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a b s t r a c t

In recent years a lot of progress has beenmade in understanding the behavior of evolution-
ary computation methods for single- and multi-objective problems. Our aim is to analyze
the diversity mechanisms that are implicitly used in evolutionary algorithms for multi-
objective problems by rigorous runtime analyses. We show that, even if the population
size is small, the runtime can be exponential where corresponding single-objective prob-
lems are optimizedwithin polynomial time. To illustrate this behavior we analyze a simple
plateau function in a first step and extend our result to a class of instances of the well-
known SetCover problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Using evolutionary computation methods to solve multi-objective optimization problems has become very popular
during the last ten years [3,4]. In contrast to single-objective problemswhere oftenmuchmore is known about the structure
of a given problem, multi-objective problems seem to be more complicated and harder to understand. By increasing the
number of objectives, one has to optimize several (often conflicting) functions instead of a single one. This implies that there
is often not a single optimum, but a set of incomparable optima, known as the Pareto front. The number of such optimamay
increase with the number of objectives that are considered [22], but even optimizing only two objective functions may lead
to a Pareto front that is exponential in the input size [7].
Due to the problem of computing several optima instead of a single one, multi-objective optimization is often considered

as at least as difficult as single-objective optimization. However, there are examples where adding additional objectives
can speed up the optimization process of a single-objective problem [15,2]. In addition, it has been shown that some
combinatorial optimization problems such as minimum spanning trees or different covering problems may be easier in
a multi-objective model than in a single-objective one [8,19]. Often it is assumed that a multi-objective model for a single-
objective optimization problem should have the structure that the set of incomparable objective vectors is always small.
The results obtained in [19] and [8] mainly rely on this property as it implies that the algorithms considered in these papers
work with a small population size.
In this paper, we want to point out a different obstacle when using multi-objective models for single-objective

optimization problems. To the best of our knowledge, so far there has been no rigorous analysis of a problem on which
the multi-objective approach is slower by more than a factor bounded by the population size compared to the respective
single-objective one. Our aim is to show that a multi-objective model may lead to a totally inefficient optimization process
(in comparison to a single-objective one) even if the population size is always small. The reason for this is that the population
used to approximate the Pareto set may prevent the algorithm from obtaining optimal solutions. Evolutionary algorithms
for multi-objective optimization problems such as NSGA-II [5] or SPEA2 [24] make use of different diversity mechanisms
to obtain for each Pareto optimal search point a good approximation. For simple single-objective problems it has been
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shown in [10] that, depending on the diversity strategy, the individuals either help or block each other from developing the
population closer to the optimum. There, the right diversitymeasuremaymake the difference between a polynomial and an
exponential optimization time. The simplest strategy in the case of multi-objective optimization is to keep in the population
at each time step only solutions that are not dominated by any other solution produced during the optimization process.
The positive effect of using such a population (compared with one consisting always of a single individual) has already been
pointed out in [12].
We show that such a natural strategy may have problems to cope with plateaus of constant fitness. Plateaus are regions

in the search space where all search points have the same fitness. Often, the number of different objective values for a given
function is polynomially bounded while the number of different search points is exponential. This implies an exponential
number of solutions with the same objective value. The behavior of a simple evolutionary algorithm on different plateau
functions has already been investigated in [14] where it has been shown that evolutionary algorithms may be efficient on
such functions by doing a randomwalk on the plateau. The same holds for some single-objective combinatorial optimization
problems [13,18] forwhich it has been proven that evolutionary algorithms have to copewith plateaus of a similar structure.
We point out that in the case of multi-objective problems such a randomwalk may be prevented by other individuals in the
population.
We compare the (1+1) EA [6,14,20] with its multi-objective counterpart Global SEMO [11,12,19] and describe situations

where Global SEMO is exponentially slower even if the population size is always small. First, we illustrate this by considering
the optimization of a well-known artificial plateau function. Afterwards, the ideas are used to construct a class of SetCover
problems where Global SEMO with polynomially bounded population size fails to produce an optimal solution within
expected polynomial time while the (1 + 1) EA has a polynomially bounded expected optimization time. A preliminary
conference version of the results presented in this paper appeared in [9].
The outline of the paper is as follows. In Section 2, we introduce the algorithms that are subject of our analyses. In

Sections 3 and 4, we compare them on an artificial function and an instance of SetCover, respectively. We finish with
conclusions and some topics for future research.

2. Algorithms

In the following, we will define the setting for our theoretical investigations. We consider the search space X = {0, 1}n
and a pseudo-Boolean function f : {0, 1}n → Rk with k objectives. Concerning the algorithms, we examine simple single-
objective EA and compare it with its multi-objective counterpart. We define both algorithms for problems where all
objectives should be maximized. Minimization problems can be considered in a similar way by interchanging the roles
of ‘‘≥’’ and ‘‘≤’’ in the algorithms.
For single-objective optimization problems (where k = 1), our analyses are carried out for the (1+1) EAwhich has been

considered in theoretical investigations on pseudo-Boolean functions [6] as well as some of the best-known combinatorial
optimization problems [13,20,23]. The algorithm works with a population of size 1 together with elitism-selection and
creates in each iteration one offspring by flipping each bit with probability 1/n:

Algorithm 1 (1+1) EA
Choose an initial solution x ∈ {0, 1}n
repeat
Create x′ by flipping each bit of xwith probability 1/n.
if f (x′) ≥ f (x) then set x := x′. end if

until stop

Analyzing single-objective randomized search heuristics with respect to their runtime behavior, we are interested in
the number of constructed solutions until an optimal one has been created for the first time. This is called the runtime or
optimization time of the considered algorithm. Often, the expectation of this value is considered and called the expected
optimization time or expected runtime.
In the case ofmulti-objective optimization problems (k ≥ 2) the objective space becomes higher-dimensional. As there is

no canonical complete order on Rk, one compares the quality of search points with respect to the canonical partial order on
Rk, namely f (x) ≥ f (x′) iff fi(x) ≥ fi(x′) for all i ∈ {1, . . . , k}. We consider the algorithm called Global SEMO (Global Simple
Evolutionary Multi-objective Optimizer) [11,16] which has been investigated in the context of different multi-objective
problems, e. g., spanning tree problems [17,19] and covering problems [8]. This algorithm equals the (1+ 1) EA for the case
k = 1.
Global SEMO starts with an initial population P that consists of one single individual. In each generation, an individual x

of P is chosen randomly to produce one child x′ by mutation. In the mutation step, each bit of x is flipped with probability
1/n to produce the offspring x′. After that, x′ is added to the population if it is not dominated by any individual in P (i.e.,
there is no x ∈ P with f (x) ≥ f (x′) and f (x) 6= f (x′)). If x′ is added to P all individuals of P that are dominated by x′ or have
the same fitness vector as x′ are removed from P . In detail, Global SEMO is defined as follows.
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Algorithm 2 Global SEMO
Choose an initial solution x ∈ {0, 1}n
Determine f (x).
P ← {x}.
repeat
Choose x ∈ P uniformly at random.
Create x′ by flipping each bit of xwith probability 1/n.
Determine f (x′).
if no x ∈ P dominates x′ then
exclude all z where f (z) ≤ f (x′) from P .
add x′ to P .

end if
until stop

Analyzing multi-objective evolutionary algorithms with respect to their runtime behavior, we consider the number of
constructed solutions until for each Pareto optimal objective vector a solution has been included into the population and call
this the optimization time of the algorithm—the expected optimization time refers to the expected value of the optimization
time.
Throughout this paper we consider two very popular alternatives for choosing the initial solution in our defined

algorithms. On the one hand, we consider the case x = 0n. This is quite typical, e. g., for simulated annealing. On the other
hand, we consider the case where the initial solution x is chosen uniformly at random from the search space {0, 1}n. This is
the most popular choice for evolutionary algorithms.

3. Analysis of a plateau function

The behavior of the (1+ 1) EA on plateaus of different structures has been studied in [14] by a rigorous runtime analysis.
We want to examine the optimization times of multi-objective plateau functions in contrast to their single-objective
counterparts. [2] introduced the function

plateau1(x) :=

|x|0 : x 6∈ {1i0n−i | 1 ≤ i ≤ n}
n+ 1 : x ∈ {1i0n−i | 1 ≤ i < n}
n+ 2 : x = 1n

where |x|0 denotes the number of zeros in x. The definition of plateau1(x) is very similar to that of the well-known function
SPC [14]. We consider a simple multi-objective extension PL of the function plateau1 by adding a second objective that may
only attain the two objective values 0 and 1. The function PL is defined as follows.

PL(x) :=

(|x|0, 1) : x 6∈ {1i0n−i | 1 ≤ i ≤ n}
(n+ 1, 0) : x ∈ {1i0n−i | 1 ≤ i < n}
(n+ 2, 0) : x = 1n.

Adding the second objective in the defined way has the consequence that there are two Pareto optimal search points
namely 0n and 1n. As in the case of plateau1 the multi-objective extension consists of a plateau given by the search points
of SP := {1i0n−i | 1 ≤ i < n}. All search points of SP attain the objective vector (n+ 1, 0). Fig. 1 shows an illustration of this
function. The (1+ 1) EA maximizes PLwith respect to the lexicographic order≺lex, i.e., we define

(x1, x2) ≺lex (y1, y2) iff x1 < y1 ∨ (x1 = y1 ∧ x2 < y2).

It is easy to see that

PL(x) ≺lex PL(y) iff plateau1(x) < plateau1(y).

Fig. 2 shows the relation graph for the lexicographically sorted multi-objective function PL. Note that this is equivalent to
the relation graph for plateau1. Therefore, all results which only use the relative structure of plateau1 also hold for PLwith
respect to the lexicographic order ≺lex. As [2] showed an expected runtime of the (1 + 1) EA on plateau1 of Θ(n3), the
following theorem holds.

Theorem 1. The expected optimization time of the (1+ 1) EA on PL is O(n3) independently of the chosen initial solution.

This shows that the (1 + 1) EA is efficient on PL. We will now prove that Global SEMO requires an exponential runtime
to optimize PL and make use of some ideas given in Theorem 2 of [10].

Theorem 2. The optimization time of Global SEMO on PL is 2Ω(n1/24) with probability 1− e−Ω(n1/24) if the initial solution is 0n or
has been chosen uniformly at random.
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(a) Search space. (b) Function values.

Fig. 1. An illustration of the explored function PL.

Fig. 2. Relation graph for the objective function PL : {0, 1}4 → R2 with respect to the lexicographic order ≺lex . Reflexive and transitive edges are omitted
for clarity.

Proof. We prove the theorem for the case of a uniformly at random chosen initial solution. As the proof mainly relies on
proving that the search point 0n has been obtained before the search point 1n, the results also hold for starting with the
initial search point 0n.
Themaximal population size is two as there are only two different values for the second fitness value. The initial solution

x consists with probability 1 − e−Ω(n) of at most 2n/3 ones using Chernoff bounds. As long as no solution of SP has been
obtained, only solutions with at most |x|1 ones are accepted (|x|1 := n − |x|0). This implies that with probability at least
1−n−n/3, there is no step producing the optimal search point 1n until a first solution in SP is discovered. Moreover, this first
solution in SP has at most 3n/4 ones as the probability of flipping at least n/12 bits in a single mutation step is e−Ω(n).
We now consider a phase of 2n3/2 steps of the algorithm after for the first time a solution in SP has been produced.

Roughly speaking, wewill show that within such a phase the randomwalk of the solution y ∈ SP reaches the optimal search
point 1n only with very small probability while at the same time the other solution x quickly becomes x = 0n and produces
a descendant on SP (both in at most n3/2 steps) with high probability and therewith sets back y to small |y|1, which moves
it further away from the optimal search point 1n.
Let y = 1i0n−i be the solution on SP. We call a step relevant iff it produces a solution z ∈ SP with z 6= y. To achieve

this the bit yi or yi+1 has to flip. Therefore, the probability of not having a relevant step is at least 1− 2/n and the expected
number of non-relevant steps during this phase is at least (1− 2/n)2n3/2 = 2n3/2 − 4n1/2. There are at least

(1− n−2/3) · (2n3/2 − 4n1/2) ≥ 2n3/2 − 3n5/6
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non-relevant steps with probability

1− e

(
−(2n3/2−4n1/2)·

(n−2/3)
2

2

)
≤ 1− e

(
−n3/2· n

−4/3
2

)
= 1− e−Ω(n

1/6)

using Chernoff bounds.
The probability that at least n1/12 bits flip in a single accepted mutation step is at most n−n

1/12
. Such an event happens in

the phase of 2n3/2 steps only with probability at most 2n3/2−n
1/12
= n−Ω(n

1/12). Therefore, within this phase the Hamming
distance to the optimal search point decreases by at most 3n5/6n1/12 = 3n11/12 and an optimal search point has not been
obtained with probability 1− e−Ω(n

1/12).
In the followingwe show that after n3/2 steps, the solution 0n is inserted into the population and in a second phase of n3/2

steps a solution x ∈ SP (setting back the random walk) is produced from 0n with high probability. We consider in each step
the solution xwith the largest number of zeros in the population P . As an optimal search point will not be produced within
n3/2 steps with probability 1− e−Ω(n

1/12) such a solution will never be removed from P in this phase. Assume |x|1 = k. Then
the probability of producing in the next step a solution z with |z|0 > |x|0 is at least (k/(2en)). Summing up over the different
values of k, the search point 0n is included into P after an expectednumber of atmost en log n steps. After an expected number
of O(n) steps a solution with fitness value (n + 1, 0) is included afterwards. Hence, after an expected number of 2en log n
steps P = {x, 0n} where x ∈ SP and 4en log n steps are enough with probability at least 1/2. The probability of not having
obtained these solutions within n3/2 steps is upper bounded by e−Ω(n

1/2/ log n)
≤ e−Ω(n

1/4) considering n1/2/(4e log n) phases
of length 4en log n.
The probability to produce from 0n a search point x ∈ SP is at least 1/(en) as this can be achieved by flipping the first bit

of 0n. The probability to select 0n in the next mutation step is 1/2. Using Markov’s inequality the probability that such an x
has not been produced during 4en steps is bounded above by 1/2 and the probability that this has not happened during n3/2

steps is 2−Ω(n
1/2). We already know that, with probability 1 − e−Ω(n

1/12) a phase of 2n3/2 steps does not lead to an optimal
solution. Considering 2Ω(n

1/24) steps the probability of obtaining an optimal solution is still upper bounded by e−Ω(n
1/24)

which proves the theorem. �

4. Analysis of a SetCover instance

We now show that the behavior observed in the previous section may also occur when applying multi-objective models
to single-objective combinatorial optimization problems. We consider the well-known NP-hard SetCover problem for
which the use of a multi-objective model has already been examined in [8]. There, it has been shown that using a multi-
objective model for the SetCover problem leads to a better approximation ratio for Global SEMO than for the (1+ 1) EA in
a corresponding single-objective setting. The problem can be stated as follows.
Given a ground set S and a collection C1, . . . , Cn of subsets of S with corresponding positive costs c1, . . . , cn. The goal is

to find a minimum-cost selection Ci1 , . . . , Cik , 1 ≤ ij ≤ n and 1 ≤ j ≤ k, of subsets such that all elements of S are covered.
Considering the algorithms introduced in Section 2, a search point x ∈ {0, 1}n encodes a selection of subsets. w(x) =∑n
i=1 cixi measures the total cost of the selection and u(x) denotes the number of elements of S that are uncovered.

Considering RLS and the (1 + 1) EA for the SetCover problem, the fitness of a search point x is given by the vector
f (x) = (u(x), u(x) + w(x)) which should be minimized with respect to the lexicographic order. In our multi-objective
setting, we would like to minimize u(x) and p(x) := u(x) + w(x) at the same time. Using p(x) as the second objective
instead of justw(x) as done in [8] has the effect that the number of incomparable elements for themulti-objective approach
becomes smaller which leads to a smaller population size during the optimization process.
Our aim is to show that even such amodel which tends to work with a small populationmay prevent the algorithm from

being efficient. The class of instances under consideration can be defined as follows. Let k ∈ N be a constant. Furthermore,
set n := 4k + 3 and S := [n] := {j ∈ N | 1 ≤ j ≤ n}. We define the collection S := A ∪ B ∪ C ∪D , whereA consists of
the sets Ai := [n] \ {4k+ 4− i} (i ∈ [2k+ 2]),B contains exactly the set B := {2k+ 1, 2k+ 2, . . . , n}, C consists of the sets
Ci := {2k+ 1− 2i, 2k+ 2− 2i} (i ∈ [k]), andD consists of the sets Di := [2k+ 3− 2i] (i ∈ [k]). Thus, the set system S has
cardinality n = 4k+ 3. We define the cost functionw : S→ R+ by

w(M) :=


n : M ∈ A,
n− 1 : M = B,
4 : M ∈ C,
n+ 3− 4i : M = Di.

The case k = 4 is shown in Fig. 4.
An optimal solution consists of all subsets inB∪C and has price (n−1)+4k = 2n−4. There are 3 additional possibilities

to have covers x with p(x) ≤ 2n. If the current solution consists of two subsets ofA, it has cost 2n. A solution with exactly
one set of A and the set B has cost 2n − 1 and all solutions with the set B, a single set ofD and suitable subsets of C have
cost 2n−2. The latter solutions are called RW-solutions as Global SEMO can perform a randomwalk on these search points.
Note, that each cover contains at least one of the previous mentioned solutions of cost at most 2n as a subset. The objective
space of the problem is illustrated in Fig. 3. All set covers xwith p(x) ≤ 2n are shown in Table 1.
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Fig. 3. An illustration of the objective space of the examined set system.

Fig. 4. The examined set system for k = 4 and n = 19.

Table 1
All set covers xwith p(x) ≤ 2n.
Solution x p(x)

B ∪ C (optimum) 2n− 4
B ∪ {Di} ∪ {Cj | 1 ≤ j < i} for all i (RW) 2n− 2
B ∪ {Ai} for all i 2n− 1
{Ai, Aj} for all i 6= j 2n

Theorem 3. The expected optimization of the (1+ 1) EA on SC is O(n5) independently of the chosen initial solution.

Proof. The number of subsets inA is 2k+ 2 and the total number of all subset is 4k+ 3. If the current solution x contains at
least two subset ofA, u(x) = 0 holds, i.e., it represents a set cover. The expected time to produce a solution xwith u(x) ≤ 1
is O(1) as there are Θ(n) subsets covering exactly n − 1 elements. If the current solution x fulfills u(x) = 1 introducing
an additional subset of A leads to a cover. As there are Θ(n) subsets of A that are unchosen the expected waiting time to
obtain a cover is O(1).
As long as the price p of the cover x is greater than 2n an improvement can be obtained by removing a single subset of the

current solution, because each cover contains at a cover of cost at most 2n as a subset. A solution of price at most 2n can be
obtained by removing a suitable subset of the elements chosen in the current cover. We apply the method of the expected
multiplicativeweight decrease [20] to upper bound the time until a cover of price atmost 2n has been obtained. Thismethod
measures the progress an evolutionary algorithm achieves according to some distance function. It can be applied when a
set of accepted operations can be defined that turn the current solution into a solution with the desired property (in our
case a solution of cost at most 2n). Denote by D = p − 2n the amount by which the price of the current solution exceeds
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the value 2n. We consider all 1-bit flips that lead to a cover of smaller price. The sum of all these price reductions is at least
D. For simplicity all other 1-bit flips that are not accepted reduce the price by 0. Hence, the expected price after such a step
is at most 2n + (1 − 1/n) · D and after t such steps the expected price is at most 2n + (1 − 1/n)t · D. As the price of a
solution is always an integer and D = O(n2) holds after having obtained a cover for the first time, t = cn log n such steps, c
an appropriate constant, lead to a price of at most 2n. The expected waiting time for a 1-bit flip is upper bounded by ewhich
implies that a cover of price at most 2n is obtained after an expected number of O(n log n) steps.
The expected time to obtain from a cover of price 2n (i.e., two sets ofA) a cover of price at most 2n− 1 is O(n2) as one of

the chosen subset ofA has to be removed and the set B introduced. Similarly a solution of cost 2n− 2 can be obtained from
a solution of cost 2n− 1 by removing the chosen set ofA and introducing the largest set ofD in time O(n2).
Having obtained a solution with cost 2n − 2 the algorithm has to cope with a plateau containing O(n) solutions. The

solutions on the plateau differ by the number of subsets of C that are chosen. The number of subsets of C can be increased
(and also decreased) by a mutation step flipping the three bits corresponding to Di, Di+1 and Ci. The expected waiting time
for such a step is O(n3) and the expected number of steps needed to obtain the optimal solution where all subsets of C (and
none of D) are chosen is O(n2) using arguments similar to [14] for the function SPCn. Altogether, this leads to the upper
bound O(n5) stated in the theorem. �

In the case of themulti-objective approach, Global SEMOworks with a population of the different trade-offs with respect
to the two objective functions. This may have the effect that a single-solution cannot cope with the plateau given by the
instance SC. In fact the optimization time of Global SEMO on SC is exponential with probability asymptotically close to 1 if
the initial solution is chosen as the empty set.
Theorem 4. The optimization time of Global SEMO on SC is 2Ω(n) with probability 1− o(1) if it starts with the initial solution 0n.
For the proof of this theorem we need the following lemma.

Lemma 5. In the first n mutation steps Global SEMO chooses the empty solution 0n at least 12 ln n times for mutation with
probability at least 1− n−1/8.
Proof. We use the following generalized Chernoff bound [1]: Let p1, . . . , pn ∈ [0, 1] and X1, . . . , Xn be mutually indepen-
dent random variables with P[Xi = 1−pi] = pi and P[Xi = −pi] = 1−pi. Set X := X1+· · ·+Xn and p := (p1+· · ·+pn)/n.
Then

P[X < −a] < e−a
2/(2pn)

for any a > 0.
Thus,wehave to define randomvariables that give an estimation to the behavior of Global SEMO in the firstn steps. Global

SEMO starts with the empty solution 0n. Since we have w(M) > |M| for every set M ∈ S, the function (u + w) attains its
uniqueminimum for 0n. Hence, 0n remains in the population forever. The population size of Global SEMObefore the k-th step
is atmost k. Therefore, the probability that Global SEMOchooses the 0n formutation in the k-th step is at least 1/k. Let pi := 1

i
for all 1 ≤ i ≤ n. We set p := (p1 + . . .+ pn)/n and define random variables X̃i with P[̃Xi = 1] = pi and P [̃Xi = 0] = 1− pi
for all 1 ≤ i ≤ n. Then the random variable X̃ =

∑n
i=1 X̃i is a lower bound for the random variable describing the number

of mutation steps of 0n in the first n steps. To use the generalized Chernoff bound, we have to subtract the mean of X̃i from
the random variable X̃i for all i. We define Xi := X̃i − 1

i and X :=
∑n
i=1 Xi = X̃ −

∑n
i=1

1
i . The mean of all Xi and thus also

the mean of X is 0. We set a := 1
2pn ≥

1
2 ln n and apply the generalized Chernoff bound to the random variable X . We have

P
[
X̃ <

1
2
ln n

]
≤ Pr[X < −a] ≤ e−

a2
2pn ≤ e−

pn
8 = n−1/8.

As discussed above, this proves that Global SEMO chooses the solution 0n at least 12 ln n times for mutation in the first n
steps with probability at least 1− n−1/8. �

Proof of Theorem 4. As a first step we show that with high probability after 2n steps of Global SEMO

• the population size is 3,
• there is a set cover with a p-value less or equal 2n in the current population,
• the optimum is not determined.

Using Lemma 5, Global SEMO chooses 0n at least 12 ln n times for mutation in the first n steps with high probability. Now
we show that in these at least 12 ln n mutation steps of the search point 0

n, Global SEMO produces a solution with exactly
one A-set with high probability. We call such a search point an A1-solution. The probability that a mutation of 0n results
in anA1-solution is at least

|A|
n (1 −

1
n )
n−1
≥

1
2e . Thus, the probability that Global SEMO produces anA1-solution in 12 ln n

mutation steps of 0n is at least

1−
(
1−

1
2e

) 1
2 ln n

≥ 1− e−
1
10 ln n = 1− n−1/10.

As the p-value of everyA1-solution is n+ 1 and only the empty solution 0n has a lower p-value, such anA1-solution stays
in the population and can only be replaced by another A1-solution. Moreover, all strings with u-value between 2 and n− 1
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were removed from the current population. Thus, the population size is at most 3 (0n,A1-solution, and maybe a set cover)
from that moment on.
We consider another round of n steps of Global SEMO. Since the population size is atmost 3, 0nwill be chosen formutation

at least n/4 times in this phase with probability exponentially close to 1 using Chernoff bounds. The probability that such
a mutation of 0n results in a solution with exactly two sets ofA is at least |A|(|A|−1)

2n2
(1− 1

n )
n−2
≥

1
8e . We call such a search

point an A2-solution. Thus, the probability that at least one A2-solution is produced in n/4 mutation steps of 0n is at least
1 − (1 − 1

8e )
n/4
= 1 − e−Ω(n). Every A2-solution is a set cover and has a p-value of exactly 2n. Hence, with probability

1 − O(n−1/10) after 2n steps of Global SEMO the population size is 3 and there is a solution which is a set cover and has a
p-value of at most 2n.
The last thing that we have to show for the first claimed aim is that in the considered first phase of 2n steps, the optimum

is not determined. One can easily check that the unique optimum is the solution with all sets in B ∪ C and no other set.
Since Global SEMO starts with 0n, the optimum cannot be found until every bit that corresponds to a set ofB ∪ C has been
flipped at least in onemutation step of Global SEMO. Using |B∪C| > n/3, the probability that the optimum is not produced
in the first 2n steps of Global SEMO is at least

1−

(
1−

(
1−

1
n

)2n)n/3
≥ 1− e−Ω(n).

Table 1 shows all possible set covers with a p-value of at most 2n. Besides theA2-solutions (with p-value 2n), the optimal
search point (all sets ofB∪C with p-value 2n−4), and the solutionswith one set fromA and the set B (with p-value 2n−1),
the only set covering solutions that can be accepted by Global SEMO are of the following form. They contain exactly the set B
the sets C1 up to Ci and the set Di+1 for all 0 ≤ i ≤ k−1. For i = 0 the sets are B and D1 (and no set fromC). The p-value of all
these search points is 2n− 2. We call them RW-solutions since Global SEMO has to perform a randomwalk on these search
points to reach the optimum. After Global SEMO has determined the first RW-solution only RW-solutions or the optimum
are accepted from Global SEMO as set covers.
We already know that after 2n steps of the search point 0n, an A1-solution and a set cover of cost at most 2n has been

obtained with probability exponentially close to 1. If the set cover in the population after the first 2n steps of Global SEMO
is an RW-solution, at most the first k/3 sets of C are represented in this solution with probability at least

1−

(
1−

(
1−

1
n

)2n)k/3
≥ 1− e−Ω(k) = 1− e−Ω(n).

All covers of cost at most 2nwhich are not RW-solutions do not include a set of C. An RW-solution can be obtained from
the search point 0n by flipping two specific bits. The expected waiting time for this event is O(n2). This implies that the first
RW-solution obtained during the run of the algorithm, contains with probability 1− e−Ω(n) at most k/3 sets of C.
Wenowshow thatGlobal SEMOcannot perform the randomwalk on the RW-solutions since this randomwalk is reset too

frequently. Let us consider a phase of n3 steps of Global SEMO after the algorithm has obtained a population consisting of the
search point 0n, anA1-solution and an RW-solutionwith atmost k/3 sets ofC. We show that with probability exponentially
close to 1 the random walk is reset and also with probability exponentially close to 1 the optimum is not reached in this
phase of n3 steps. We call a mutation of 0n that results in the solution with sets B and D1 a reset-step, since this solution is
accepted (until the optimum is determined) and it brings the randomwalk at a hamming distance of k+1 from the optimum.
The probability for such a reset-step is at least 1

3n2
(1− 1

n )
n−2
≥

1
3en2
. The 3 in the denominator is caused by the population

size 3. Thus, there will be a reset-step in n3 steps of Global SEMO with probability at least

1−
(
1−

1
3en2

)n3
= 1− 2−Ω(n).

Nowwe bound the probability that the optimum is determined in a phase of n3 steps of Global SEMO. The probability to
reduce the distance to the optimumby integrating the next set ofC in the current set cover (plus integrating and deleting the
corresponding two sets ofD) is atmost 1/n3. Moreover, the probability to reduce the distance to the optimumby integrating
the next j sets of C in the current set cover (and additionally integrating and deleting the corresponding two sets ofD), is at
most 1/nj+2 (j ∈ [k]). For a fixed a ∈ [n3] there are at most ka possible ways to achieve the optimum in exactly a steps that
reduce the distance to the optimum by some value j > 0. And each of these ways has probability at most 1/nk+2a. Hence,
the probability to determine the optimum in n3 steps with exactly a random walk steps is at most n−k−a. Altogether, the
probability to reach the optimum in a phase of n3 steps is at most

n3∑
a=1

n−k−a = n−Ω(n).

We have shown that with probability at least 1− 2−Ω(n) in n3 steps of Global SEMO, there is a reset-step and the optimum
is not reached before this. Hence, within 2Ω(n) steps Global SEMO does not find the optimum with probability 1 − 2−Ω(n).
This proves the theorem as all our statements hold with probability 1− o(1). �
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In the case that the initial solution is chosen uniformly at random, the probability to obtain an exponential optimization
time can only be bounded in a much weaker way. However, the probability that Global SEMO fails on SC in this case is still
at least 1/poly(n), where poly(n) is a polynomial in n of small degree. This implies that the expected optimization time is
exponential.

Theorem 6. The expected optimization time of Global SEMO with a randomly chosen initial solution on SC is exponential.
Precisely, the optimization time is 2Ω(n) with probabilityΩ(1/n2e−1).

Proof. We now start with a random initial solution. Let m be the number of A-sets in the initial solution of Global SEMO.
By Chernoff bounds we know that with probability 1− eΩ(n),

n/6 ≤ m ≤ n/3.

Thus, the initial solution is a set cover with high probability and as long as there are no uncovered elements, the population
size remains 1 and the Global SEMO behaves like the (1+ 1) EA.
We now consider the first 2e n ln n steps. The probability that a specific set has been removed in this time from the initial

solution is

p := 1−
(
1−

1
n

)2e n ln n
≥ 1− e2e ln n ≥ 1− 1/n2e.

For n large enough we get the following upper bound on p.

p = 1−
(
1−

1
n

)2e ln n (
1−

1
n

)2e (n−1) ln n
≤ 1− 1/(2n2e).

The probability that any two sets fromA have not been removed within 2e n ln n steps is therefore

q = 1− pm −m(1− p)pm−1

≥ 1−
(
1−

1
2n2e

)n/6
−
n
3n2e

(
1−

1
2n2e

)n/6
= 1−

(
1−

1
2n2e

)n/6 (
1+

n
3n2e

)
≥ 1− e−1/(12n

2e−1)
(
1+

n
3n2e

)
= Ω(1/n2e−1)

by the power series of the exponential function.
It remains to calculate the probability that within the first 2e n ln n steps all sets except two A-sets are removed under

the condition that two arbitraryA-sets are never removed. LetW be the sum of all weights of all sets. Then,

W :=
∑
M∈S

w(M) = 10k2 + 26k+ 8 =
5
8
n2 +

11
4
n−

47
8
.

We want to calculate the probability to arrive at a weight sum of the current solution of 2n within 2e n ln n steps by using
again the method of the expected multiplicative weight decrease [20]. We consider a single step. Let w be the weight sum
before this step. The weight distance which we want to bridge to reach our aim is D = w − 2n. As the weight sum of all
current sets is w, the expected weight decrease of a 1-bit flip is D/(n − 2). Therefore, one 1-bit flip decreases the weight
distance by an expected factor of

(
1− 1

n−2

)
. And such a 1-bit occurs with probability 1/e. After 2e n ln n steps, the expected

weight distance is at most(
1−

1
n− 2

)2 n ln n
W ≤ W/n2 < 1.

Hence, with probability at least 1/2 we reach within 2e n ln n steps an A2-solution (cf. notation used in the proof of
Theorem 4) under the condition that two arbitraryA-sets are never removed. Using the considerations above, Global SEMO
attains with probability at leastΩ(1/n2e−1) a situation where the only current individual is anA2-solution.
We like to apply the argumentation in the proof of Theorem 4. For this aim we show the following. Starting from the

described situation, Global SEMO integrates 0n and anA1-solution with probability at least 1/2e. Moreover, if the set cover
of the current population is an RW-solution, then at most the first k/3 sets of C are represented in this search point with
probability 1− e−Ω(n).
The next accepted step of Global SEMO inwhich at least one bit has beenmutated removes at least one of the twoA-sets.

With probability (1 − 1
n )
n−1
≥

1
e no other bit is touched and thus an A1-solution is introduced in the current population.
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We consider a phase of 3e n steps of Global SEMO. As already shown in the proof of Theorem 4, at most the first k/3 sets of
C are represented in the current set cover after 5e n steps with probability at least

1− (1− (1−
1
n
)3en)k/3 ≥ 1− e−Ω(k) = 1− e−Ω(n).

The last thing we have to prove is that in this phase of 3e n steps with probability at least 1/2 the empty solution 0n is
produced by Global SEMO. Until this happens the population size is 2. Thus, with probability 1− e−Ω(n) by Chernoff bounds
at least n times theA1-solution is chosen for mutation and a 1-bit flip is performed. The probability that in these at least n
1-bit flips the 0n-string is produced is at least

1−
(
1−

1
n

)n
≥ 1−

1
e
>
1
2
.

This reduces to a situation already examined in the proof of Theorem 4 and therefore finishes this proof. �

5. Conclusions

Understanding the behavior of evolutionary algorithms for multi-objective optimization is a challenging task where
many questions are still open. We have investigated how a simple multi-objective approach can cope with plateaus of
constant fitness. Comparing amulti-objective EAwith its single-objective counterpart, we have pointed out that even simple
plateaus may be hard to optimize as the algorithmmay not have the opportunity to do a randomwalk. In our investigations
we considered a multi-objective version of a well-known pseudo-Boolean function as well as a class of instances from the
SetCover problem.
The results obtained in this paper can also be used to show that the approximation achievable byGlobal SEMO in expected

polynomial time may be bad. As Global SEMO just works on the dominance relation between the different search points,
such results may be obtained by changing the costs of the sets without changing the dominance relation. However, multi-
start strategies still have a good chance of being successful and it would be very interesting to examine which instances for
the SetCover problem cannot be approximated well by using multi-objective models and restart strategies. Similar studies
have been carried out recently in [21] for the (1+ 1) EA and the Vertex Cover problem.
We want to point out some further interesting topics for future work. First, it seems interesting to compare different

diversity strategies used in evolutionary algorithms for multi-objective optimization and investigate situations where using
a certain strategy can make the difference between an exponential and a polynomial runtime. Second, it would be desirable
to present a single-objective combinatorial optimization problem (not only a class of instances) where applying an intuitive
multi-objective approach increases the runtime exponentially even if the population size is always polynomially bounded.
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