ≥ 2, wmin = Θ(1) and
w−γ+2

min > w−γ+2
max and compute

n∑

k=1

wk = n · E[W ] = n ·
∫ wmax

wmin

Fn(w) dw = Θ(n · w−γ+2
min ) = Θ(n). (1)

It is useful to observe that the expected degree of each vertex can be asymptot-
ically upper bounded by its weight:

E [deg(i, G)] =

n∑

j=1

pij = O
(wi

n

n∑

j=1

wj

)
= O(wi) (2)

This bound is in fact tight, as shown by the following lemma. The proof is
omitted due to space limitations.

Lemma 1. E [deg(i, G)] = Θ(wi) for γ ≥ 2.

Notation. We use GSF (γ) to refer to the probability space of inhomogeneous
random graphs that were created as described above, and G to represent a graph
drawn from GSF (γ). By deg(v,G) we refer to the degree of a node v in a graph
G. We expect the nodes to be ordered from smallest to greatest weight. Finally,
we use the induced subgraph Gi := G[i, . . . , n] that describes an inhomogeneous
random graph G ← GSF where nodes 1, . . . , i − 1 have been removed from the
vertex set.
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3 Analysis for Power Law Exponent γ ≥ 3

In this section, we describe an algorithm to solve the clique problem in O(n2)
on average whenever the scale-free network exhibits an exponent of γ ≥ 3.

Greedy Algorithm. We exploit the scale-free structure by processing low-degree
nodes first. The algorithm repeats the following steps: Choose a node v with
minimum degree. If there is a (k − 1)-subset of neighbors of v that is a clique,
return the resulting k-clique. Otherwise, remove v from the graph. This implies
that when the algorithm reaches the high-degree nodes, the graph is almost
empty, which means that those nodes are of small degree, too. We use adjacency
lists to store the edges. A careful implementation then allows finding a node
with minimum degree in expected amortized constant time: An array of length
n stores in each position i all nodes of degree i. By memorizing an index in the
array, one can extract the currently smallest degree node in constant time. As
removing a node from the graph means removing the node from the array and
all adjacency lists of its neighbors, the overall runtime for updating the graph is
proportional to the sum of all degrees. By equation (2), this is O(n). We show
that the greedy algorithm has an expected runtime of O(n2).

Weight Algorithm. The difficulty in the analysis of the greedy algorithm is that
the node with the smallest degree may not have the smallest weight, and vice
versa.We therefore take a slight detour and analyze another approach, the weight
algorithm. We prove in the following Lemma 2 that it is at mostO(n) faster than
the greedy algorithm. The weight algorithm works like the greedy algorithm,
the only difference being that instead of taking the node with smallest degree,
it chooses a node v with minimum weight wv. This makes it more practical for
bounding the runtime. As we only use the weight algorithm for our analysis, it
does not matter that the weights are not available for real networks.

Lemma 2. On all inputs, the greedy algorithm is at most a factor of O(n) slower
than the weight algorithm.

Proof. Consider a graph G = (V,E) and let nodes v1, . . . , vn be ordered as
they are processed by the greedy algorithm. Let dmax be the largest degree
that occurs during the greedy algorithm, and let t be an iteration in which
this happens. Then, using some constant c, we can upper bound the runtime
of this algorithm by Tgreedy = c · n · (dmax

k−1

) · (k − 1)2. Therefore, by definition,
the subgraph Gt = G[vt, . . . , vn] of graph G has minimum degree dmax, and the
weight algorithm needs at least

(
dmax

k−1

) · (k− 1)2 time for processing a node from
this subgraph.

We now examine the expected degree of a node i in the weight algorithm, when
the processed nodes 1, . . . , i− 1 were already removed from the graph.

Lemma 3. Let G = (V,E) be a random graph drawn from GSF (γ), where γ ≥ 3,
and let Gi = G[i, . . . , n]. Then, we have

E [deg(i, Gi)] = O(1).
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Proof. We use the indicator variable �[{i, j} ∈ E], which attains value 1 if {i, j}
is an edge and 0 otherwise. Whenever possible, we hide constants in O(1).

E [deg(i, Gi)] =
n∑

j=i+1

E [�[{i, j} ∈ E]] =
n∑

j=i+1

pij = O
(wi

n

n∑

j=1

wj · �[wj > wi]
)

We now use the random variable W as described in equation (1), yielding

E [deg(i, Gi)] = O
(
wi · E [W · �[W ≥ wi]]

)

= O(wi · E [W |W ≥ wi] · Pr[W ≥ wi]
)

= O
(
wi · Fn(wi) ·

∫ wn

w1

Pr[W ≥ w |W ≥ wi] dw
)
.

To determine the probability that a weightW drawn uniformly at random admits
W ≥ w given that W ≥ wi holds, we distinguish two cases:

(1) w ≤ wi: Since we know that W ≥ wi, it is also larger than w.

(2) w > wi: The conditional probability simplifies to Pr[W≥w]
Pr[W≥wi]

= Fn(w)
Fn(wi)

.

This simplifies the integral and yields

E [deg(i, Gi)] = O
(

wi · Fn(wi) ·
(∫ wi

w1

1 dw +

∫ wn

wi

Fn(w)

Fn(wi)
dw

))

= O
(

wi(wi − w1) · Fn(wi) +
wi

−γ + 2

[
w−γ+2

]wn

wi

)

= O(w−γ+3
i ).

For γ ≥ 3, this term is constant, as the weights wi are in Ω(1).

For proving Theorem 1, it remains to show that the processed nodes are very
unlikely to have high degrees during the course of the weight algorithm.

Proof of Theorem 1. Let Tgreedy and Tweight be the running time of the greedy
and the weight algorithms, respectively. The runtime for processing node i in
the weight algorithm is denoted by Ti.

The number of (k − 1)-subsets of vertices a node with x neighbors allows
is

(
x

k−1

) ≤ 2x, and the time needed to check whether a subset is a clique is

(k− 1)2 ≤ x2. For the expected degree of node i we write μi. Thus, we can write

E[Tgreedy] = O(n · E [Tweight]) = O
(

n

n∑

i=1

E [Ti]

)

= O
(

n
n∑

i=1

n∑

x=1

(
x

k − 1

)

· (k − 1)2 · Pr [deg(i, Gi) = x]

)

= O
(

n

n∑

i=1

n∑

x=1

2xx2 · Pr
[

deg(i, Gi) ≥
(

1 +

(
x

μi
− 1

))

μi

])

.
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By Lemma 3, μi is constant. Applying a Chernoff bound gives

E[Tgreedy] = O
(

n

n∑

i=1

n∑

x=1

2xx2 ·
(

exp

(
x

μi
− 1

)/(
x

μi

)x/μi
)μi

)

= O
(

n

n∑

i=1

∞∑

x=1

(2eμi)
xx2−x

)

.

Since the inner sum converges to a constant, E[Tgreedy] = O(n2).

4 Analysis for Power Law Exponent γ ∈ (2, 3)

Using the greedy algorithm of the previous section for this case would imply a su-
perpolynomial runtime of poly(n)k since the neighborhood sizes in the algorithm
increase with n. This only yields the result that k-Clique is in expectation in
the parameterized class XP [8]. We therefore have to apply a third algorithm to
prove a better result. Instead of hoping that there will be few edges and therefore
cliques, we hope that the probability that the core contains a k-clique is high.
However, this approach is only feasible for small values of k. This shows that
k-Clique is parameterized tractable for the parameter k with high probability.

Partitioning Algorithm. To find a k-clique, the partitioning algorithm first
removes all nodes with degree below

√
n/ log logn. The obtained subgraph

G′ = (V ′, E′) is arbitrarily partitioned into components of size k. Each com-
ponent is then individually checked to determine if it is a clique. If no clique is
found, the algorithm searches exhaustively all k-subsets of V . It is easy to see
that this algorithm is correct.

We now want to prove that when k is small, the exhaustive search is triggered
only with negligible probability. For this, we first show that there are polynomi-
ally many nodes in V ′ and that their mutual edge probabilities are ≥ 1/ logn.
We then use this to prove that one of the partitions is likely to be a clique.
Note that a slightly larger threshold like

√
n would yield an edge probability of

1 − o(1), but the core V ′ is then empty if γ is close to 3. The chosen thresh-
old

√
n/ log logn is therefore more suitable for our analysis. As in the previous

section, the analysis would be much easier if, when choosing V ′, the algorithm
was allowed to choose the nodes according to their weight, but unfortunately it
only has access to their degree in the given graph. We do know, however, that
the weight and the expected degree of a node are equal up to a constant. Using
that, we can prove the two following lemmas:

Lemma 4 (Partitioning algorithm keeps polynomially many nodes).
Let γ ∈ (2, 3), and G = (V,E) be a scale-free graph drawn from GSF (γ). Then,

Pr
[
∃i > n− n

3−γ
2 : deg(i, G) <

√
n/ log logn

]
≤ exp

(−Θ(
√
n)
)
.
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Lemma 5 (Partitioning algorithm keeps only high-weight nodes). Let
γ ∈ (2, 3), and G = (V,E) be a scale-free graph drawn from GSF (γ). Then,

Pr
[
∃i ∈ V ′ : wi <

√
α1n/ logn

]
≤ exp

(−Θ(n
1
3 )
)
.

Both proofs will be given in the full version of the paper. It remains to show
that the partitioning algorithm needs more than k2n time only with negligible
probability, if k is small enough. The idea is that the core V ′ of the scale-free
network has larger edge probabilities than a dense Erdős-Rényi random graph,
which is known to allow finding cliques fast [9].

Proof of Theorem 2. If k > log
1
3 n, then n < ek

3

, which implies that the exhaus-
tive search of the partitioning algorithm runs in time nk < ek

4

and proves the

claim. We can therefore assume k ≤ log
1
3 n.

As excluding unlikely events does not affect small failure probabilities, we can
condition on the statements of Lemmas 4 and 5 and assume that there are more
than n

3−γ
2 nodes in V ′ and all nodes in V ′ have weight ≥ √

α1n/ logn. This
implies that wiwj ≥ α1n

logn and the edge probability between nodes i, j ∈ V ′ is

pij = Ω

(
wiwj

n+ wiwj

)

= Ω

(
1

logn

)

.

By choosing g(n) = log logn−Θ(1)
logn suitably, we can write the edge probability as

p := pij ≥ n−g(n).

A k-partition is a k-clique with probability ≥ p(
k
2). The probability of not

finding a clique before the exhaustive search is thus

≤
(
1− p(

k
2)
)
⌊

n
3−γ
2 /k

⌋

≤ exp

(

−
⌊
n

3−γ
2

k

⌋

p(
k
2)

)

≤ exp

(

− n
3−γ
2

2k
p(

k
2)

)

= exp

(

− n
3−γ
2 −g(n)(k2)

2k

)

,

since we have k ≤ log
1
3 n ≤ n

3−γ
2 /2 for large n and therefore �p1(n)/k	 ≥

p1(n)/k − 1 ≥ p1(n)/(2k).

Since k ≤ log
1
3 n, we can also assume that k ≤ √

(3 − γ)/(10 g(n)) holds

for large n. Similarly, we have that k ≤ n
3−γ
20 /2. Then, we obtain

(
k
2

)
g(n) ≤

(3 − γ)/10 and thus 3−γ
2 − g(n)

(
k
2

) ≥ 3−γ
10 . Therefore n

3−γ
2 −g(n)(k2) ≥ n

3−γ
10 .

Hence, as 2k < n
3−γ
20 , it follows that the probability of doing the exhaustive

search is ≤ exp
(
−n 3−γ

20

)
.

5 Conclusion

Social networks are becoming ubiquitous. There is a significant body of research
on the structural properties of such networks, but very little on how this can



Parameterized Clique on Scale-Free Networks 667

be exploited algorithmically. We have shown that for scale-free networks with
n nodes and power-law exponent γ, the notoriously hard k-Clique problem
becomes parameterized tractable for 2 < γ < 3 (runtime O(n exp(k4))) and
even polynomial time solvable for γ ≥ 3 (runtime O(n2)). In the future, we plan
to improve the latter runtime bound for the greedy algorithm, as well as examine
other NP-hard combinatorial problems (e.g. from bioinformatics) on scale-free
networks.
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