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QUASIRANDOM LOAD BALANCING∗

TOBIAS FRIEDRICH† , MARTIN GAIRING‡ , AND THOMAS SAUERWALD§

Abstract. We propose a simple distributed algorithm for balancing indivisible tokens on graphs.
The algorithm is completely deterministic, though it tries to imitate (and enhance) a randomized
algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm,
surprisingly, closely approximates the idealized process (where the tokens are divisible) on important
network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized
process only by an additive constant. In contrast, the randomized rounding approach of Friedrich
and Sauerwald [Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009,
pp. 121–130] can deviate up to Ω(polylog(n)), and the deterministic algorithm of Rabani, Sinclair,
and Wanka [Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
1998, pp. 694–705] has a deviation of Ω(n1/d). This makes our quasirandom algorithm the first known
algorithm for this setting, which is optimal both in time and achieved smoothness. We further show
that on the hypercube as well, our algorithm has a smaller deviation from the idealized process than
the previous algorithms. To prove these results, we derive several combinatorial and probabilistic
results that we believe to be of independent interest. In particular, we show that first-passage
probabilities of a random walk on a path with arbitrary weights can be expressed as a convolution
of independent geometric probability distributions.
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1. Introduction. Load balancing is a requisite for the efficient utilization of
computational resources in parallel and distributed systems. The aim is to reallocate
the load such that afterward, each node has approximately the same load. Load
balancing problems have various applications, e.g., for scheduling [36], routing [5],
and numerical computation [37, 38].

Typically, load balancing algorithms iteratively exchange load along edges of an
undirected connected graph. In the natural diffusion paradigm, an arbitrary amount
of load can be sent along each edge at each step [30, 32]. For the idealized case of
divisible load, a popular diffusion algorithm is the first-order scheme by Subramanian
and Scherson [35] whose convergence rate is fairly well captured in terms of the spectral
gap [26].

However, for many applications the assumption of divisible load may be invalid.
Therefore, we consider the discrete case where the load can be decomposed only into
indivisible unit-size tokens. A very natural question is how much this integrality
assumption decreases the efficiency of load balancing. In fact, finding a precise quan-
titative relationship between the discrete and the idealized case is an open problem
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posed by many authors, e.g., [9, 11, 14, 15, 27, 30, 32, 35].
A simple method for approximating the idealized process was analyzed by Rabani,

Sinclair, and Wanka [32]. Their approach (which we will call the RSW algorithm)
is to round down the fractional flow of the idealized process. They introduce a very
useful parameter of the graph called local divergence and prove that it gives tight up-
per bounds on the deviation between the idealized process and their discrete process.
However, one drawback of the RSW algorithm is that it can end up in rather unbal-
anced states (cf. Proposition 6.1). To overcome this problem, Friedrich and Sauerwald
analyzed a new algorithm based on randomized rounding [11]. On many graphs, this
algorithm approximates the idealized case much better than the RSW algorithm’s
approach of always rounding down. A natural question is whether this randomized
algorithm can be derandomized without sacrificing its performance. For the graphs
considered in this work, we answer this question in the affirmative. We introduce
a quasirandom load balancing algorithm which rounds up or down deterministically
such that the accumulated rounding errors on each edge are minimized. Our approach
follows the concept of quasirandomness as it deterministically imitates the expected
behavior of its random counterpart.

Our results. We focus on two network topologies: hypercubes and torus graphs.
Both have been intensively studied in the context of load balancing (see, e.g., [11, 13,
19, 31, 32]). We measure the smoothness of the load by the so-called discrepancy (see,
e.g., [9, 11, 15, 32]), which is the difference between the maximum and minimum load
among all nodes.

For d-dimensional torus graphs we prove that our quasirandom algorithm ap-
proximates the idealized process up to an additive constant (Theorem 5.4). More
precisely, for all initial load distributions and time steps, the load of any vertex in
the discrete process differs from the respective load in the idealized process only by
a constant. This holds even for nonuniform torus graphs with different side lengths
(cf. Definition 5.1). For the uniform torus graph our results are to be compared with a
deviation of Ω(polylog(n)) for the randomized rounding approach (Theorem 6.3) and
Ω(n1/d) for the RSW algorithm (Proposition 6.1). Hence, despite the fact that our
approach is deterministic, it still improves over its random counterpart. Starting with
an initial discrepancy of K, the idealized process reaches a constant discrepancy after
O(n2/d log(Kn)) steps (cf. Corollary 3.2). Hence the same holds for our quasirandom
algorithm, which makes it the first algorithm for the discrete case which is optimal
both in time and discrepancy up to constant factors.

For the hypercube, we prove that the deviation of our quasirandom algorithm from
the idealized process is between Ω(log n) andO(log3/2 n) (Theorem 4.2). Note that the
analysis for the upper bound in this paper fixes a bug in the corresponding proof of the
conference version [12], where we claimed an upper bound of O(logn). For the hyper-
cube we also show that the deviation of the random approach is Ω(logn) (Theorem 6.2)
while the deviation of the RSW algorithm is Ω(log2 n) (Proposition 6.1). Again, our
quasirandom algorithm is substantially better than the RSW algorithm [32].

Our techniques. Instead of analyzing our quasirandom algorithm directly, we ex-
amine a new generic class of load balancing algorithms that we call bounded error
diffusion (BED). Roughly speaking, in a BED algorithm the accumulated rounding
error on each edge is bounded by some constant at all times. This class includes our
quasirandom algorithm.

The starting point of [32] and [11] as well as that of our paper is to express the
deviation from the idealized case by a certain sum of weighted rounding errors (equa-
tion (3.1)). In this sum, the rounding errors are weighted by transition probabilities
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of a certain random walk. Roughly speaking, Rabani, Sinclair, and Wanka [32] esti-
mate this sum directly by adding up all transition probabilities. In the randomized
approach of [11], the sum is bounded by Chernoff-type inequalities relying on inde-
pendent rounding decisions. We take a completely different approach and prove that
the transition probabilities between two fixed vertices are unimodal in time (cf. The-
orem 4.9 for the hypercube). This allows us to upper bound the complete sum by its
maximal summand (Lemma 3.6) for BED algorithms. The intriguing combinatorial
property of unimodality is the heart of our proof and seems to be the main reason why
we can outperform the previous approaches. Even though unimodality has a one-line
definition, it has become apparent that proving it can be a very challenging task re-
quiring intricate combinatorial constructions or refined mathematical tools (see, e.g.,
Stanley’s survey [34]).

It turns out that this is also the case for the transition probabilities of torus
graphs and hypercubes considered here. The reason is that explicit formulas seem
to be intractable, and typical approximations (e.g., Poissonization [6]) are far too
loose to compare consecutive transition probabilities. For the d-dimensional torus,
we use a local central limit theorem to approximate the transition probabilities by a
multivariate normal distribution which is known to be unimodal.

On hypercubes, the above method fails, as several inequalities for the torus graph
are true only for constant d. However, we can employ the additional symmetries of
the hypercube to prove unimodality of the transition probabilities by relating it to
a random walk on a weighted path. Somewhat surprisingly, this intriguing property
was previously unknown, although random walks on hypercubes have been intensively
studied (see, e.g., [6, 21, 28]).

We prove this unimodality result by establishing an interesting result concerning
first-passage probabilities of a random walk on paths with arbitrary transition prob-
abilities: If the loop probabilities are at least 1/2, then the first-passage probability
distribution can be expressed as a convolution of independent geometric distributions.
In particular, this implies that these probabilities are log-concave. Reducing the ran-
dom walk on a hypercube to a random walk on a weighted path, we obtain the result
that the transition probabilities on the hypercube are unimodal. Estimating the max-
imum probabilities via a balls-and-bins-process, we finally obtain our upper bound on
the deviation for the hypercube.

We believe that our probabilistic result for paths is of independent interest, as
random walks on the paths are among the most extensively studied stochastic pro-
cesses. Moreover, many analyses of randomized algorithms can be reduced to such
random walks (see, e.g., [29, Thm. 6.1]).

Related work. In the approach of Elsässer and Sauerwald [8] certain interacting
random walks are used to reduce the load deviation. This randomized algorithm
achieves a constant additive error between the maximum and average load on hyper-
cubes and torus graphs in time O(log(Kn)/(1− λ2)), where λ2 is the second largest
eigenvalue of the diffusion matrix. However, in contrast to our deterministic algo-
rithm, this algorithm is less natural and more complicated (e.g., the nodes must have
an accurate estimate of the average load).

Aiello et al. [1] and Ghosh et al. [15] studied balancing algorithms where, in each
time step, at most one token is transmitted over each edge. Due to this restriction,
these algorithms take substantially more time, i.e., they run in time at least linear in
the initial discrepancy K. Nonetheless, the best known bounds on the discrepancy
are only polynomial in n for the torus and Ω(log5 n) for the hypercube [15].

In another common model, nodes are only allowed to exchange load with at most
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one neighbor in each time step; see, e.g., [11, 14, 32]. In fact, the aforementioned
randomized rounding approach [11] was analyzed in this model. However, the idea of
randomly rounding the fractional flow such that the expected error is zero naturally
extends to our diffusive setting where a node may exchange load with all neighbors
simultaneously.

Quasirandomness describes a deterministic process which imitates certain prop-
erties of a random process. Our quasirandom load balancing algorithm imitates the
property that rounding up and down the flow between two vertices occurs roughly
equally often, using a deterministic process which minimizes these rounding errors
directly. In this way, we keep the desired property that the “expected” accumulated
rounding error is zero, but remove almost all of its (undesired) variance. Similar con-
cepts have been used for deterministic random walks [4], external mergesort [2], and
quasirandom rumor spreading [7]. The latter work presents a quasirandom algorithm
which is able to broadcast a piece of information at least as fast as its random coun-
terpart on the hypercube and most random graphs. However, in the case of rumor
spreading, the quasirandom protocol is just slightly faster than the random protocol,
while the quasirandom load balancing algorithm presented here substantially outper-
forms its random counterpart.

Organization of the paper. In section 2, we give a description of our bounded
error diffusion (BED) model. For a better comparison, we present some results for
the previous algorithms of [11] and [32] in section 6. In section 3, we introduce
our basic method which is used in sections 4 and 5 to analyze BED algorithms on
hypercubes and torus graphs, respectively.

2. Model and algorithms. We aim for balancing load on a connected, undi-
rected graph G = (V,E). Denote by deg(i) the degree of node i ∈ V and let
Δ = Δ(G) = maxi∈V deg(i) be the maximum degree of G. The balancing process is
governed by an ergodic, doubly stochastic diffusion matrix P with

Pi,j =

⎧⎪⎨⎪⎩
1
2Δ if {i, j} ∈ E,

1− deg(i)
2Δ if i = j,

0 otherwise.

Let x(t) be the load vector of the vertices at step t (or more precisely, after the
completion of the balancing procedure at step t). The discrepancy of such a (row)
vector x is maxi,j(xi−xj), and the discrepancy at step 0 is called initial discrepancyK.

The idealized process. In one time step each pair (i, j) of adjacent vertices shifts
divisible tokens between i and j. We have the following iteration: x(t) = x(t−1)P, and
inductively, x(t) = x(0)Pt. Equivalently, for any edge {i, j} ∈ E and step t, the flow

from i to j at step t is Pi,jx
(t−1)
i −Pj,ix

(t−1)
j . Note that the symmetry of P implies

that for t → ∞, x(t) converges toward the uniform vector (1/n, 1/n, . . . , 1/n).
The discrete process. There are different ways to handle nondivisible tokens. We

define the following BED model. Let Φ
(t)
i,j denote the integral flow from i to j at

time t. As Φ
(t)
i,j = −Φ

(t)
j,i , we have x

(t)
i = x

(t−1)
i − ∑j : {i,j}∈E Φ

(t)
i,j . Let e

(t)
i,j :=(

Pi,jx
(t−1)
i −Pj,ix

(t−1)
j

)−Φ
(t)
i,j be the excess load allocated to i as a result of rounding

on edge {i, j} in time step t. A negative value of e
(t)
i,j signifies a deficit of load. Note

that for all vertices i, x
(t)
i = (x(t−1)P)i +

∑
j : {i,j}∈E e

(t)
i,j . Now, let Λ be an upper

bound for the accumulated rounding errors (deviation from the idealized process),
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that is,
∣∣∑t

s=1 e
(s)
i,j

∣∣ � Λ for all t ∈ N and {i, j} ∈ E. All our bounds still hold if Λ is
a function of n and/or t, but we say that an algorithm is a BED algorithm only if Λ
is a constant.

For Pi,jx
(t)
i � Pj,ix

(t)
j , our new quasirandom diffusion algorithm chooses the flow

Φ
(t)
i,j from i to j to be either Φ

(t)
i,j =

⌊
Pi,jx

(t)
i −Pj,ix

(t)
j

⌋
or Φ

(t)
i,j =

⌈
Pi,jx

(t)
i −Pj,ix

(t)
j

⌉
such that

∣∣∑t
s=1 e

(s)
i,j

∣∣ is minimized. This yields a BED algorithm with Λ � 1/2,
which can be implemented with O(logΔ) storage per edge. Note that one can imagine
various other natural (deterministic or randomized) BED algorithms. To achieve this,
the algorithm has to ensure only that the errors do not add up to more than a constant.

With the above notation, the RSW algorithm uses Φ
(t)
i,j =

⌊
Pi,jx

(t)
i − Pj,ix

(t)
j

⌋
,

provided that Pi,jx
(t)
i � Pj,ix

(t)
j . In other words, the flow on each edge is always

rounded down. In our BED framework this would imply a Λ of order T after T time
steps.

A simple randomized rounding diffusion algorithm chooses for Pi,jx
(t)
i � Pj,ix

(t)
j

the flow Φ
(t)
i,j as the randomized rounding of Pi,jx

(t)
i −Pj,ix

(t)
j ; that is, it rounds up

with probability (Pi,jx
(t)
i −Pj,ix

(t)
j )−⌊Pi,jx

(t)
i −Pj,ix

(t)
j

⌋
and rounds down otherwise.

This typically achieves an error Λ of order
√
T after T time steps.

Handling negative loads. Unless there is a lower bound on the minimum load of
a vertex, negative loads may occur during the balancing procedure. In what follows,
we describe a simple approach for coping with this problem.

Consider a graph G for which we can prove a deviation of at most γ from the
idealized process. Let x(0) be the initial load vector with an average load of x̄. Then at
the beginning of the balancing procedure, each node generates γ additional (virtual)
tokens. During the balancing procedure, these tokens are regarded as common tokens,
but at the end they are ignored. First observe that since the minimum load at each
node in the idealized process is at least γ, it follows that at each step, every node has
at least a load of zero in the discrete process. Since each node has a load of x̄+O(γ) at
the end, we end up with a load distribution where the maximum load is still x̄+O(γ)
(ignoring the virtual tokens).

3. Basic method for analyzing our quasirandom algorithm. To bound
runtime and discrepancy of a BED algorithm, we always bound the deviation between
the idealized model and the discrete model, which is an important measure in its own

right. For this discussion, let x
(t)
� denote the load on vertex � in step t in the discrete

model and let ξ
(t)
� denote the load on vertex � in step t in the idealized model. We

assume that the discrete and idealized models start with the same initial load, that
is, x(0) = ξ(0). As derived in Rabani, Sinclair, and Wanka [32], their difference can be
written as

x
(t)
� − ξ

(t)
� =

t−1∑
s=0

∑
[i:j]∈E

e
(t−s)
i,j (Ps

�,i −Ps
�,j),(3.1)

where [i : j] refers to an edge {i, j} ∈ E with i < j, and “<” is some arbitrary
but fixed ordering on the vertices V . It will be sufficient to bound (3.1), as the
convergence speed of the idealized process can be bounded in terms of the second
largest eigenvalue.

Theorem 3.1 (see, e.g., [32, Thm. 1]). On all graphs with the second largest
eigenvalue in absolute value λ2 = λ2(P), the idealized process with divisible tokens
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reduces an initial discrepancy K to � within

2
1−λ2

ln
(
Kn2

�

)
time steps.

As λ2 = 1 − Θ(log−1 n) for the hypercube and λ2 = 1 − Θ(n−2/d) for the
d-dimensional torus [14], one immediately obtains the following corollary.

Corollary 3.2. The idealized process reduces an initial discrepancy of K to 1
within O(n2/d log(Kn)) time steps on the d-dimensional torus and O(log n log(Kn))
time steps on the hypercube.

An important property of all examined graph classes will be unimodality or log-
concavity of certain transition probabilities.

Definition 3.3. A function f : N → R≥0 is log-concave if f(i)
2 ≥ f(i−1)·f(i+1)

for all i ∈ N>0.
Definition 3.4. A function f : N → R is unimodal if there is a s ∈ N such that

f |x≤s as well as f |x≥s are monotone.
Log-concave functions are sometimes also called strongly unimodal [23]. We sum-

marize some classical results regarding log-concavity and unimodality.
Fact 3.5.

(i) Let f be a log-concave function. Then, f is also a unimodal function (e.g., [22,
23]).

(ii) Hoggar’s theorem [18]: Let f and g be log-concave functions. Then their

convolution (f ∗ g)(k) =∑k
i=0 f(i) g(k − i) is also log-concave.

(iii) Let f be a log-concave function and let g be a unimodal function. Then their
convolution f ∗ g is a unimodal function [23].

Our interest in unimodality is based on the fact that an alternating sum over a
unimodal function can be bounded by its maximum. More precisely, for a nonnegative
and unimodal function f : X → R and t0, . . . , tk ∈ X with t0 � · · · � tk, the following
holds: ∣∣∣∣ k∑

i=0

(−1)i f(ti)

∣∣∣∣ ≤ max
x∈X

f(x).

This is a special case of Abel’s inequality. We generalize both in the following lemma.
Lemma 3.6. Let f : X → R be nonnegative with X ⊆ R. Let A0, . . . , Ak ∈ R and

t0, . . . , tk ∈ X such that t0 � · · · � tk and |∑k
i=a Ai| � k for all 0 � a � k. If f has

� local extrema, then ∣∣∣∣ k∑
i=0

Ai f(ti)

∣∣∣∣ ≤ (�+ 1) k
k

max
j=0

f(tj).

Proof. Let us start with the assumption that f(ti), 0 � i � k, is monotone
increasing. With f(t−1) := 0, it is then easy to see that∣∣∑k

i=0 Ai f(ti)
∣∣ = ∣∣∑k

i=0

∑i
j=0 Ai (f(tj)− f(tj−1))

∣∣
=
∣∣∑k

j=0

∑k
i=j Ai (f(tj)− f(tj−1))

∣∣
�
∑k

j=0

∣∣f(tj)− f(tj−1)
∣∣ ∣∣∑k

i=j Ai

∣∣
�
∑k

j=0

∣∣f(tj)− f(tj−1)
∣∣ k

= k
k

max
j=0

f(tj).
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The same holds if f(ti), 0 � i � k, is monotone decreasing. If f(x) has � local
extrema, we split the sum into (�+1) parts such that f(x) is monotone on each part
and apply the above arguments.

Random walks. To examine the diffusion process, it will be useful to define a
random walk based on P. For any pair of vertices i, j, Pt

i,j is the probability that a
random walk guided by P starting from i is located at j at step t. In section 4 it will
be useful to set Pi,j(t) := Pt

i,j and to denote with fi,j(t) for i 
= j the first-passage
probabilities, that is, the probability that a random walk starting from i visits the
vertex j at step t for the first time.

4. Analysis on the hypercube. We first give the definition of the hypercube.
Definition 4.1. A d-dimensional hypercube with n = 2d vertices has vertex set

V = {0, 1}d and edge set E = {{i, j} | i and j differ in one bit}.
In this section we prove the following result.
Theorem 4.2. For all initial load vectors on the d-dimensional hypercube with

n vertices, the deviation between the idealized process and a discrete process with
accumulated rounding errors at most Λ is upper bounded by O(Λ · (log n)3/2) at all
times, and there are load vectors for which this deviation can be (logn)/2.

Recall that for BED algorithms Λ = O(1). With Theorem 3.1 it follows that any
BED algorithm (and in particular our quasirandom algorithm) reduces the discrep-
ancy of any initial load vector with discrepancyK toO(log n) withinO(log n log(Kn))
time steps.

4.1. Log-concave passage time on paths. To prove Theorem 4.2, we first
consider a discrete-time random walk on a path P = (0, 1, . . . , d) starting at node 0.
We make use of a special generating function called the z-transform. The z-transform
of a function g : N �→ R≥0 is defined by G(z) = ∑∞

i=0 g(i) · z−i. We will use the fact
that a convolution reduces to multiplication in the z-plane. More formally, if G1 and
G2 are the z-transforms of g1 and g2, respectively, then the product G1 · G2 is the
z-transform of their convolution g1 ∗ g2. Instead of the z-transform one could carry
out a similar analysis using the probability generating function. We choose to use the
z-transform here since it leads to slightly simpler arithmetic expressions.

Our analysis also uses the geometric distribution with parameter p, which is de-
fined by Geo(p)(t) = (1−p)t−1 p for t ∈ N\ {0} and Geo(p)(0) = 0. It is easy to check
that Geo(p) is log-concave. Moreover, the z-transform of Geo(p) is

∞∑
i=1

Geo(p)(i) · z−i =
p

z − (1− p)
.

For each node i ∈ P , let αi be the loop probability at node i and let βi be the
upward probability, i.e., the probability of moving to node i+ 1. Then, the downward
probability at node i is 1 − αi − βi. We can assume that βi > 0 for all i ∈ P \ {d}.
We are interested in the first-passage probabilities f0,d(t). Observe that

f0,d(t) = (f0,1 ∗ f1,2 ∗ · · · ∗ fd−1,d)(t).(4.1)

In the following argument, we will show that f0,d(t) is log-concave. Indeed, we show
a much stronger result.

Theorem 4.3. Consider a random walk on a path P = (0, 1, . . . , d) starting at
node 0. If αi ≥ 1

2 for all nodes i ∈ P, then f0,d can be expressed as convolution of
d independent geometric distributions.



754 T. FRIEDRICH, M. GAIRING, AND T. SAUERWALD

As the geometric distribution is log-concave and the convolution of log-concave
functions is again log-concave (cf. Fact 3.5), we immediately get the following corollary.

Corollary 4.4. Consider a random walk on a path P = (0, 1, . . . , d) starting at
node 0. If αi ≥ 1

2 for all nodes i ∈ P, then f0,d(t) is log-concave in t.
Note that Theorem 4.3 follows directly from Theorem 1.2 of Fill [10]. As The-

orem 4.3 is a crucial ingredient for proving our main result (Theorem 4.2) for the
hypercube, we give a different alternative proof of the statement. While Fill’s proof
is purely stochastic, our proof is based on functional analysis of the z-transform. Our
analysis for the discrete-time random walk should also be compared with Keilson’s
analysis of the continuous-time process [22]. The continuous-time process was inde-
pendently considered even earlier by Karlin and McGregor [20].

Before proving the theorem, we will show how to obtain f0,d(t) by a recursive
argument. To do this, suppose that we are at node i ∈ P \ {d}. The next step is a
loop with probability αi. Moreover, the next subsequent nonloop move ends at i+ 1
with probability βi

1−αi
and at i− 1 with probability 1−βi−αi

1−αi
. Thus, for all i ∈ P \{d},

fi,i+1(t) =
βi

1− αi
· Geo(1− αi)(t) +

1− βi − αi

1− αi
· (Geo(1− αi) ∗ fi−1,i ∗ fi,i+1)(t),

with corresponding z-transform

Fi,i+1(z) =
βi

1− αi
· 1− αi

z − αi
+

1− βi − αi

1− αi
· 1− αi

z − αi
· Fi−1,i(z) · Fi,i+1(z).

Rearranging terms yields

Fi,i+1(z) =
βi

z − αi − (1− βi − αi) · Fi−1,i(z)
(4.2)

for all i ∈ P \ {d}. So Fi,i+1(z) is obtained recursively with F0,1(z) = β0

z−(1−β0)
.

Finally, the z-transform of (4.1) is

F0,d(z) = F0,1(z) · F1,2(z) · . . . · Fd−1,d(z).(4.3)

We will now prove some properties of Fi,i+1(z) for i ∈ P \ {d}.
Lemma 4.5. Except for singularities, Fi,i+1(z) is monotone decreasing in z for

all i ∈ P \ {d}.
Proof. We will show the claim by induction on i. It is easy to see that the claim

holds for the base case (i = 0) since F0,1(z) = β0

z−(1−β0)
. Assume inductively that

the claim holds for Fi−1,i(z). With 1 − βi − αi ≥ 0 this directly implies that the
denominator of (4.2) is increasing in z. The claim for Fi,i+1(z) follows.

Lemma 4.6. For all i ∈ P \ {d}, Fi,i+1(z) has exactly i + 1 poles which are all
in the interval (0, 1). The poles of Fi,i+1(z) are distinct from the poles of Fi−1,i(z).

Proof. Before proving the claims of the lemma, we will show that Fi,i+1(0) ≥ −1

and Fi,i+1(1) = 1 for all i ∈ P \ {d}. Observe that F0,1(0) =
β0

−(1−β0)
= 1−α0

−α0
≥ −1,

since α0 ≥ 1
2 . Also observe that F0,1(1) = 1. Assume, inductively, that Fi−1,i(0) ≥ −1

and Fi−1,i(1) = 1. Then with (4.2), Fi,i+1(0) ≥ βi

−αi−(1−βi−αi)·(−1) =
βi

1−2αi−βi
≥ −1,

since 1 − 2αi ≤ 0. Moreover, Fi,i+1(1) =
βi

1−αi−(1−αi−βi)
= 1. Thus, Fi,i+1(0) ≥ −1

and Fi,i+1(1) = 1 for all i ∈ P \ {d}.
We will now show the claims of the lemma by induction. For the base case,

observe that F0,1(z) = β0

z−(1−β0)
has one pole at z = 1 − β0 > 0 and F−1,0 is not
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defined. This implies the claim for i = 0. Suppose that the claim holds for Fi−1,i(z),
and let z1, z2, . . . , zi be the poles of Fi−1,i(z). Without loss of generality, we assume
0 < z1 < z2 < · · · < zi < 1. Let gi(z) be the denominator of (4.2), that is,

gi(z) := z − αi − (1− βi − αi) · Fi−1,i(z).

Observe that
(i) gi(z) has the same set of poles as Fi−1,i(z);
(ii) limz→−∞ gi(z) = −∞; and
(iii) limz→∞ gi(z) = ∞.

By (4.2), Fi,i+1(z) has its poles at the zeros of gi(z). Lemma 4.5 shows that in each
interval (zj , zj+1) with 1 ≤ j ≤ i − 1, gi(z) is increasing in z. Using fact (i) this
implies that gi(z) has exactly one zero in each interval (zj , zj+1). Thus Fi,i+1(z) has
exactly one pole in each interval (zj , zj+1). Similarly, Lemma 4.5, together with facts
(i), (ii), and (iii), implies that Fi,i+1(z) has exactly one pole, say z′, in the interval
[−∞, z1) and one pole, say z′′, in the interval (zi,∞] . This implies that Fi,i+1(z) has
exactly i+1 poles which are all distinct from the poles of Fi−1,i(z). It remains for us
to show that z′ > 0 and z′′ < 1.

Since Fi−1,i(0) ≥ −1 and limz→−∞ Fi−1,i(z) = −0, it follows from Lemma 4.5
that −1 ≤ Fi−1,i(z) ≤ 0 for all real z < 0. So gi(z) < 0 for all real z < 0. It follows
that z′ > 0. Similarly, since Fi−1,i(1) = 1 and limz→∞ Fi−1,i(z) = +0, it follows
by Lemma 4.5 that 0 ≤ Fi−1,i(z) ≤ 1 for all real z > 1. So gi(z) > 0 for all real
z > 1. It follows that z′′ < 1. This finishes the proof of our inductive step. The claim
follows.

The distinctness of the i+1 poles of Fi−1,i(z), established in Lemma 4.6, is crucial
for the proof of the following lemma.

Lemma 4.7. Let (bj,i)
i
j=0 be the poles of Fi,i+1(z), i ∈ P \ {d}, and define

Pi(z) =
∏i

j=0(z − bj,i). Then Fi,i+1(z) = βi · Pi−1(z)
Pi(z)

for all i ∈ P \ {d}.
Proof. Our proof proceeds by induction on i. For the base case (i = 0), observe

that P−1(z) = 1 and thus F0,1(z) has the desired form. Suppose that the claim holds
for Fi−1,i(z). Then (4.2) implies

Fi,i+1(z) =
βi

z − αi − (1− βi − αi) · βi−1 · Pi−2(z)
Pi−1(z)

=
βi · Pi−1(z)

(z − αi) · Pi−1(z)− (1 − βi − αi) · βi−1 · Pi−2(z)
.(4.4)

Observe that (z−αi) ·Pi−1(z) is a polynomial of degree i+1, where the leading term
has a coefficient of 1. This also holds for the denominator of (4.4), since there we
subtract only a polynomial of order i− 1. By Lemma 4.6 we know that Fi,i+1(z) has
exactly i + 1 real positive poles which are all distinct. So the denominator of (4.4)
has exactly d+1 zeros—the bj,i’s. The only polynomial of order i+1 that has exactly
those zeros and leading coefficient 1 is Pi(z). It follows that the denominator of (4.4)
is equal to Pi(z). The claim follows.

We are now ready to prove Theorem 4.3.
Proof of Theorem 4.3. By (4.3) and Lemma 4.7, we get

F0,d(z) =

d−1∏
i=0

Fi,i+1(z) =

d−1∏
i=0

(
βi · Pi−1(z)

Pi(z)

)
=

∏d−1
i=0 βi

Pd−1(z)
= Kd ·

d−1∏
i=0

1− bi,d−1

z − bi,d−1
,



756 T. FRIEDRICH, M. GAIRING, AND T. SAUERWALD

where (bi,d−1)
d−1
i=0 are the poles of Fd−1,d(z) as defined in Lemma 4.7 and Kd =∏d−1

i=0
βi

1−bi,d−1
. By Lemma 4.6, bi,d−1 ∈ (0, 1) for all i. Now for each i the term

1−bi,d−1

z−bi,d−1
is the z-transform of the geometric distribution with parameter 1 − bi,d−1,

i.e., Geo(1− bi,d−1)(t).
Thus, f0,d(t) can be expressed as the convolution of d independent geometric

distributions

f0,d(t) = Kd · [Geo(1− b0,d−1) ∗ Geo(1 − b1,d−1) ∗ · · · ∗ Geo(1− bd−1,d−1)](t).

Moreover, since f0,d is a probability distribution over t and the convolution of proba-
bility distributions is again a probability distribution, we have Kd = 1. The theorem
follows.

It should be noted that it follows from [10, Thm. 1.2] that the parameters (bi,d−1)
d−1
i=0

in the geometric distributions are the eigenvalues of the underlying transition matrix.
Recall that our aim is to prove unimodality for the function Pt

0,j (in t). Using the
simple convolution formula P0,j = f0,j ∗Pj,j and the log-concavity of f0,j , it suffices
for us to prove that Pj,j is unimodal (cf. Fact 3.5). Next, we will prove that Pj,j is
also nonincreasing in t.

Lemma 4.8. Let P be the (d+ 1)× (d+ 1)-transition matrix defining an ergodic
Markov chain on a path P = (0, . . . , d). If Pii ≥ 1

2 for all 0 � i � d, then for all
0 � i � d, Pt

i,i is nonincreasing in t.
Proof. It is well known that ergodic Markov chains on paths are time-reversible

(see, e.g., section 4.8 of Ross [33]). To see this, let π = (π0, . . . , πd) be the stationary
distribution. Then for all 0 ≤ i ≤ d − 1 the rate at which the process goes from i to
i+ 1 (namely, πiPi,i+1) is equal to the rate at which the process goes from i+ 1 to i
(namely, πi+1Pi+1,i). Thus, P is time-reversible.

One useful property of a time-reversible matrix is that all its eigenvalues are real.
The Gers̆gorin disc theorem states that every eigenvalue λj , 0 ≤ j ≤ d, satisfies the
condition

|λj −Pii| ≤ 1−Pii

for some 0 ≤ i ≤ d. Since Pii ≥ 1
2 , this directly implies that all eigenvalues are in the

interval [0, 1].
It is well known that there is an orthonormal base of Rd+1 which is formed by

the eigenvectors v0, v1, . . . , vd (see, e.g., [17]). Then for any n-dimensional vector

w ∈ R
d+1, w =

∑d
j=0〈w, vj〉 vj , where 〈 · , · 〉 denotes the inner product. Applying

this to the ith unit vector ei and using [ · ]i to denote the ith entry of a vector in R
d+1,

we obtain

ei =
d∑

j=0

〈ei, vj〉 vj =
d∑

j=0

[vj ]ivj .

Thus,

Ptei = Pt

( d∑
j=0

[vj ]i vj

)
=

d∑
j=0

[vj ]i P
t vj =

d∑
j=0

[vj ]i λ
t
jvj ,

and finally

Pt
i,i =

[
Ptei

]
i
=

d∑
j=0

[vj ]i λ
t
j [vj ]i =

d∑
j=0

λt
j [vj ]

2
i ,
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which is nonincreasing in t as [vj ]i ∈ R and 0 ≤ λj ≤ 1 for all 0 ≤ j ≤ d.

4.2. Unimodal transition probabilities on the hypercube. Combining
Lemma 4.8 and Theorem 4.3 and then projecting the random walk on the hyper-
cube on a random walk on a path, we obtain the following result.

Theorem 4.9. Let i, j ∈ V be two vertices of a d-dimensional hypercube. Then,
Pi,j(t) is unimodal.

Proof. We use the following projection of a random walk on a d-dimensional
hypercube with loop probability 1/2 to a random walk on a path with d vertices,
again with loop probability 1/2. The induced random walk is obtained from the
mapping x �→ |x|1; that is, vertices in {0, 1}d with the same number of ones are
equivalent. It is easy to check that this new random walk is a random walk on a
path with vertices 0, 1, . . . , d that moves right with probability λk = d−k

2k , left with

probability μk = d
2k , and loops with probability 1

2 . (This process is also known as the
Ehrenfest chain [16].)

Consider now the random walk on the path with vertex set {0, 1, . . . , d} and let
j be an arbitrary number with 0 � j � d. Recall that P0,j can be expressed as a
convolution (cf. [16]) of P and f as follows:

P0,j = f0,j ∗Pj,j .

By Corollary 4.4, f0,j(t) is log-concave. Moreover, Lemma 4.8 implies that Pj,j(t)
is nonincreasing in t and hence unimodal. As the convolution of any log-concave
function with any unimodal function is again unimodal (cf. Fact 3.5), it follows that
P0,j(t) is unimodal in t.

Now fix two vertices i, j of the d-dimensional hypercube. By symmetry, we may
assume that i = 0d ≡ 0. Conditioned on the event that the projected random walk
is located at a vertex with |j|1 ones at step t, every vertex with |j|1 ones is equally
likely. This gives P0,j(t) = P0,|j|1(t)/

(
d

|j|1
)
, and therefore the unimodality of P0,|j|1(t)

implies directly the unimodality of P0,j(t), as required.
With more direct methods, one can prove the following supplementary result

giving further insight into the distribution of Pi,j(t). As the result is not required for
our analysis, the proof is given in the appendix.

Proposition 4.10. Let i, j ∈ V be two vertices of the d-dimensional hypercube
with dist(i, j) � d/2. Then Pi,j(t) is monotone increasing.

4.3. Analysis of the discrete algorithm. We are now ready to prove our
main result for hypercubes.

Proof of Theorem 4.2. By symmetry, it suffices to bound the deviation at the
vertex 0 ≡ 0d. Hence by (3.1) we have to bound∣∣x(t)

0 − ξ
(t)
0

∣∣ � ∣∣∑t−1
s=0

∑
[i:j]∈E e

(t−s)
i,j (P0,i(s)−P0,j(s))

∣∣
�
∣∣∑t−1

s=0

∑
[i:j]∈E e

(t−s)
i,j P0,i(s)

∣∣+ ∣∣∑t−1
s=0

∑
[i:j]∈E e

(t−s)
i,j P0,j(s)

∣∣
�
∑

[i:j]∈E

∣∣∑t−1
s=0 e

(t−s)
i,j P0,i(s)

∣∣+∑[i:j]∈E

∣∣∑t−1
s=0 e

(t−s)
i,j P0,j(s)

∣∣.
Using Theorem 4.9, we know that the sequences P0,i(s) and P0,j(s) are unimodal
in s, and hence we can bound both summands by Lemma 3.6 (where � = 1) to obtain
that ∣∣x(t)

0 − ξ
(t)
0

∣∣ � 2Λ
∑

[i:j]∈E maxt−1
s=0 P0,i(s) + 2Λ

∑
[i:j]∈E maxt−1

s=0 P0,j(s)

= 2Λ d
∑

i∈V maxt−1
s=0 P0,i(s).(4.5)
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To bound the last term, we conceptualize the random walk as the following process,
similar to a balls-and-bins process. In each step t ∈ N we choose a coordinate i ∈
{1, . . . , d} uniformly at random. Then with probability 1/2 we flip the bit of this
coordinate; otherwise we leave it unchanged. (Equivalently, we set the bit to 1 with
probability 1/2 and to zero otherwise.)

Now we partition the random walk’s distribution at step t according to the number
of different coordinates chosen (not necessarily flipped) up to step t. Consider P0,x(t)
for a vertex x ∈ {0, 1}d. Note that by the symmetry of the hypercube, P0,x(t) is the
same for all x ∈ {0, 1}d with the same |x|1. Hence, let us fix a value � with 0 � � � d
and let us consider P0,�(t), which is the probability for visiting the vertex, say, 1�0d−�

from 0 ≡ 0d in round t. Since (i) the k chosen coordinates must contain the � bits,
which should be one and (ii) all k chosen coordinates must be set to the correct value,
we have

(4.6) P0,�(t) =
∑d

k=� Pr [exactly k coordinates chosen in t steps] · 2−k
(
d−�
k−�

)/(
d
k

)
.

Using this to estimate P0,i(s), we can bound (4.5) by∣∣x(t)
0 − ξ

(t)
0

∣∣ � 2Λ d
∑d

�=0

(
d
�

)
max∞s=0 P0,�(s)

= 2Λ d ·
(
1 +

∑d
�=1

(
d
�

)
max∞s=0

∑d
k=� Pr [exactly k coordinates chosen in s steps] · (

d−�
k−�)
(dk)

· 2−k

)

� 2Λ d ·
(
1 +

∑d
�=1 maxdk=�

{
(d−�
k−�) (

d
�)

(dk)
· 2−k

})

= 2Λ d ·
(
1 +

∑d
�=1 maxdk=�

{(
k
�

) · 2−k
})

� 2Λ d ·
(
1 +

∑d
�=1 maxdk=�

{(
k


k/2�
) · 2−k

})

� 2Λ d ·
(
1 +

∑d
�=1 maxdk=�

{
(1 + o(1)) · 2k√

π k
· 2−k

})
= O

(
Λ d

(
1 +

∑d
�=1

1√
�

))
= O(Λ d3/2

)
,

where we have used the simple consequence of Stirling’s formula that
(

k

 k

2 �
)
� (1 +

o(1)) · 2k/√π k . This proves the first claim of the theorem.
The second claim follows by the following simple construction. Define a load

vector x(0) such that x
(0)
v := d for all vertices v = (v1, v2, . . . , vd) ∈ {0, 1}d with v1 = 0,

and x
(0)
v := 0 otherwise. Then for each edge {i, j} ∈ E with 0 = i1 
= j1 the fractional

flow at step 1 is
(
Pi,jx

(0)
i −Pi,jx

(0)
j

)
= + 1

2 . Since in the first time step no rounding
errors have yet been incurred, each edge is allowed to round up and down arbitrarily.

Hence we can let all these edges round toward j; i.e., Φ
(1)
i,j := 1 for each such edge

{i, j} ∈ E. By definition, this implies for the corresponding rounding error that

e
(1)
i,j = − 1

2 . Moreover, we have the following load distribution after step 1. We have
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x
(1)
v = 0 for all vertices v if v1 = 0, and x

(1)
v = d otherwise. Similarly, the fractional

flow for each edge {i, j} ∈ E with 0 = i1 
= j1 is
(
Pi,jx

(0)
i − Pi,jx

(0)
j

)
= − 1

2 . Since

e
(1)
i,j = − 1

2 ,
∣∣∑2

s=1 e
(s)
i,j

∣∣ will be minimized if e
(2)
i,j = 1

2 . Hence we can set Φ
(2)
i,j := −1.

This implies that we end up in exactly the same situation as at the beginning: the
load vector is the same and also the sum over the previous rounding errors along each
edge is zero. We conclude that there is an instance of the BED algorithm for which
x(t) = x(tmod 2), which proves the second claim of Theorem 4.2.

5. Analysis on d-dimensional torus graphs. We start this section with the
formal definition of a d-dimensional torus.

Definition 5.1. A d-dimensional torus T (n1, n2, . . . , nd) with n = n1 ·n2 · . . . ·nd

vertices has vertex set V = {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1} × · · · × {0, 1, . . . ,
nd− 1} and every vertex (i1, i2, . . . , id) ∈ V has 2d neighbors ((i1 ± 1) mod n1, i2, . . . ,
id), (i1, (i2±1) mod n2, i3, . . . , id), . . . , (i1, i2, . . . , id−1, (id±1) mod nd). Henceforth,
we will always assume that d = O(1). We call a torus uniform if n1 = n2 = · · · =
nd = d

√
n.

Without loss of generality we will assume in the remainder that n1 � n2 � · · · �
nd. By the symmetry of the torus, this does not restrict our results.

Recall that λ2 denotes the second largest eigenvalue in absolute value. Before
we analyze the deviation between the idealized and discrete process, we estimate
(1− λ2)

−1 for general torus graphs.
Lemma 5.2. For a d-dimensional torus T = T (n1, n2, . . . , nd), (1 − λ2)

−1 =
Θ
(
n2
d

)
.

Proof. Following the notation of [3], for a k-regular graph G, let L(G) be the
matrix given by Lu,u(G) = 1, Lu,v(G) = − 1

k if {u, v} ∈ E(G), and Lu,v(G) = 0
otherwise. Let Cq be a cycle with q vertices. As shown in [3, Ex. 1.4], the eigenvalues
of L(Cq) are 1 − cos

(
2πr
q

)
, where 0 � r � q − 1. In particular, the second smallest

eigenvalue of L(Cq) denoted by τ is given by 1− cos
(
2π
q

)
.

Let × denote the Cartesian product of graphs; that is, for any two graphs G1 =
(V1, E1), G2 = (V2, E2), the graph G := G1 × G2 with G = (V,E) is defined by
V = V1 × V2 and

E :=
{(

(u1, u2), (v1, u2)
)
: u2 ∈ V2 ∧ {u1, v1} ∈ E1

}
∪ {((u1, u2), (u1, v2)

)
: u1 ∈ V1 ∧ {u2, v2} ∈ E2

}
.

It is straightforward to generalize this definition to the Cartesian product of more than
two graphs and it is then easy to check that T (n1, n2, . . . , nd) = Cn1 × Cn2 × · · · ×
Cnd

. The following theorem expresses the second smallest eigenvalue of the Cartesian
product of graphs in terms of the second smallest eigenvalue of the respective graphs.

Theorem 5.3 (see [3, Thm. 2.12]). Let G1, G2, . . . , Gd be d graphs and let
τ1, τ2, . . . , τd be the respective second smallest eigenvalue of L(G1),L(G2), . . . ,L(Gd).
Then the second smallest eigenvalue τ of L(G1×G2×· · ·×Gd) satisfies τ = 1

d mindk=1 τk.
Applying this theorem to our setting, it follows that the second smallest eigen-

value τ of L(T ) is τ = 1
d

(
1− cos

(
2π
nd

))
. As nd � d

√
n, we have cos

(
2π
nd

)
= 1−Θ

(
1
n2
d

)
.

Using this and the fact that d is a constant, we obtain τ = Θ
(

1
n2
d

)
. As T is a k-regular

graph, the transition matrix P(T ) can be expressed as P(T ) = I − 1
2L(T ). This im-

plies for the second smallest eigenvalue of L(T ), τ , and the second largest eigenvalue
of the transition matrix P(T ), λ2, that λ2 = 1 − 1

2τ. Hence λ2 = 1 − Θ
(

1
n2
d

)
, which

completes the proof.
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Note that the corresponding results of [11, 32] hold only for uniform torus graphs
while the following result for our algorithm holds for general torus graphs.

Theorem 5.4. For all initial load vectors on the (not necessarily uniform)
d-dimensional torus graph with n vertices, the deviation between the idealized pro-
cess and a discrete process with accumulated rounding error at most Λ is O(Λ) at all
times.

For any torus graph, we know that (1 − λ2)
−1 = Θ(n2

d) by Lemma 5.2. With
Theorem 3.1 it follows that any BED algorithm (and in particular our quasirandom
algorithm) reduces the discrepancy of any initial load vector with discrepancy K
to O(1) within O(n2

d log(Kn)) time steps (for uniform torus graphs, this number of
time steps is O(n2/d log(Kn))).

Proof of Theorem 5.4. By symmetry of the torus graph, we have Pi,j = P0,i−j .
Hence we set Pi = P0,i. We will first reduce the random walk Pi,j on the finite
d-dimensional torus to a random walk on the infinite grid Z

d, both with loop prob-
ability 1/2. Let Pi,j be the transition probability from i to j on Z

d defined by
Pi,j = 1/(4d) if |i− j|1 = 1, Pi,i = 1/2, and 0 otherwise. For i = (i1, . . . , id) ∈ V we
set

H(i) := (i1 + n1 Z, i2 + n2 Z, . . . , id + nd Z) ⊂ Z
d.

With Pi := P0,i, we observe that

Ps
i =

∑
k∈H(i)

P
s

k

for all s � 0 and i ∈ V . We extend the definition of ei,j in the natural way by setting

ek,� := ei,j ∀ i, j ∈ V and k ∈ H(i), � ∈ H(j).

Let ARR = {±u� | � ∈ {1, . . . , d}} ∈ Z
d with u� being the �th unit vector.

Following (3.1) and using the fact that by symmetry it suffices to bound the deviation
at the vertex 0 := 0d, we get

x
(t)
0 − ξ

(t)
0 =

1

2

t−1∑
s=0

∑
i∈V

∑
z∈ARR

e
(t−s)
i,i+z (P

s
i −Ps

i+z)

=
1

2

t−1∑
s=0

∑
i∈V

∑
z∈ARR

e
(t−s)
i,i+z

( ∑
k∈H(i)

P
s

k −
∑

�∈H(i+z)

P
s

�

)

=
1

2

t−1∑
s=0

∑
z∈ARR

∑
i∈V

e
(t−s)
i,i+z

( ∑
k∈H(i)

P
s

k −P
s

k+z

)

=
1

2

∑
i∈V

∑
z∈ARR

∑
k∈H(i)

t−1∑
s=0

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

)
.

As Zd =
⋃

i∈V H(i) is a disjoint union, we can also write

x
(t)
0 − ξ

(t)
0 =

1

2

∑
k∈Zd

∑
z∈ARR

t−1∑
s=0

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

)
.(5.1)
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We now carefully break down the sums of (5.1) and show that each part can be
bounded by O(Λ). For this argument, our main tool will be Lemma 3.6. As we cannot
prove unimodality of

(
P

s

k −P
s

k+z

)
directly, we will use appropriate local central limit

theorems to approximate the transition probabilities P
s

k of Zd with a multivariate

normal distribution. To derive the limiting distribution P̃s
k of our random walk Pi,j ,

we follow Lawler and Limic [25] and let X = (X1, . . . , Xd) be a Z
d-valued random

variable with Pr [X = z] = 1/(4d) for all z ∈ ARR and Pr
[
X = 0d

]
= 1/2. Observe

that E [XjXk] = 0 for j 
= k since both of them cannot be nonzero simultaneously.
Moreover,E [XjXj] =

1
4d (−1)2+ 1

4d (+1)2 = 1
2d for all 1 � j � d. Hence the covariance

matrix is

Γ :=
[
E [XjXk]

]
1�j,k�d

= (2d)−1I.

From (2.2) of Lawler and Limic [25] we get

P̃s
k =

1

(2π)d sd/2

∫
Rd

exp

(
�
x · k√
s

)
exp

(
−x · Γx

2

)
ddx,

where � =
√−1 denotes the imaginary unit. From here, we can further conclude that

P̃s
k =

1

(2π)d sd/2

∫
Rd

exp

(
�
x · k√
s

− x · Γx
2

)
ddx

=
1

(2π)d sd/2

∫
Rd

exp

(
�
x · k√
s

− ‖x‖22
4d

)
ddx

=
1

(2π)d sd/2

∫
Rd

exp

(
− 1

4d

(
‖x‖22 − 2�

2d√
s
x · k

))
ddx.(5.2)

To evaluate the integral we complete the square, which yields∫
Rd

exp

(
− 1

4d

(
‖x‖22 − 2�

2d√
s
x · k

))
ddx

=

∫
Rd

exp

(
− 1

4d

(
‖x‖22 − 2�

2d√
s
x · k − 4d2

s
‖k‖22 +

4d2

s
‖k‖22

))
ddx

= exp

(
−d

s
‖k‖22

)∫
Rd

exp

(
− 1

4d

∥∥∥∥x− �
2d√
s
k

∥∥∥∥2
2

)
ddx.(5.3)

By substituting z = x− �
2d√
s
k we get

∫
Rd

exp

(
− 1

4d

∥∥∥∥x− �
2d√
s
k

∥∥∥∥2
2

)
ddx

=

∫
Rd

exp

(
− 1

4d

(‖z‖22)) ddz

=

∫
· · ·
∫
Rd

exp

(
− 1

4d

(
d∑

i=1

z2i

))
dzd . . . dz1

=

∫
· · ·
∫
Rd−1

exp

(
− 1

4d

(
d−1∑
i=1

z2i

)) (∫
R

exp

(
− 1

4d
z2d

)
dzd

)
dzd−1 . . . dz1
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=
(
2
√
πd
)
·
∫

· · ·
∫
Rd−1

exp

(
− 1

4d

(
d−1∑
i=1

z2i

))
dzd−1 . . . dz1

=
(
2
√
πd
)d

.(5.4)

Combining (5.2), (5.3), and (5.4), we get

P̃s
k =

1

(2π)d sd/2
exp

(
−d

s
‖k‖22

) (
2
√
πd
)d

=

(
d

πs

)d/2

exp

(−d ‖k‖22
s

)
.(5.5)

It follows directly from Claims 4 and 5 of Cooper and Spencer [4] that for all k ∈ Z
d,

z ∈ ARR,

P̃s
k − P̃s

k+z = O(‖k‖−(d+1)
2 ) ∀ s,(5.6)

(s �→P̃s
k − P̃s

k+z) has only a constant number of local extrema.(5.7)

This gives the intuition that by approximating
(
P

s

k − P
s

k+z

)
with

(
P̃s

k − P̃s
k+z

)
, we

can bound (5.1) for sufficiently large k and s by Lemma 3.6. This approximation is
made precise by the following local central limit theorems. Theorem 2.3.6 of Lawler
and Limic [25] gives for all k ∈ Z

d, z ∈ ARR, s � 0,∣∣(Ps

k −P
s

k+z

)− (P̃s
k − P̃s

k+z

)∣∣ = O(s−(d+3)/2).(5.8)

We now start to break down (5.1). As the first step, we consider the special case k with
‖k‖2 < 3, which is relatively straightforward since it involves only a constant number
of vertices. With Z

d
�3 := {k ∈ Z

d : ‖k‖2 � 3} and Z
d
<3 := {k ∈ Z

d : ‖k‖2 < 3},

∣∣x(t)
0 − ξ

(t)
0

∣∣ � 1

2

∑
k∈Z

d
<3

(5.9a)︷ ︸︸ ︷∣∣∣∣∣ ∑
z∈ARR

t−1∑
s=0

e
(t−s)
0,0+z

(
P

s

k −P
s

k+z

) ∣∣∣∣∣
+

1

2

∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

t−1∑
s=0

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

) ∣∣∣∣∣︸ ︷︷ ︸
(5.9b)

(5.9)

Now we can apply to (5.9a) the local central limit theorem given in (5.8) and get

(5.9a) =

∣∣∣∣∣ ∑
z∈ARR

t−1∑
s=0

e
(t−s)
k,k+z

(
P̃s

0 − P̃s
0+z

)∣∣∣∣∣+
∣∣∣∣∣ ∑
z∈ARR

t−1∑
s=0

O(s−(d+3)/2)

∣∣∣∣∣ = O(Λ),

where the last equality follows by Lemma 3.6 combined with (5.7) and the property∣∣∑t
s=1 e

(s)
i,j

∣∣ � Λ.

In order to analyze the vertices k ∈ Z
d
�3 in (5.1), we proceed by fixing a cutoff

point T (k) :=
C ‖k‖2

2

ln2(‖k‖2)
, k ∈ Z

d
�3, of the innermost sum of (5.9b) for some sufficiently
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small constant C > 0. Note that the cutoff point is chosen in such a way that it is very
unlikely for a random walk to reach a vertex with distance k within less than T (k)
rounds. Hence the contribution from all those summands (5.10a) is only a constant.
For bounding the remaining sum, (5.10b), we use the local central limit theorem (5.8)
whose approximation error is small, since we need only consider rounds larger than
the cutoff T (k).

Proceeding with the formal proof, we have

(5.9b) �

(5.10a)︷ ︸︸ ︷∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

T (k)∑
s=0

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

) ∣∣∣∣∣
+

∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

t−1∑
s=T (k)

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

) ∣∣∣∣∣︸ ︷︷ ︸
(5.10b)

.(5.10)

Note that the summand with s = 0 is zero and can be ignored (since ‖k‖2 � 3).
Hence the first summand (5.10a) can be bounded by

(5.10a) = O
( ∑

k∈Zd
�3

∑
z∈ARR

T (k)∑
s=1

(
P

s

k +P
s

k+z

))
.(5.11)

It is known from Lawler [24, Lem. 1.5.1(a)] that for random walks on infinite grids,∑
‖k‖2�λ

√
s P

s

k = O(e−λ) for all s > 0 and λ > 0. Hence, it is also true that

P
s

k = O( exp (− ‖k‖2/
√
s
)) ∀ s > 0, k ∈ Z

d.

With that, we can now bound the term
(
P

s

k +P
s

k+z

)
from (5.11). For 0 < s � T (k),

k ∈ Z
d
�3, z ∈ ARR, and sufficiently small C > 0,

P
s

k +P
s

k+z = O
(
exp

(
− ‖k‖2√

s

)
+ exp

(
− ‖k + z‖2√

s

))
= O

(
exp

(
− ‖k‖2√

3 · √s

))
= O

(
exp

(
− 2 ln(‖k‖2) ‖k‖2√

3 · C ‖k‖2

))
= O(‖k‖−(d+4)

2

)
,

where in the second line we have used that

‖k‖22 − ‖k + z‖22 � ‖k‖22 −
(‖k‖22 − 2‖k‖2 · ‖z‖2 + ‖z‖22

)
� 2‖k‖2,

implying directly that

‖k + z‖2 �
√
‖k‖22 − 2‖k‖2 =

√
‖k‖2 · (‖k‖2 − 2) � ‖k‖2√

3
,
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since ‖k‖2 � 3. Plugging this into (5.11), we obtain

(5.10a) = O
( ∑

k∈Zd
�3

T (k) ‖k‖−(d+4)
2

)
= O

( ∑
k∈Zd

�3

‖k‖−(d+2)
2 ln−2(‖k‖2)

)
= O(1).

To bound (5.10b), we approximate the transition probabilities of Z
d with the

multivariate normal distribution of (5.5) by the local central limit theorem stated in
(5.8):

(5.10b) =

∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

t−1∑
s=T (k)

e
(t−s)
k,k+z

(
P̃s

k − P̃s
k+z

)

+
∑

k∈Zd
�3

∑
z∈ARR

t−1∑
s=T (k)

e
(t−s)
k,k+z

(
P

s

k −P
s

k+z

)
−
(
P̃s

k − P̃s
k+z

) ∣∣∣∣∣

�

(5.12a)︷ ︸︸ ︷∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

t−1∑
s=T (k)

e
(t−s)
k,k+z

(
P̃s

k − P̃s
k+z

) ∣∣∣∣∣
+

∣∣∣∣∣ ∑
k∈Zd

�3

∑
z∈ARR

t−1∑
s=T (k)

e
(t−s)
k,k+z O(s−(d+3)/2)

∣∣∣∣∣︸ ︷︷ ︸
(5.12b)

.(5.12)

We can bound the second term (5.12b), signifying the approximation error from the
local central limit theorem, by

(5.12b) = O
(
d
∑

k∈Zd
�3

∞∑
s=T (k)

s−(d+3)/2

)

= O
( ∑

k∈Zd
�3

T (k)−(d+1)/2

)

= O
( ∑

k∈Zd
�3

lnd+1(‖k‖2)
‖k‖d+1

2

)
.

As there are constants C′ > 0 and ε > 0 such that lnd+1(‖k‖2) � C′ ‖k‖1−ε
2 for all

k ∈ Z
d
�3, we obtain

(5.12b) = O
( ∑

k∈Zd
�3

‖k‖−(d+ε)
2

)
.

To see that this can be bounded by O(1), observe that with N
d
�3 := {k ∈ N

d : ‖k‖2 �
3}, ∑

k∈Zd
�3

‖k‖−(d+ε)
2 � 2d

∑
k∈Nd

�3

(k21 + · · ·+ k2d)
−(d+ε)/2.
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By convexity of x �→ x2, k21 + · · ·+ k2d � 1
d (k1 + · · ·+ kd)

2, we then get

(5.12b) = O
( ∑

k∈Nd
�3

(k1 + · · ·+ kd)
−(d+ε)

)
= O

( ∞∑
x=1

∑
k∈N

d

‖k‖1=x

x−(d+ε)

)

= O
( ∞∑

x=1

xd−1 · x−(d+ε)

)
= O

( ∞∑
x=1

x−(1+ε)

)
= O(1).

Finally, to bound (5.12a), we apply (5.7). We also use the fact that P̃s
k − P̃s

k+z

can be bounded by O(‖k‖−(d+1)
2 ) according to (5.6). As |∑t

s=1 e
(s)
i,j | � Λ, applying

Lemma 3.6 yields

(5.12a) = O
( ∑

k∈Zd
�3

∑
z∈ARR

Λ
t−1
max

s=T (k)

(
P̃s

k − P̃s
k+z

))

= O
( ∑

k∈Zd
�3

∑
z∈ARR

Λ ‖k‖−(d+1)
2

)

= O
(
Λ d

∑
k∈Zd

�3

‖k‖−(d+1)
2

)

= O(Λ).

Combining all the above bounds, we can conclude that
∣∣x(t)

0 − ξ
(t)
0

∣∣ = O(Λ), meaning
that the deviation between the idealized process and the discrete process at any time
and vertex is at most O(Λ).

6. Lower bounds for previous algorithms. For better comparison with pre-
vious algorithms, this section gives lower bounds for other discrete diffusion processes.
First, we observe the following general lower bound on the discrepancy for the RSW
algorithm.

Proposition 6.1. On all graphs G with maximum degree Δ, there is an initial
load vector x(0) with discrepancy Δdiam(G) such that for the RSW algorithm, x(t) =
x(t−1) for all t ∈ N.

Proof. Fix a pair of vertices i and j with dist(i, j) = diam(G). Define an initial
load vector x(0) by

x
(0)
k := dist(k, i) ·Δ.

Clearly, the initial discrepancy is x
(0)
j −x

(0)
i = Δdiam(G). We claim that x(1) = x(0).

Consider an arbitrary edge {r, s} ∈ E(G). Then,∣∣Pr,s x
(1)
r −Ps,r x

(1)
s

∣∣ = 1

2Δ

∣∣x(0)
r − x(0)

s

∣∣ � 1

2Δ
Δ =

1

2
.

Hence the integral flow on any edge {r, s} ∈ E(G) is � 1
2� = 0, and the load vector

remains unchanged. The claim follows.
In the remainder of this section we present two lower bounds for the deviation

between the randomized rounding diffusion algorithm and the idealized process. First,
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we prove a bound of Ω(logn) for the hypercube. Together with Theorem 4.2 this
implies that on hypercubes the quasirandom approach is as good as the randomized
rounding diffusion algorithm.

Theorem 6.2. There is an initial load vector of the d-dimensional hypercube with
n = 2d vertices such that the deviation of the randomized rounding diffusion algorithm
and the idealized process is at least logn/4 with probability 1− nΩ(1).

Proof. We define an initial load vector x(0) as follows. For every vertex v =

(v1, v2, . . . , vd) ∈ {0, 1}d with v1 = 0 we set x
(0)
v = ξ

(0)
v = 0 and if v1 = 1 we set

x
(0)
v = ξ

(0)
v = d. Hence, the idealized process will send a flow of d/(2d) = 1/2

from every vertex v = (1, v2, v3, . . . , vd) ∈ {0, 1}d to (0, v2, v3, . . . , vd). Hence for the

idealized process, ξ
(1)
v = (1/2) d; that is, all vertices have a load of (1/2) d after one

step and the load is perfectly balanced.
Let us now consider the discrete process. Let V0 be the set of vertices whose

bitstring begins with 0. Consider any node v ∈ V0. Note that all neighbors of v
have a load of 1, and the integral flow from any of those neighbors equals 1 with
independent probability 1/2. Hence the load of v in the next step is just a binomial
random variable, and using the fact that

(
r
s

)
� (r/s)s, we obtain

Pr

[
x(1)
v =

3

4
d

]
� Pr

[
x(1)
v � 3

4
d

]
�
(

d

(3/4)d

)
2−d �

(
4

3

)(3/4)d

2−d � n−1+C

for some constant C > 0 since d = log2 n. As the maximum degree of the graph is
logn and the size of V0 is n/2, it follows that there is a subset S ⊆ V0 of size Ω

(
n

log4 n

)
in the hypercube such that every pair in S has distance at least 4. By construction,

the respective events x
(1)
v � (3/4)d are independent for all vertices v ∈ S. Hence

Pr

[
∃v ∈ S : x(1)

v � 3

4
d

]
� 1− (1− n−1+C

)Ω(
n

log4 n

)
� 1− n−C′

,

where 0 < C′ < C is another constant. This means that with probability at least
1−n−C′

the load at vertex u at step 1 will be at least (3/4) d in the discrete process,
but equals (1/2) d in the idealized process. This completes the proof.

It remains for us to give a lower bound for the deviation between the randomized
rounding and the idealized process for torus graphs. The following theorem proves a
polylogarithmic lower bound for the randomized rounding algorithm, which should be
compared to the constant upper bound for the quasirandom approach of Theorem 5.4.
Similar results can also be derived for nonuniform torus graphs.

Theorem 6.3. There is an initial load vector of the d-dimensional uniform
torus graph with n vertices such that the deviation between the randomized rounding
diffusion algorithm and the idealized process is Ω(polylog(n)) with probability 1−o(1).

Proof. Let n be a sufficiently large integer and let T be a d-dimensional torus
graph with n vertices and side length d

√
n ∈ N. Let Bk(u) := {v ∈ V : ‖v − u‖∞ � k}

and ∂Bk(u) := {v ∈ V : ‖v − u‖∞ = k}. For every vertex v ∈ V (T), we define
|B�/2(v)| = �d = (logn)1/4 with � := (logn)1/(4d), where we assume without loss of

generality that � is an odd integer. For �′ := (log n)2/(3d), define a set S ⊆ V by

S :=
{
(x1 �

′, x2 �
′, . . . , xd �

′)
∣∣ 1 � x1, x2, . . . , xd < d

√
n/�′ − 1

}
;

that is, every pair of distinct vertices in S has a coordinate-wise distance which
is a multiple of �′. Note that |S| = Ω(n/�′d). Define the initial load vector as
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�

�′ − �

Fig. 6.1. Overview of the decomposition of T into various T′(s) for the two-dimensional case
d = 2. The inner rectangles represent the various smaller grids T′(s) with s ∈ S. The darkness
indicates the amount of the initial load. Note that the initial load of vertices outside the T′(s)’s is 0.

x
(0)
i = ξ

(0)
i := 2d ·max{0, �/2− dist(i, S)}, i ∈ V . Clearly, the initial discrepancy is

K = 2d · �/2.
The idea is now to decompose T into smaller subgraphs centered around s ∈ S,

since the upper bound on the convergence rate given by Theorem 3.1 has a strong
dependence on the size of the graph. Then we relate the simultaneous convergence on
each of the smaller graphs to the convergence on the original graph. An illustration
of our decomposition of T can be found in Figure 6.1.

Fix some s ∈ S. Then the subgraph induced by the vertices B�/2(s) is a d-dimen-

sional grid with exactly n′ := (logn)1/4 vertices. Let T′ = T′(s) denote the cor-
responding d-dimensional torus graph with the same vertices but with additional
wrap-around edges between vertices of ∂B�/2(s). Without loss of generality we as-
sume that the side length d

√
n of T is a multiple of the side length � of T′(s). Let P′

be the diffusion matrix of T′(s).
Let us denote by ξ′(0) (x′(0)) the projection of the load vector ξ(0) (x(0)) from T

onto T′(s). By Corollary 3.2, the idealized process reduces the discrepancy on T′(s)
fromK = (log n)1/(4d)/2 to 1 within t0 := O((n′)2/d log(Kn′)) = O(log log(n) (logn)1/(2d))

time steps. We now want to argue that this also happens on the original graph T
with n vertices. Note that the convergence of the idealized process on T′(s) implies

(6.1) ‖ξ′(t0) − ξ′‖∞ = ‖P′t0ξ′(0) − ξ′‖∞ � 1.

Furthermore, note that the average load ξ′ in each T′(s) satisfies

ξ′ � 2d · �/4.
Our next observation is that for any two vertices u, v ∈ T′(s),

Pt0
u,v � P′t0

u,v(6.2)

as a random walk on T′(s) can be expressed as a projection of a random walk on T
(by assigning each vertex in T′(s) to a set of vertices in T). With the observations
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• for v ∈ T′(s): ξ(0)v = ξ′v
(0)

;

• for v ∈ T and �/2 � dist(v, s) � t0: ξ
(0)
v = 0 (as t0 = o(�′ − �/2));

• for v ∈ T and dist(v, s) > t0: P
t0
v,s = 0;

we obtain for any vertex v ∈ B�/2(s),

ξ(t0)s =
(
P(t0) · ξ(0))

s
=
∑
v∈T

ξ(0)v P(t0)
v,s =

∑
v∈T′(s)

ξ′v
(0)

P(t0)
v,s .

By first applying (6.2) and then (6.1), we get

ξ(t0)s �
∑

v∈T′(s)

ξ′s
(0)

P′(t0)
v,s = ξ′s

(t0) � ξ′ + 1.

This means that after t0 time steps, the idealized process achieves a good balancing
at s. On the other hand, the discrete process may fail within t0 time steps if there is
an s such that all edges in T′(s) round toward s at all time steps t � t0. (Note that by
construction, no load from another T′(s′), s′ ∈ S\{s}, can reach T′(s) within t0 steps,
since the distance between any vertex in T′(s) and T′(s′) is �′ − 2� � t0.) Moreover,

by definition of x(0), |x(0)
u − x

(0)
v | ∈ {0, 2d} if {u, v} ∈ E(T). Hence the fractional

flow in the first step is ∈ {0, 12} and for fixed s the probability that x
(0)
u = x

(1)
u for

all u ∈ T′(s) is at least 2−|B�/2(s)|. By induction, for fixed s the probability that

x
(0)
u = x

(t0)
u holds for all u ∈ T′(s) is at least

2−|B�/2(s)| t0 = 2−(logn)1/4·O(log log(n) (logn)1/(2d)) � 2−(logn)4/5 .

As we have |S| = Ω(n/�′d) = Ω(poly(n)) independent events, it follows that there is

at least one s ∈ S with x
(t0)
s = x

(0)
s = �/2 · 2d with probability

1−
(
1− 2−(logn)4/5

)Ω(poly (n))

� 1− n−C ,

where C > 0 is some constant. If this happens, then the deviation between the
discrete and idealized process at vertex s ∈ S at step t0 is at least∣∣x(t0)

s − ξ(t0)s

∣∣ � ∣∣2d · �/2− (2d · �/4 + 1)
∣∣ = Ω((log n)1/(4d)),

and the claim follows.

7. Conclusions. We propose and analyze a new deterministic algorithm for bal-
ancing indivisible tokens. By achieving a constant discrepancy in optimal time on all
torus graphs, our algorithm improves upon all previous deterministic and random ap-
proaches with respect to both running time and discrepancy. For hypercubes we prove
a discrepancy of Θ(logn), which is also significantly better than the (deterministic)
RSW algorithm, which achieves a discrepancy of Ω(log2 n).

On a concrete level, it would be interesting to extend these results to other network
topologies. From a higher-level perspective, our new algorithm provides a striking ex-
ample of quasirandomness in algorithmics. Devising and analyzing similar algorithms
for other tasks such as routing, scheduling, or synchronization remains an interesting
open problem.

Appendix. Proof of a supplementary result. In order to prove Proposi-
tion 4.10, we first note the following elementary lemma.

Lemma A.1. Let (ak)
d
k=1, (bk)

d
k=1, (ck)

d
k=1 be three positive sequences such that
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(i) for all j ∈ [1, d],
∑d

k=j ak �
∑d

k=j bk;
(ii) ck is monotone increasing in k.

Then for all j ∈ [1, d],
∑d

k=j ak · ck �
∑d

k=j bk · ck.
Proof. Define i := d− j + 1. We will show that

d∑
k=d−i+1

ak · ck �
d∑

k=d−i+1

bk · ck(A.1)

for all i ∈ [1, d]. Our proof is by induction on the number of summands i ∈ [1, d]. The
claim is trivial for i = 1 and i = 2. Assume inductively that (A.1) holds for all i ≥ i′

and for all sequences satisfying the conditions of the lemma. We will show the claim
for i = i′ + 1, i.e.,

d∑
k=d−i′

ak · ck �
d∑

k=d−i′
bk · ck.

Define two shorter sequences (a′k)
d−1
k=1 and (b′k)

d−1
k=1 as follows:

• a′k = ak for k < d− 1 and a′d−1 := ad−1 +
cd

cd−1
ad;

• b′k = bk for k < d− 1 and b′d−1 := bd−1 +
cd

cd−1
bd.

We will show that the sequences (a′k)
d−1
k=1, (b

′
k)

d−1
k=1, (ck)

d−1
k=1 satisfy the conditions of the

lemma. Since (ck)k remained unchanged it suffices to show that for all j′ ∈ [1, d− 1],

d−1∑
k=j′

a′k �
d−1∑
k=j′

b′k,

or equivalently (using the definition of a′k and b′k),

d∑
k=j′

ak +

(
cd

cd−1
− 1

)
ad �

d∑
k=j′

bk +

(
cd

cd−1
− 1

)
bd.

By the first assumption of the lemma, we have

d∑
k=j′

ak �
d∑

k=j′
bk.

Moreover, since ad � bd and cd
cd−1

� 1, we have(
cd

cd−1
− 1

)
ad ≤

(
cd

cd−1
− 1

)
bd.

Thus, (a′k)
d−1
k=1, (b

′
k)

d−1
k=1, (ck)

d−1
k=1 satisfy the conditions of the lemma. By the induction

hypothesis on those sequences and for i′ summands, we have

d−1∑
k=d−i′

a′k · ck �
d−1∑

k=d−i′
b′k · ck.

Plugging in the definition of a′k and b′k, we finally obtain

d−2∑
k=d−i′

ak · ck + cd−1

(
ad−1 +

cd
cd−1

ad

)
�

d−2∑
k=d−i′

bk · ck + cd−1

(
bd−1 +

cd
cd−1

bd

)
,
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which is precisely the induction claim for i′ + 1. The lemma follows.
Proposition 4.10 (restated). Let i, j ∈ V be two vertices of the d-dimensional

hypercube with dist(i, j) � d/2. Then Pi,j(t) is monotone increasing.
Proof. Fix an arbitrary step t ∈ N. By symmetry, it suffices for us to prove

that P0,x(t) � P0,x(t + 1), where x ∈ {0, 1}d with |x| � d/2. First note that for all

j ∈ [|x|, d], ∑d
k=j Pr[exactly k coordinates chosen in t steps] �

∑d
k=j Pr[exactly k

coordinates chosen in t+1 steps] since the distribution of chosen coordinates after t+1
steps clearly dominates the distribution of chosen coordinates after t steps. Observe
that for any |x| � d/2 the function f(k) := 2−k

(d−|x|
k−|x|

)/(
d
k

)
is monotone increasing in

|x| � k � d. This can be verified by showing that f(k)/f(k − 1) � 1 for any k with
|x| < k � d. This allows us to apply Lemma A.1 to (4.6), giving P0,x(t) � P0,x(t+1).
Hence the proposition follows.
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