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BENJAMIN DOERR, École Polytechnique, Palaiseau, France
TOBIAS FRIEDRICH, Friedrich-Schiller-Universität Jena, Germany
THOMAS SAUERWALD, University of Cambridge, United Kingdom

We propose and analyze a quasirandom analogue of the classical push model for disseminating information
in networks (“randomized rumor spreading”). In the classical model, in each round, each informed vertex
chooses a neighbor at random and informs it, if it was not informed before. It is known that this simple
protocol succeeds in spreading a rumor from one vertex to all others within O(log n) rounds on complete
graphs, hypercubes, random regular graphs, Erdős-Rényi random graphs, and Ramanujan graphs with
probability 1−o(1). In the quasirandom model, we assume that each vertex has a (cyclic) list of its neighbors.
Once informed, it starts at a random position on the list, but from then on informs its neighbors in the order
of the list. Surprisingly, irrespective of the orders of the lists, the above-mentioned bounds still hold. In some
cases, even better bounds than for the classical model can be shown.
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1. INTRODUCTION

Randomized rumor-spreading or random phone call protocols are simple randomized
epidemic algorithms designed to distribute a piece of information in a network. They
build on the basic paradigm that informed vertices call random neighbors to inform
them (push model) or that uninformed vertices call random neighbors to become in-
formed if the neighbor is informed (pull model). Despite the simple concept, these
algorithms succeed in distributing information extremely quickly. In contrast to many
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9:2 B. Doerr et al.

natural deterministic approaches, they are also highly robust against transmission
failures [Feige et al. 1990; Karp et al. 2000; Elsässer and Sauerwald 2009].

Such algorithms have been applied successfully both in the context where a single
item of news has to be distributed from one processor to all others [Hedetniemi et al.
1988] and in the case where news may be injected at various vertices at different times.
The latter problem occurs when maintaining data integrity in distributed databases
(e.g., name servers in large corporate networks [Demers et al. 1988; Kempe et al. 2003]).
For a more extensive, but still concise discussion of various central aspects of this area,
we refer the reader to the paper by Karp et al. [2000].

1.1. Randomized Rumor Spreading

Rumor-spreading protocols often assume that all vertices have access to a central clock.
The protocols then proceed in rounds, in each of which each vertex, independent of
the others, can perform certain actions. In the classical randomized rumor-spreading
protocols, in each round, each vertex contacts a neighbor chosen independently and
uniformly at random. In the push model, which we focus on here, this results in the
contacted vertex becoming informed, provided it was not already. Because all commu-
nications are done independently at random, in the following description, we call this
the fully random model to distinguish it from the quasirandom one we propose in this
article. The first graphs for which the fully random model was analyzed are complete
graphs [Frieze and Grimmett 1985; Pittel 1987]. Pittel [1987] proved that with proba-
bility 1−o(1), log2 n+ ln n+ f (n) rounds suffice, where f (n) can be any function tending
to infinity.

Feige et al. [1990] showed that on almost all random graphs G(n, p), p � (1+ε) log n/n,
the fully random model runs in O(log n) time with probability 1−n−1. They also showed
that this failure probability can be achieved for p = (log n + O(log log n))/n only in
�(log2 n) rounds. In addition, Feige et al. [1990] also considered hypercubes and proved
a runtime bound of O(log n) with probability 1 − n−1.

For expanders, in which the maximum and minimum degree satisfy �/δ = O(1), it
was shown in Sauerwald [2010] that the fully random model completes its broadcast
campaign in O(log n) rounds with probability 1−n−1 (similar results were shown earlier
[Boyd et al. 2006; Mosk-Aoyama and Shah 2006], but these hold only for the push-pull
model). Recently, Fountoulakis et al. [2010] and Fountoulakis and Panagiotou [2010]
derived precise bounds on the runtime for random and pseudorandom regular graphs,
extending the result of Frieze and Grimmett [1985] for complete graphs.

Demers et al. [1988] and Karp et al. [2000] introduced the push-pull model, which
combines push and pull transmissions. For this model, Chierichetti et al. [2010a, 2010b]
and Giakkoupis [2011] proved tight runtime bounds in terms of the conductance. In
particular, for any graph with constant conductance and arbitrary degree distribution,
a runtime bound of O(log n) was shown in Giakkoupis [2011].

Rumor spreading has recently been studied intensively on social networks modeled
by random graphs that have a power-law degree distribution. Chierichetti et al. [2011]
showed that the push model with nonvanishing probability needs �(nα) rounds on
preferential attachment graphs [Barabási and Albert 1999] for some α > 0. For such
power-law networks, however, the push-pull strategy is much better than push or
pull alone. With this strategy, O(log n) rounds suffice with high probability [Doerr
et al. 2011a]. Doerr et al. [2011a] further proved that, for a slightly adjusted process,
where contacts are chosen uniformly at random among all neighbors except the one
that was chosen just in the round before, O(log n/ log log n) rounds suffice. This is
asymptotically optimal because the diameter of such preferential attachment graphs,
with power-law exponent 3, is �(log n/ log log n) [Bollobás et al. 2001]. Fountoulakis
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et al. [2012] showed that push-pull requires �(log n) on Chung-Lu random graphs
[Chung and Lu 2002] with power-law exponent > 3, whereas for power-law exponent
∈ (2, 3), the rumor spreads to almost all nodes in time �(log log n) rounds with high
probability.

1.2. Our Results

In this work, we propose a quasirandom analogue of the randomized rumor-spreading
algorithm. In this quasirandom model, every vertex is equipped with a cyclic list of its
neighbors. If a vertex becomes informed, then, in the next round, it chooses a position on
the list uniformly at random and informs the neighbor corresponding to this position.
In the subsequent rounds, the vertex continues sending out messages in the order of its
list. Clearly, by introducing these dependencies, we gain some natural advantages like
the fact that an informed vertex does not call a neighbor a second time before having
called all neighbors once. In consequence, we obtain an absolute guarantee that after
� diam(G) rounds, all vertices are informed (see Theorem 3.1), thus improving over the
corresponding O(�(diam(G) + log n)) bound of [Feige et al. 1990] for the fully random
model.

Surprisingly, we do not observe that the newly introduced dependencies are harmful.
More precisely, we show that the O(log n) bound (valid with probability 1 − n−1) for
complete graphs, hypercubes, random graphs, random regular graphs, and Ramanujan
graphs in the classical protocol also holds in the quasirandom model regardless of
which lists are used. In addition to its theoretical interest, this implies that in an
implementation of the quasirandom protocol, one may reuse any lists that are already
present (e.g., to encode the network structure).

Our O(log n) runtime bound also applies to very sparse connected random graphs
with p = (log n+ ω(1))/n. This contrasts with a lower bound of �(log2 n) steps required
by the fully random model to inform all vertices with probability 1 − n−1 Feige et al.
[1990, Theorem 4.1] and with a lower bound on the expected time of �(log n log log n)
shown in this article. Similarly for hypercubes, we show that the quasirandom model
completes in O(log n) rounds with probability 1 − n−�(log n), whereas the fully random
model is easily seen to require �(log2 n) steps to achieve the same probability of success.
The interesting aspect of these improvements is not so much their actual magnitude,
but rather that they can be achieved for free by using a very natural protocol. Note
also that speedups not visible by asymptotic analyses have been observed; see the
experimental analysis in Doerr et al. [2011b]. For example, the quasirandom protocol
was seen to be around 10% faster on the hypercube on 4,096 vertices and around 15%
faster on random 12-regular graphs on 4,096 vertices.

To prove the results in this article, we need to cope with the more dependent random
experiments. Recall that once a vertex has sent out a message, all its future trans-
missions are determined. The methods we develop to cope with these difficulties (e.g.,
suitably delaying independent random decisions so as to have enough independent
randomness at certain moments to allow the use of Chernoff-type inequalities) might
be useful in the analysis of other dependent settings as well.

Our analysis employs a certain graph class called expanding graphs, which are de-
fined by three natural expansion properties. Roughly speaking, these properties require
that small sets of vertices have many neighbors; that for large sets of vertices, the ex-
ternal vertices have many neighbors in the set; and, finally, that the vertex degrees are
of similar order (see Definition 4.1 for details). This graph class has been used by other
authors (e.g., Cooper et al. [2012]). We prove that complete graphs, random graphs,
random regular graphs, and Ramanujan graphs are expanding. After that, we show
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that the quasirandom model succeeds in O(log n) rounds on every expanding graph
with probability 1 − n−γ , where γ > 0 is an arbitrary constant.

1.3. Related Work on Quasirandomness

We call an algorithm quasirandom if it imitates (or achieves in an even better way) a
particular property of a randomized algorithm deterministically. The concept of quasir-
andomness occurs in several areas of mathematics and computer science. Prominent
examples are low-discrepancy point sets and quasi-Monte Carlo methods [Niederreiter
1992], which imitate the property of a random point set to be evenly distributed in
their domain.

Our quasirandom rumor-spreading protocol imitates two properties of the fully ran-
dom counterpart; namely, that over a short period of time, a vertex does not contact
neighbors twice and, over a long period of time, it calls all neighbors roughly equally
often.

This is very much related to a quasirandom analogue of the classic random walk,
which is also known as Eulerian walker [Priezzhev et al. 1996], edge ant walk [Wagner
et al. 1999], whirling tour [Dumitriu et al. 2003], Propp machine [Kleber 2005; Cooper
and Spencer 2006], and deterministic random walk [Cooper et al. 2007b; Doerr and
Friedrich 2009]. Unlike in a random walk, in a quasirandom walk, each vertex serves its
neighbors in a fixed order. The resulting (completely deterministic) walk nevertheless
closely resembles a random walk in several respects [Cooper and Spencer 2006; Doerr
and Friedrich 2009; Cooper et al. 2007b, 2010; Friedrich and Sauerwald 2010]. Other
algorithmic applications of the idea of quasirandom walks are autonomous agents
patroling a territory [Wagner et al. 1996], external mergesort [Barve et al. 1997], and
iterative load balancing [Friedrich et al. 2010].

1.4. Results Obtained after This Work

Subsequent to the conference versions [Doerr et al. 2008, 2009] and during the prepara-
tion of this journal version, the following results appeared that answer some questions
left open in this work. In Angelopoulos et al. [2009], it is proven that with probabil-
ity 1 − o(1), the quasirandom model succeeds in informing all vertices of a complete
graph on n vertices in (1+o(1))(log2 n+ ln n) rounds. Hence, for the complete graph, the
quasirandom model achieves the same runtime as the fully random one [Frieze and
Grimmett 1985] up to lower order terms. This was strengthened by Fountoulakis and
Huber [2009], who nearly showed that Pittel’s bounds [Pittel 1987] also hold for the
quasirandom model—their upper and lower bounds deviate by only a �(log log n) term.

A second important aspect of broadcasting protocols is their robustness. The fully
random model, due to its high use of independent randomness, is usually considered
to be very robust. See Karp et al. [2000] and Elsässer and Sauerwald [2009] for some
results in this direction. A very precise result, valid for both the fully random and
the quasirandom model, was recently given in Doerr et al. [2013]. They consider the
setting that each message reaches its destination only with an (independently sampled)
probability of 0 < p < 1. Again, for the complete graph on n vertices, they show that
both protocols succeed in (1 + o(1)) (log1+p n+ p−1 ln n) rounds with probability 1 − o(1).
Together with a corresponding lower bound for the fully random model, this shows that
both models are equally robust against transmission failures, in spite of the greatly
reduced use of independent randomness in the quasirandom model.

The question of how much randomness is needed in such protocols was first consid-
ered by Doerr and Fouz [2011] and Giakkoupis and Woelfel [2011]. Among other results,
the latter work presents a variant of the quasirandom model that requires on average
only O(log log n) instead of O(log n) random bits per vertex in order to spread the rumor
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Table I. Upper and Lower Bounds on the Broadcast Time
These times hold with probability at least 1−1/n for different graph classes in the fully random and the quasirandom
model. More detailed analyses for sparse random graphs can be found in Table II on page 24.

Broadcast Time
Graph Class Fully Random Model Quasirandom Model

all graphs O(� (diam(G) + log n)) [Feige
et al. 1990]

� � diam(G) (Thm. 3.1)

� 12n log n [Feige et al. 1990] � 2n − 3 (Thm. 3.1)
Complete k-ary trees �(k log n) (Thm. 4.15) �(k log n/ log k) (Thm. 4.15)
Hypercubes �(log n) [Feige et al. 1990] �(log n) (Thm. 7.1)
Complete graphs �(log n) [Pittel 1987; Frieze and

Grimmett 1985]
�(log n) (Thm. 4.2 and 5.1)

Ramanujan �(log n) [Giakkoupis 2011] �(log n) (Thm. 4.9 and 5.1)
Almost all random graphs with
fixed deg. seq.

�(log n) [Giakkoupis 2011] �(log n) (Thm. 4.12 and 5.1)

Almost all random graphs
G(n, p) with

�(log2 n) Feige et al. [1990,
Thm. 4.1]

�(log n) (Thm. 4.2 and 5.1)

pn = log n + ω(1),
pn = log n + O(log log n)
Almost all random graphs
G(n, p) with

�(log n) [Feige et al. 1990] �(log n) (Thm. 4.2 and 5.1)

pn = c log n, c > 1

in O(log n) rounds on a complete graph with probability 1 − n−�(1). Giakkoupis et al.
[2012] present two protocols that are based on hashing and pseudorandom generators,
respectively. Although these protocols only require a logarithmic number of random
bits in total on many networks, they are more complicated; for instance, they require
that random bits are appended to the rumor.

In order to bound the number of messages, Berenbrink et al. [2010] analyze another
variant of the quasirandom model based on the combination of push and pull calls.
This variant is shown to succeed in O(log n) rounds on random graphs and hypercubes,
while requiring only O(n log log n) messages on random graphs and O(n (log log n)2) on
hypercubes (all these results hold with probability 1 − n−1).

The worst-case behavior of the quasirandom model was very recently addressed by
Baumann et al. [2012]. Among other results, the authors present a polynomial-time
algorithm to compute the configuration of lists and initial neighbors that maximizes
the time to spread the rumor.

1.5. Organization

The rest of this article is organized as follows. In Section 2, we describe our model
more formally and introduce some basic notation. In Section 3, we derive bounds on
the broadcast time that hold for all graphs. After that, in Section 4, we describe the
class of graphs we consider in this work. The runtime analysis of quasirandom rumor
spreading on this graph class is deferred to Section 5. To highlight the efficiency of our
new quasirandom model, we also derive some lower bounds for the fully random model
in Section 6. In Section 7, we analyze the quasirandom model on hypercubes. We close
in Section 8 with a brief summary of our results.

2. PRECISE MODEL AND PRELIMINARIES

Our aim is to spread a rumor in an undirected graph G = (V, E). Let always V =
{1, . . . , n} and n be the number of vertices. In the quasirandom model, each vertex
v ∈ V is equipped with a cyclic permutation πv : �(v) → �(v) of its neighbors �(v). We
call this its list of neighbors.

ACM Transactions on Algorithms, Vol. 11, No. 2, Article 9, Publication date: October 2014.
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The quasirandom rumor-spreading process then works as follows. In time step 0, an
arbitrary vertex s is informed initially. If a vertex v becomes informed in time step t,
then, in time step t + 1, it contacts one of its neighbors w, chosen uniformly at random.
From then on, it respects the order of the list; that is, in time step t + 1 + τ , τ ∈ N,
it contacts vertex πτ

v (w). To simplify the analysis, we assume that every vertex never
stops contacting its neighbors. However, it is easily seen that the propagation of the
rumor is exactly the same as if every vertex v stops contacting its neighbors deg(v)
rounds after it got informed. We denote by It the set of vertices that are informed at
the end of time step t.

Note that the assumption that the initial vertex contacted first by an informed vertex
is chosen uniformly at random is crucial for the quasirandom protocol. If the adversary
was allowed to specify the initial vertices also, then the time to inform all vertices could
take up to n − 1 steps, for example, on a complete graph.

In the remainder of this article, it will be convenient to consider a model equivalent to
the quasirandom model. This model uses the so-called ever-rolling lists assumption, in
which we assume that vertices contact neighbors at all times, informing the neighbors
(if the vertex is informed itself). Hence, here each vertex v, already at the start of the
protocol, chooses a neighbor iv uniformly at random from �(v). This is the neighbor it
contacts at time t = 1. In each following time step t = 2, 3, . . ., the vertex v contacts
the vertex π t−1

v (iv) and informs it, if it was not yet informed and if v is informed at that
time (here, π t−1

v is the (t − 1)-th composition of π with itself).
From the viewpoint of how the information spreads, the model with the ever-rolling

lists assumption yields a process equivalent to the standard quasirandom rumor-
spreading model. Hence, in the remainder of this article, we are always discussing
the model with ever-rolling lists unless we say otherwise.

We next analyze how long it takes until a rumor known to a single vertex is spread
to all other vertices. We adopt a worst-case view in that we aim at bounds that are
independent of the starting vertex and of all lists present in the model. This suggests
the following definitions.

Definition 2.1. Let G = (V, E) be a graph and s ∈ V . Then, by Rs, we denote
the random variable describing the first time t at which the random rumor-spreading
process started in the vertex s leads to all vertices being informed. Let R(G) be the
(unique) minimal integer-valued random variable that dominates all Rs ; that is, for
every s ∈ V and t ∈ N it holds that

Pr
[
R(G) � t

]
� Pr

[
Rs � t

]
.

We call R(G) the broadcast time of the randomized rumor-spreading protocol on the
graph G1.

Let L = (πv)v∈V be a family of lists. By QL,s we denote the (random) first time that the
quasirandom rumor-spreading protocol with lists L started in s succeeds in informing
all vertices. Let Q(G) be the (unique) minimal integer-valued random variable that
dominates all QL,s; that is, for every family of lists L, every s ∈ V and t ∈ N, it holds
that

Pr
[
Q(G) � t

]
� Pr

[
QL,s � t

]
.

We call Q(G) the broadcast time of the quasirandom rumor-spreading protocol on the
graph G.

1In order to see that R(G) is well-defined, note that for every t there exists one vertex s = s(t) such
that Pr

[
Rs(G) � t

]
is maximized. Then, we let R(G) satisfy Pr

[
R(G) � t

] = Pr
[
Rs(G) � t

]
. Doing this

for all integers t ∈ N yields a sequence {Pr
[
R(G) � t

]
: t ∈ N} of nonincreasing values in [0, 1]. Hence,

Pr
[
R(G) = t

]
:= Pr

[
R(G) � t

]− Pr
[
R(G) � t + 1

]
completes the definition of R(G).
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In the analysis, it will often be convenient to assume that after receiving the rumor,
a vertex does not pass it on for a certain number of time steps (delaying). Also, it will be
helpful to ignore all messages that certain vertices send out from a certain time onward
(ignoring). Because we assumed all random decisions done by the vertices before
the start of the protocol (ever-rolling list assumption), an easy induction shows that
any delaying and ignoring assumptions (possibly even relying on the random choices
done by the vertices that have not been active yet) for each vertex can only increase
the round in which it becomes informed. In consequence, these assumptions can only
increase the time needed to inform all vertices. More precisely, the random variable
describing the broadcast time of any model with delaying and ignoring assumptions
dominates the original one (see Definition A.1 for the precise definition of stochastic
domination).

LEMMA 2.1. For all possible delaying and ignoring assumptions, the random variable
describing the broadcast time of the quasirandom model with these assumptions is
stochastically larger than the broadcast time of the true quasirandom model.

We use both delaying and ignoring to reduce the number of dependencies in the
analysis. We do this by splitting the analysis into phases. All vertices that receive the
rumor within this phase (newly informed vertices) are assumed to delay their actions
until the beginning of the next phase. From this next phase on, all messages from
vertices that previously sent out messages are ignored. Thus, we start each phase with
only newly informed vertices acting. Because they have not actively participated in the
rumor-spreading process, the first neighbors to which they send the rumor are chosen
independently.

We also need chains of contacting vertices. That is, we say a vertex u1 ∈ V reaches
another vertex um ∈ V within the time interval [a, b] if there is a path (u1, u2, . . . , um)
in G and t1 < t2 < · · · < tm−1 ∈ [a, b], such that for all j ∈ [1, m− 1], π

tj−1
uj (iuj ) = uj+1.

For a vertex w ∈ V , we denote by U[a,b](w) the set of vertices that reach w within the
time interval [a, b].

Other Notation

Throughout the article, we use the following graph-theoretical notation. For a vertex
v of a graph G = (V, E), let �(v) := {u ∈ V : {u, v} ∈ E} be the set of its neighbors and
deg(v) := |�(v)| its degree. For any S ⊆ V , let degS(v) := |�(v) ∩ S|. For any S1, S2 ⊆ V ,
let E(S1, S2) := {(u, v) ∈ E? : u ∈ S1 ∧ v ∈ S2}. Let δ := minv∈V deg(v) be the minimum
degree, d := 2|E|/n the average degree, and � := maxv∈V deg(v) the maximum degree.
The distance dist(x, y) between vertices x and y is the length of a shortest path from
x to y. The diameter diam(G) of a connected graph G is the largest distance between
two vertices in G. We also use �k(u) := {v ∈ V : dist(u, v) = k} and ��k(u) := {v ∈ V :
dist(u, v) � k}. For sets S, we define �(S) := {v ∈ V : ∃u ∈ S, {u, v} ∈ E} as the set of
neighbors of S. The complement of a set S is denoted Sc := V \ S.

All logarithms log n are natural logarithms to the base e. Because we are only inter-
ested in the asymptotic behavior, we sometimes assume that n is sufficiently large.

3. QUASIRANDOM RUMOR SPREADING ON GENERAL GRAPHS

In this section, we prove two bounds for the broadcast time valid for all graphs. The
corresponding upper bounds for the fully random model are O(� (diam(G) + log n)) and
12n log n, both satisfied with probability 1 − 1/n [Feige et al. 1990].

THEOREM 3.1. For any graph G = (V, E), the broadcast time of the quasirandom
model is at most
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9:8 B. Doerr et al.

(1) � · diam(G) with probability 1, and
(2) 2n − 3 with probability 1.

PROOF. Let u be the vertex initially informed.
Let v ∈ V and P = (u = u0, u1, . . . , u = v) be a shortest path from u to v. Clearly,

for all i � , ui becomes informed at most deg(ui−1) � � time-steps after ui−1 became
informed. Claim (i) follows.

To prove claim (ii), again let v ∈ V and let P = (u = u0, u1, . . . , u = v) be a shortest
path from u to v. Let w be a vertex not lying on P. Then, as observed already in
Feige et al. [1990], w has at most three neighbors on P, and these are contained in
{ui−1, ui, ui+1} for some i < . If w has exactly three neighbors ui−1, ui, ui+1 on P, we call
it a counterfeit of ui (as ui and w have, apart from each other, the same neighbors on P).
Denote by C(ui) the set of counterfeits of ui. Without loss of generality, we may choose
P in such a way that for all i < , ui is informed no later than any of its counterfeits.

Note also that any vertex ui on the path has only ui−1 and ui+1 (if existent) as
neighbors on the path.

Let ti denote the time that vertex ui becomes informed. Then, t0 = 0. By definition of
our algorithm and choice of P, we have t1 � t0+|�(u0)\C(u1)| = t0+|�(u0)\P|+1−|C(u1)|.
For 2 � i �  − 1, similarly, we have ti � ti−1 + |�(ui−1) \ C(ui)| = ti−1 + |�(ui−1) \ P| +
2 − |C(ui)|. Finally, t � t−1 + |�(u−1) \ P| + 2. We conclude

t �
−1∑
i=0

|�V (ui) \ P| −
−1∑
i=1

|C(ui)| + 2 − 1.

Now each vertex w not lying on P can contribute at most 2 to the above ex-
pression (if it has three neighbors on P, then it is also a counterfeit). Hence,
t � 2(n −  − 1) + 2 − 1 = 2n − 3.

It is easy to verify that for a path of length n − 1 there are lists and initial vertices
such that 2n − 3 rounds are needed. Hence, the second bound is tight. The first bound
is matched by k-ary trees (up to constant factors), as shown in Section 4.3, where we
also demonstrate that the quasirandom model is faster than the fully random one on
these graphs.

4. GRAPH CLASSES

Our results cover hypercubes, many expander graphs, random regular graphs, and
Erdős-Rényi random graphs. The three latter graph classes have three properties in
common, which we refer to as “expanding.” This allows us to examine quasirandom
rumor spreading on them from a higher level just using these three properties defined
in Section 4.1.

4.1. Expanding Graphs

In order to analyze our quasirandom rumor-spreading model for a larger class of graphs
at once, we distill three simple properties of graphs, which are satisfied by several
common graph classes. Given these three properties, we can later prove in Theorem 5.1
that quasirandom rumor spreading successfully informs all vertices in a logarithmic
runtime. Roughly speaking, these properties concern the vertex expansion of not too
large subsets (P1), the edge expansion (P2) and the regularity of the graph (P3).

Definition 4.1 (expanding graphs). We call a connected graph expanding if the
following properties hold:
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(P1). For any constant Cα with 0 < Cα � d/2 there is a constant Cβ ∈ (0, 1) such
that, for any connected subset S ⊆ V with 3 � |S| � Cα (n/d), it holds that
|�(S) \ S| � Cβ d |S|.

(P2). There are constants Cδ ∈ (0, 1) and Cω > 0 such that for any subset S ⊆ V , the
number of vertices in Sc that have at least Cδd(|S|/n) neighbors in S is at least
|Sc| − Cωn2

d|S| .
(P3). d = �(�) and if d = ω(log n), then also d = O(δ).

We now describe the properties in detail and argue why each of them is intrinsic
for the analysis. (P1) describes a vertex expansion, which means that connected sets
have a neighborhood that is roughly in the order of the average degree larger than
the set itself. Without this property, the broadcasting process could end up in a set
with a tiny neighborhood and thereby slow down too much. Note that in (P1), Cβ

depends on Cα. Becausse Cα has to be a constant, the upper limit on Cα only applies for
constant d.

(P2) is a certain edge expansion property, implying that a large portion of unin-
formed vertices have a sufficiently large number of informed neighbors. This avoids
the situation where the broadcasting process stumbles upon a point when it has in-
formed many vertices but most of the remaining uninformed vertices have very few
informed neighbors and therefore only a small chance to get informed. Note that (P2)
is only useful for |S| = ω(n/d).

The last property (P3) demands a certain regularity of the graph. It is trivially
fulfilled for regular graphs, which many definitions of expanders require. The condition
d = �(�) for the case d = O(log n) does not limit any of our graph classes below. If the
average degree is at most logarithmic, (P3) implies no further restrictions. Otherwise,
we require δ, d, and � to be of the same order of magnitude. Without this condition,
there could be an uninformed vertex with δ informed neighbors of degree ω(δ) that
does not get informed in logarithmic time with a good probability. With an additional
factor of �/δ, this could be resolved, but because we aim at a logarithmic bound, we
require δ = �(�) for d = ω(log n). Note that we do not require d = ω(1), but the proof
techniques for constant and nonconstant average degrees will differ in Section 5.

We now describe several important graph classes that are expanding (i.e., satisfy all
three properties of Definition 4.1 with high probability).

4.1.1. Complete Graph. It is not difficult to show that complete graphs are expanding.

THEOREM 4.1. Complete graphs are expanding.

PROOF. We first prove that (P1) holds. Let Cα be an arbitrary constant. Take any
subset S ⊆ V with 3 � |S| � Cαn/(n − 1). Then

|�(S) \ S| = n − |S| � |S| (n − 1)
n − |S|
|S| n

= |S| (n − 1)
(

1
|S| − 1

n

)
,

so (P1) holds with Cβ = 1
|S| − 1

n � n−1
Cαn − 1

n > 0. We now show that (P2) holds. Let
Cδ ∈ (0, 1) be an arbitrary constant. Take any subset S ⊆ V . Then every vertex v ∈ Sc

has exactly |S| � Cδd(|S|/n) neighbors in S which implies that (P2) is satisfied.
Property (P3) is trivially fulfilled because a complete graph is regular.

4.1.2. Random Graphs G(n, p), p � (log n + ω(1))/n. In this section, we show that a large
class of random graphs is expanding with probability 1 − o(1). We use the popular
random graph model G(n, p), where between each two vertices out of a set of n vertices
an edge is present independently with probability p. This model is usually called the
Erdős-Rényi random graph model.
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We distinguish two kinds of random graphs with slightly different properties:

Definition 4.2 (sparse and dense random graph). We call a random graph G(n, p)
sparse if p = (log n+ fn)/n with fn = ω(1) and fn = O(log n) and dense if p = ω(log(n)/n).

Note that our definition of a sparse random graph coincides with the one of Cooper
and Frieze [2007] who set p = cn log(n)/n with (cn − 1) log n = ω(1) and cn = O(1). In
the remainder of this section, we prove the following theorem.

THEOREM 4.2. Sparse and dense random graphs are expanding with probability
1 − o(1).

The proof can be skipped at a first reading of the article because the following sections
do not depend on the proven results of this section.

PROOF. Note that for random graphs, d = p (n − 1) (1 ± o(1)) holds with probability
1−n−1. To simplify the presentation of the proof, we ignore the factor (1±o(1)) because
we do not try to optimize the used constants.

The easiest property to check is (P3). That d = �(�) holds with probability 1 − o(1)
is a well-known property of random graphs and can be shown by union and Chernoff
bounds (cf. Lemma A.1) as follows:

Pr
[
� � 5d

] = Pr
[∃v ∈ V : deg(v) � 5d

]
� nexp(−4d/3) = o(1).

Analogously for d = ω(log n),

Pr
[
δ � d/2

] = Pr
[∃v ∈ V : deg(v) � d/2

]
� nexp(−d/8) = o(1).

For the proof of (P2) it suffices to bound the number of neighbors of a set by Chernoff
bounds. The following lemma does this for sparse and dense random graphs at once.

LEMMA 4.3. Sparse and dense random graphs satisfy (P2) with probability 1 − o(1).

PROOF. We choose Cδ = 1/2 and Cω = 32. Consider a set S ⊆ V of arbitrary size
|S| = s. We want to show that the number of vertices in Sc that have at least Cδds/n
neighbors in S is at least |Sc| − Cω

n2

ds .
Fix a vertex v ∈ Sc. Linearity of expectations implies E[degS(v)] = ∑

u∈S p = ps.
Hence, a Chernoff bound (Lemma A.1) gives

Pr
[
degS(v) � (1/2) E

[
degS(v)

]]
� exp

(
− ds

8n

)
.

Hence, the probability for the existence of a subset of vertices in Sc of size Cωn2/(ds)
being bad (i.e., the set has more than Cωn2

ds vertices with less than Cδds/n neighbors in
S) can be bounded by (

n − s
Cωn2

ds

)
exp

(
− ds

8n

)Cωn2/(ds)

� 2n exp(−4n).

Taking the union bound over all possible sets S, we obtain

Pr
[∃ bad S

]
� 2n · 2n exp(−4n) �

(
4
e4

)n

.

We now turn to (P1). We first prove that (P1) holds for dense random graphs. After
that, we extend it to sparse random graphs, which requires slightly more involved
arguments.

LEMMA 4.4. Dense random graphs satisfy (P1) with probability 1 − o(1).
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PROOF. Let Cα > 0 be an arbitrary constant. Fix a set S ⊆ V of size s = |S| with
1 � s � Cα(n/d). We show that |�(S) \ S| � Cβds with Cβ := 1/(4(Cα + 1)).

The probability that a vertex v ∈ Sc is connected to a vertex in S is

1 − (1 − p)s � 1 − exp(−ps).

Linearity of expectation and using the fact that e−x � 1
x+1 for any number x � 0 gives

E
[|�(S) \ S|] � (n − s)

(
1 − 1

ps + 1

)

=
(

n − o
(

n
log n

))
ps

ps + 1
� n

2
ps

Cα + 1
= 2 Cβds.

Applying Chernoff bounds (Lemma A.1), we obtain

Pr
[|�(S) \ S| � Cβ ds

]
� exp

(−Cβds/4
)
.

It remains to show that this holds for all sets S. First, taking a union bound over all
sets of size s, we obtain

Pr
[∃ S ⊆ V : |S| = s, |�(S) \ S| � Cβ ds

]
� ns exp

(−Cβds/4
)

� n−ω(1),

where the last inequality uses the assumption d = ω(log n). Finally, a union bound over
all possible values of s yields

Pr
[∃ S ⊆ V : |�(S) \ S| � Cβ ds

]
�

n∑
s=1

n−ω(1) = n−ω(1).

We now consider sparse random graphs. For this, we need the following three technical
lemmas. The first one proves a slightly stronger bound compared to the original lemma
in Cooper and Frieze [2007, Property P2].

LEMMA 4.5. Sparse random graphs satisfy with probability 1 − o(1) that for every
subset S ⊆ V of size s = O(n/d) it holds that |E(S, S)| = o(s log n).

PROOF. We assume without loss of generality S �= ∅. We bound the probability for the
existence of a set S of size s with |E(S, S)| � s log n√

log log n
as follows:

Pr

[
∃S : |E(S, S)| � s

log n√
log log n

]

�
(

n
s

) ⎛⎝ (s
2

)
s log n√

log log n

⎞
⎠ p

s log n√
log log n

� ns

⎛
⎝ s2 e

s log n√
log log n

⎞
⎠

s log n√
log log n

p
s log n√

log log n = ns

(
s e p

√
log log n

log n

)s log n√
log log n

= exp

(
−s

(
log n√

log log n
log

(
log n

s e p
√

log log n

)
− log n

))

� exp
(
−�(log n

√
log log n) − log n

)
= n−ω(1),
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where, in the third inequality, we used that s = O(n/d) and p = �(d/n) together imply
that s e p = O(1). Taking the union bound over all values of s completes the proof.

It is known that in very sparse random graphs vertices with small degree are rare
and far away. To prove (P1) we need the following statement.

LEMMA 4.6. Sparse and dense random graphs satisfy with probability 1 − o(1) that
no two vertices of degree at most d/50 are within distance at most 3.

PROOF. We prove a slightly stronger statement: that there are no two vertices of
degree at most d/50 within distance at most log(n)/(log log n)2 with probability 1−o(1).

For d � 2.5 log n, we use property P2 of Lemma 1 of Cooper and Frieze [2007], which
states that no two vertices of degree at most log n/20 are within distance at most
log(n)/(log log n)2 with probability 1 − o(1).

For d � 2.5 log n, we calculate by Chernoff bounds that the probability that an arbi-
trary vertex has at most d/50 neighbors is exp

(−(492 d)/(2 · 502)
)

� n−1.2. Therefore,
the probability that there exists a vertex with at most d/50 neighbors is n·n−1.2 = o(1),
and the claim is satisfied.

We also need the following simple graph-theoretical lemma. We use it later, with d
being the average degree, but it holds for d being an arbitrary number.

LEMMA 4.7. Let d ∈ N and G be a graph where no two vertices of degree at most
d/50 are within distance at most 2. Then, for any connected S ⊆ V having at least two
vertices,

∑
v∈S deg(v) � (d/100)|S|.

PROOF. Call a vertex small if it has degree less than d/50; otherwise, we call it big.
Let T be a spanning tree of S. Let x be any vertex in S that is not small (i.e., big). For
any small vertex u ∈ S, let π (u) be the unique neighbor of u that is on the unique path
from u to x in T . Because two small vertices have distance at least three, π (u) is big,
and, for different small vertices u1, u2, we have π (u1) �= π (u2). Hence, π is an injective
mapping of small vertices into big vertices. In consequence, S contains at least |S|/2
big vertices. Hence,

∑
v∈S deg(v) � (|S|/2)(d/50) = (d/100)|S|.

Using all three above lemmas, we prove (P1) for sparse graphs.

LEMMA 4.8. Sparse random graphs satisfy (P1) with probability 1 − o(1).

PROOF. To prove (P1), let Cα > 0 be an arbitrary constant and let S ⊆ V with s = |S|
be a subset with

—3 � s � Cα
n
d ,

—|E(S, S)| = o(s log n), and
—
∑

v∈S deg(v) � s d
100 .

The last two conditions follow from Lemmas 4.5, 4.6, and 4.7. We show that |�(S) \
S| > Cβds with Cβ = min{1/200, e−500/Cα}.

We may assume that all
∑

v∈S deg(v)−o(s log n) outgoing edges from S hit a uniformly
chosen vertex among V \ S. This is a valid assumption because it may only lead to an
underestimation of the number of outgoing edges since a vertex in S may actually only
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hit the same vertex once. We call a set S of size s bad if |�(S) \ S| � Cβds. We compute

Pr
[∃ bad set S with |S| = s

]
�
(

n
s

)(
n − s
Cβds

)(
Cβds

n

)∑
v∈S deg(v)−o(s log n)

�
(en

s

)s
(

en
Cβds

)Cβds (Cβds
n

)ds/110

=
(en

s

)s
eCβ ds

(
Cβds

n

)( 1
110 −Cβ ) ds

�
(en

s

)s
eCβ ds

(
Cβds

n

)ds/11000 (Cβds
n

)ds/250

.

Plugging in the definition of s and Cβ , we observe that the two middle terms of the last
expression can together be upper-bounded by 1 since

e11000 Cβ

(
Cβds

n

)
� e11000 Cβ CβCα � e11000/200 e−500 = e−445 < 1.

Hence,

Pr
[∃ bad set S with |S| = s

]
�
(en

s

)s
(

Cβds
n

)ds/250

= exp
(

−s
(

d
250

log
(

n
Cβds

)
− log

(en
s

)))

� exp
(

−3
(

log n
250

log
(

1
Cα Cβ

)
− log

(en
3

)))
� n−3,

where the second to last inequality holds due to our assumptions on s, d � log n, and
Cβ � e−500/Cα. A union bound over all values for s proves the claim of Lemma 4.8.

This proves that sparse and dense random graphs satisfy all three properties of
expanding graphs with probability 1 − o(1) and therefore also completes the proof of
Theorem 4.2.

4.1.3. Strong Expander Graphs. Expander graphs (see Hoory et al. [2006] for a survey)
are “perfect” networks in the sense that they unite several desirable properties, such
as low diameter, small degree, and high connectivity. They are therefore attractive for
routing [Broder et al. 1994], load balancing [Rabani et al. 1998], and communication
problems such as the rumor-spreading task considered here.

To define a strong expander graph more formally, we have to introduce a bit of
notation. For a d-regular graph G, its adjacency matrix A is symmetric and has n real
eigenvalues d = λ1 � λ2 � · · · � λn. Define λ := max {|λ2|, |λn|}. It is well-known that
λ captures the expansion of G in the sense that a small λ implies good expansion (cf.
Lemmas 4.10 and 4.11) and vice versa Hoory et al. [2006, Theorem 2.4].

Definition 4.3 (expander). We call a d-regular graph G = (V, E) a strong expander if
there is a constant C > 0 (independent of d) such that C <

√
d and λ(G) � C

√
d.

We remark that graphs that satisfy the even stronger condition λ � 2
√

d − 1 are
called Ramanujan graphs, and the construction of such graphs has received a lot of
attention (cf. Hoory et al. [2006] for more details). It is known that for any d-regular
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graph, λ � 2
√

d − 1 − 2
√

d−1−1
nd/2 . Hence, as n → ∞, the smallest possible value for

the constant C in Definition 4.3 is 2
√

(d − 1)/d; in particular, we may assume in the
following that C > 1.

We prove the following theorem, which has been used in Cooper et al. [2012].

THEOREM 4.9. Strong expanders are expanding.

We first state two auxiliary lemmas that relate the second largest eigenvalue in
absolute value λ to the expansion of G.

LEMMA 4.10 (FROM [KAHALE 1995; TANNER 1984]). For any subset S ⊆ V of a d-regular
graph G,

|�(S)| � d2 |S|
λ2 + (d2 − λ2) |S|/n

.

We also need the expander mixing lemma.

LEMMA 4.11 (EXPANDER MIXING LEMMA HOORY ET AL. [2006, LEMMA 2.5]). For any two
subsets A, B ⊆ V of a d-regular graph G, we have∣∣∣∣|E(A, B)| − d|A| · |B|

n

∣∣∣∣ � λ ·
√

|A| · |B|.

We are now ready to prove Theorem 4.9, that strong expanders are expanding.

PROOF OF THEOREM 4.9. (P3) is trivially satisfied because the graph is regular. We
first prove (P1) and afterward (P2).

(P1): Let S ⊆ V be any set of size s = |S| � Cα
n
d , where Cα � d/2 is an arbitrary

constant. Consider first the case d = ω(1). Then, using Lemma 4.10 and λ � C
√

d gives

|�(S)| � d2 s
λ2 + (d2 − λ2) s/n

� d2 s

C2d + d2 Cα

d

= ds
C2 + Cα

and therefore

|�(S) \ S| �
(

1
C2 + Cα

− 1
d

)
ds.

This proves (P1) because the factor in front of ds is at least a constant (since d = ω(1)).
For d = O(1), we use Lemma 4.10 slightly differently to get

|�(S)| � d2 s
λ2 + (d2 − λ2) s/n

= d2s
λ2 (1 − (s/n)) + d2 (s/n)

� d2s
C2d (1 − (s/n)) + d2 (s/n)

.

Hence,

|�(S) \ S| � d2s
C2d (1 − (s/n)) + d2 (s/n)

− s

= d − C2 (1 − (s/n)) − d (s/n)
C2d (1 − (s/n)) + d2 (s/n)

· ds.
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The denominator is bounded here by a constant, since d = O(1) and s � n/2. The
numerator is at least a constant, since, by assumption, C is a constant that is strictly
smaller than

√
d. This proves (P1).

(P2): We may assume that |Sc| � � 4n2C2

ds , because otherwise |Sc| = O( n2

ds ), and
(P2) holds trivially by choosing the constant Cω sufficiently large; for instance, Cω :=
10·max{C2, 1}. Let us now order the vertices in Sc according to the number of neighbors
in S in decreasing order. Let N− be the last � 4n2C2

ds  vertices in that list (i.e., the � 4n2C2

ds 
vertices with the least number of neighbors in S) and let N+ := Sc\N− be the remaining
set of vertices in Sc. Observing that � 4n2C2

ds  � 3
2 · 4n2C2

ds (since ds � n2 and C � 1) and
applying Lemma 4.11, we obtain

|E(S, N−)| � d
|S| |N−|

n
− λ
√

|S| |N−|

� d
s 4n2C2

ds

n
− C

√
d

√
s

3
2

· 4n2C2

ds

= 4C2n −
√

6 · C2n � C2n.

This implies that the average number of neighbors in S of vertices in N− is at least

C2n

γ
3
2 ·4n2C2

ds

� ds
6n

,

and all vertices N+ must have at least this degree. Hence, we have shown that for
every subset S, at least |Sc| − |N−| � n − s − 3

2 · γ 4n2C2

ds � n − s − 6 n2C2

ds vertices in
Sc have at least ds/(6n) neighbors in S, and property (P2) follows with Cδ = 1/6 and
Cω = 6C2 > 0.

4.1.4. Random Graphs with Fixed Degree Sequence.

Definition 4.4 (random graph with fixed degree sequence). Let d1, d2, . . . , dn be a
degree sequence with maximum degree � = o(

√
n ) and �/δ = O(1). Then, a random

graph with this degree sequence is chosen uniformly at random from the set of all
simple graphs with this degree sequence.

Note that a random d′-regular graph is a random graph with a fixed-degree sequence
d1 = d2 = · · · = dn = d′. Random regular graphs have gained increasing interest in
the context of peer-to-peer networks (e.g., they appear quite naturally as a limiting
distribution of certain graph transformations [Mahlmann and Schindelhauer 2006;
Cooper et al. 2007a]).

For a random graph with a fixed-degree sequence as defined earlier, Broder et al.
[1998, Lemma 18] showed that λ = O(

√
d ) with probability 1 − O(n− poly(n)) and hence

gave the following theorem:

THEOREM 4.12. A random graph with fixed-degree sequence is expanding with
probability 1 − o(1).

4.2. Hypercubes

We now recall the definition of hypercubes.

Definition 4.5 (Hypercube). For any d, a d-dimensional hypercube H = (V, E) has
n = 2d vertices V = {0, 1}d and edges E = {{u, v} : ‖u − v‖1 = 1}.
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The i-th bit of a bitstring x ∈ {0, 1}d will be denoted as x[i]. We observe that the
hypercube is not expanding.

THEOREM 4.13. Hypercubes are not expanding.

PROOF. Define S := ⋃log d
i=1 Li, where Li is the set of vertices x with ‖x‖1 = i. Then,

3 � |S| = o(n/ log n) and

|�(S) \ S| = |Llog(d)+1| =
(

d
log(d) + 1

)
= d − log d

log(d) + 1

(
d

log d

)
� d

log(d) + 1
|S| = o(d |S|),

which violates (P1).

Hence, a separate analysis is needed, and this is given in Section 7.

4.3. k-ary Trees

For complete k-ary trees (k � 2), it is easy to verify that they are not expanding.

LEMMA 4.14. k-ary trees are not expanding.

PROOF. Consider a k-ary tree and let Cα = 1/2 and S be the set of vertices which are
in the subtree of fixed children of the root. Then, |S| � (n − 1)/k � n/2 � Cα(n/d), but
|�(S) \ S| = 1 violating (P1).

However, it is also not difficult to show the following theorem:

THEOREM 4.15. For complete k-ary trees, the broadcast time of the quasirandom model
is O(k log(n)/ log k) with probability 1, whereas the expected broadcast time of the fully
random model is �(k log n).

PROOF. Because a k-ary tree has a diameter of �(log(n)/ log k) and maximum degree
of k+1, plugging these values into the bound of Theorem 3.1, we obtain the first claim.

To see the lower bound for the fully random model, define a path P of length
diam(G)/2 inductively as follows: Assume that the root u0 is initially informed. Then
let P = (u0, u1, . . . , ui) for 1 � i � diam(G)/2, where ui is the last vertex informed by
ui−1. By the coupon collector’s problem, the expected time it takes for ui−1 to inform
ui is at least k log k and, therefore, the expected time to inform vdiam(G)/2−1 is at least
�(diam(G) k log k) = �(k log n).

5. QUASIRANDOM RUMOR SPREADING ON EXPANDING GRAPHS

In this section, we prove our main result, that quasirandom rumor spreading informs
all vertices in an expanding graph in a logarithmic number of rounds.

THEOREM 5.1. Let γ � 1 be a constant. The broadcast time of the quasirandom model
on expanding graphs is O(log n) with probability 1 − O(n−γ ).

To analyze the propagation process, we decompose it into a forward part (Sections 5.1
and 5.2) and a backward part (Sections 5.3 and 5.4). In the analysis of the forward part,
we show that if a vertex is informed at some time, then O(log n) steps later, only O(n/d)
vertices remain uninformed (cf. Theorem 5.2). In the analysis of the backward part, we
show that if a vertex is uninformed at some time, then O(log n) steps earlier, at least
ω(n/d) vertices must be uninformed as well (cf. Theorem 5.7). Combining both yields
Theorem 5.1.

We show that all this holds with probability 1 − n−γ for an arbitrary γ � 1. Because
Theorem 5.1 is considerably easier to show for d = O(1), we handle this case separately
in Section 5.5 and now concentrate on the case d = ω(1). This makes the proofs of the
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lemmas of this section slightly shorter. Therefore, in this section, apart from the last
subsection, we use the following adjusted property:

(P3’). d = ω(1) and d = �(�). If d = ω(log n) then d = O(δ).
Because the precise constants will be crucial in parts of the following proofs, we use

the following notation. Constants with a lowercase Greek letter index (e.g., Cα and Cβ)
stem from Definition 4.1. Constants without an index or with a numbered index (e.g.,
C and C1) are local constants in lemmas. K is used to denote a number of time steps.

5.1. Forward Analysis

In this section, we prove the following theorem:

THEOREM 5.2. Let γ � 1 be a constant. The probability that the quasirandom model
started in a fixed vertex u informs n − O(n/d) vertices within O(log n) rounds is at least
1 − n−γ .

In our analysis, we use the following two notations for sets of informed vertices: Let
It be the set of vertices that know the rumor after the t-th step. Let Nt ⊆ It be the set
of “newly informed” vertices—that is, those that know the rumor after the t-th step,
but have not spread this information yet. The latter set will be especially important
because these are the vertices that have preserved their independent random choice.

Each of the following Lemmas 5.3–5.6 examines one phase consisting of several steps.
Within each phase, we only consider information spread from vertices that became
informed in the previous phase. This is justified by Lemma 2.1.

Let u be (newly) informed at time step 0. To get a sufficiently large set of newly
informed vertices to start with, we first show how to obtain a set Nt of size �(log n)
within t = O(log n) steps. This is simple if d = ω(log n)—after c log n rounds, the first
vertex has informed exactly c log n new vertices. Otherwise, we use the fact that (P1)
implies that the neighborhoods �k(u) grow exponentially with k. Since within � steps
�k(u) becomes informed if �k−1(u) was informed beforehand, this yields the claim in
this case. The precise statement is as follows:

LEMMA 5.3. Let C > 0 be an arbitrary constant. Then, with probability 1, there is a
time step t = O(log n) such that

—|Nt| � C log n and
—|It \ Nt| = o(|Nt|).

The proof of Lemma 5.3 and all following lemmas can be found in Section 5.2. We
now assume that we have a set Nt of size �(log n). We aim at informing �(n/d) vertices.
For the very dense case of d = �(n/ log n), this is a trivial statement. Note that in
the following argument we can always assume that we have not informed too many
vertices as the number of informed vertices can at most double in each time step. The
following lemma shows that, given a set of informed vertices matching the conditions
of (P1), within a constant number of steps the set of informed vertices increases by a
factor strictly larger than 1.

LEMMA 5.4. For any constants γ � 1 and Cα > 0 there are constants K � 1, C1 > 1,
C2 > 1, and C3 ∈ (3/4, 1) such that for all time steps t, if

—C1 log n � |It| � Cα (n/d) and
—|Nt| � C3 |It|,
then with probability 1 − n−γ ,

—|It+K| � C2 |It| and
—|Nt+K| � C3 |It+K|.
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Because the precondition of the next Lemma 5.5 is |It| � 16 Cω(n/d), let Cα = 16 Cω.
Then, Lemma 5.4 yields a constant C2 > 1 such that applying this lemma at most
logC2

(
16 Cω (n/d)

) = O(log n) times leads to at least 16 Cω(n/d) informed vertices, a
constant fraction of which is newly informed.

The next aim is informing a linear number of vertices. Note that as long as that is
not achieved, (P2) implies that there is a large set of uninformed vertices that have
many neighbors in Nt. This is the main ingredient of the following Lemma 5.5. It shows
that, under these conditions, a phase of a constant number of steps suffices to triple
the number of informed vertices.

LEMMA 5.5. For any constant γ � 1 there are constants K � 1, C > 1, and Cω > 0
such that for all time steps t, if

—max{C log n, 16 Cω(n/d)} � |It| � n/16 and
—|Nt| � (3/4) |It|,
then with probability 1 − n−γ ,

—|It+K| � 3 |It| and
—|Nt+K| � (3/4) |It+K|.
Applying Lemma 5.5 at most O(log n) times, a linear fraction of the vertices gets in-
formed. In a final phase of O(log n) steps, one can then inform all but O(n/d) vertices,
as shown in Lemma 5.6.

LEMMA 5.6. For any constants γ � 1 and C > 0, there is a K = O(log n) such that for
all time steps t, if

—|Nt| � C n,

then with probability 1 − n−γ ,

—|It+K| = n − O(n/d).

Combining all these phases, a union bound gives |IO(log n)| = n − O(n/d) with proba-
bility 1 − O(log(n) n−γ ). Because γ was arbitrary in all lemmas, Theorem 5.2 follows.

5.2. Proofs of the Lemmas Used in the Forward Analysis

PROOF OF LEMMA 5.3. Let u be informed at time step 0. If d = ω(log n), then by (P3)
δ = �(d), and a single phase of C log n rounds suffices; that is, we have NC log n = C log n,
and the lemma follows.

We now describe how to obtain C log n newly informed vertices for d = O(log n). For
this, we choose a Cα such that Cαn/d � C log n and get, by (P1) for k � 3, as long as
|��k(v)| = O(n/d),

|��k+1(v)| = |��k(v)| + |�k+1(v)| = |��k(v)| + |�(��k(v)) \ ��k(v)|
� (1 + Cβd) |��k(v)|. (1)

Subtracting |��k(v)| on both sides yields

|�k+1(v)| � Cβ d |��k(v)|.
Because |��3(v)| � 3, by induction,

|�k(v)| � 3 (Cβ d)k−3

for all k with k � 3 and |��k−1(v)| � C log n. Therefore, we can choose a k =
O(log log(n)/ log d) such that |�k(v)| � C log n.
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We use the delaying and ignoring assumption (cf. Lemma 2.1) to perform k phases
of � rounds each. Then, after these t = �k = O(� (log log n)/ log d) = O(log n) steps
(as � = O(d) by (P3) and d/ log d = O(log(n)/ log log n) by d = O(log n)), all vertices in
��k(v) get informed, but no vertex of �k(v) has been active. In consequence, we have

|Nt| = |�k(v)| � C log n, (2)

|It \ Nt| = |��k−1(v)| � |�k(v)|/(Cβ d) = o(|Nt|),
where the last equation stems from (P3’).

PROOF OF LEMMA 5.4. We choose the following constants:

C1 := 8 γ �2

C2
β d2

> 1, C2 := 4 �

Cβ d
> 1,

C3 :=
(

1 − Cβ d
4 �

)
∈ (3/4, 1), K :=

⌈(
3 �

Cβ d

)2
⌉

� 1,

where the Cβ is from (P1) and depends on the given Cα. K and C1 to C3 are all �(1) by
(P3). Because It is a connected set of appropriate size, (P1) gives

|�(It) \ It| � Cβ d |It|. (3)

Because we are interested in the expansion of Nt and not of It, we calculate

|�(It) \ It| = ∣∣(�(It \ Nt) \ It
) ∪ (�(Nt) \ It

)∣∣
�
∣∣�(It \ Nt) \ It

∣∣+ ∣∣�(Nt) \ It
∣∣

� �|It \ Nt| + ∣∣�(Nt) \ It
∣∣. (4)

Combining Equations (3) and (4) with the assumption |It \ Nt| � Cβ d
4 �

|It|,∣∣�(Nt) \ It
∣∣ � Cβ d |It| − �|It \ Nt| � 3 Cβ d |It|/4.

We now perform one phase consisting of K rounds. We compute the size of the resulting
sets It+K and Nt+K as follows:

Let v ∈ �(Nt) \ It. Then there is a u ∈ Nt such that (u, v) ∈ E. The probability that u
contacts v within this time interval is min{K/ deg(u), 1} � K/� (as � = ω(1) by (P3’)),
which naturally is a lower bound for v becoming contacted by an arbitrary vertex of
Nt. By linearity of expectation, the expected number of vertices becoming contacted is
at least

E
[|Nt+K|] � K |�(Nt) \ It|/� � 3 Cβ K d |It|/(4�).

Because every vertex can only contact at most K vertices in this time interval, Azuma’s
inequality (cf. Lemma A.2) gives a probabilistic lower bound on the number of newly
informed vertices. More precisely,

Pr
[
|Nt+K| � Cβ K d |It|

2�

]
� exp

(
−C2

β d2 |It|2
8 �2 |Nt|

)
� n−C1 C2

β d2/(8 �2) = n−γ .

It remains to check that |Nt+K| � Cβ K d |It|
2 �

implies the two parts of the claim. First,

|It+K| � |Nt+K| � Cβ K d
2 �

|It| � 4 �

Cβ d
|It| = C2 |It|.
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For the second part, observe that

|Nt+K| � Cβ K d |It|
2 �

� Cβ K d (|It+K| − |Nt+K|)
2 �

= Cβ K d
2 �

|It+K| − Cβ K d
2 �

|Nt+K|.
Rearranging yields

|Nt+K| � Cβ K d
2 � + Cβ K d

|It+K| �
Cβ

( 3 �
Cβ d

)2 d

2� + Cβ

( 3 �
Cβ d

)2 d
|It+K|

= 9�

2 Cβ d + 9 �
|It+K| �

(
1 − Cβ d

4 �

)
|It+K|.

PROOF OF LEMMA 5.5. We choose C := 512 γ 3 �2

3 C2
δ d2 > 1, K := � 16 γ �

Cδ d  � 1, and Cω > 0
according to (P2).

By property (P2), the number of vertices in Nc
t that have at least Cδd |Nt|/nneighbors

in Nt is at least |Nc
t | − Cω n2

d |Nt| . Therefore, the number of vertices in Ic
t that have at least

Cδd(|Nt|/n) neighbors in Nt is at least

|Nc
t | − |It| − Cω n2

d |Nt| � n − 2 |It| − n/12 � 19n/24 � 3n/4,

where the first inequality is due to 16 Cω(n/d) � |It| � 4/3 |Nt|.
We call a vertex v ∈ Ic

t good if it has at least Cδd |Nt|/nneighbors in Nt. The probability
that a good vertex gets informed in a phase of K rounds (again using K � � = ω(1) by
(P3’)) is at least

1 −
(

1 − K
�

)Cδd |Nt|/n

� 1 − exp
(

− KCδd |Nt|
�n

)
� 1 − exp(−16 γ |Nt|/n)

� 1 − 1
(16 γ |Nt|/n) + 1

= 16 γ |Nt|
16 γ |Nt| + n

.

By linearity of expectation,

E
[|Nt+K|] � 16 γ |Nt|

16 γ |Nt| + n
3n
4

� 16 γ |Nt|
16 γ n/16 + n

3n
4

= γ |Nt|
(γ /16) + 1/16

3
4

� 6 |Nt|.

Azuma’s inequality (cf. Lemma A.2) gives

Pr
[|Nt+K| � 4 |Nt|

]
� exp

(
−2 (2|Nt|)2

|Nt| K2

)
= exp

(
−8|Nt|

K2

)

� exp
(

− |Nt|C2
δ d2

128 γ 2�2

)
� exp

(
−3C log(n)C2

δ d2

512 γ 2�2

)
= n−γ .

Therefore, with probability 1 − n−γ ,

|Nt+K| � 4 |Nt| � 3 |It| = 3 |It+K| − 3 |Nt+K|
and after rearranging,

|Nt+K| � 3
4

|It+K|.
This proves the first claim. The second claim follows from

|It+K| � |Nt+K| � 4|Nt| � 3 |It|.
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PROOF OF LEMMA 5.6. Let X ⊆ Nc
t be the set of vertices in Nc

t that have at least
Cδ d |Nt|/n neighbors in Nt. By (P2),

|X| � (n − |Nt|) − Cω n2

d|Nt| � n − |Nt| − �
( n

d

)
.

Let v ∈ X and consider a phase of K := � 2 γ � n
Cδ |Nt| d log n rounds. Note that K = O(log n) by

(P3).
If K � �, v becomes informed in this phase with probability 1. Otherwise, the

probability that v will not be informed in this phase is at most

Pr
[
v /∈ Nt+K

]
�
(

1 − K
�

)Cδ |Nt|d/n

� exp(−2 γ log n) = n−2 γ .

Taking the union bound over all vertices in X, we obtain that all vertices in X get
informed with probability 1 − n−γ . The claim follows.

5.3. Backward Analysis

The forward analysis has shown that within O(log n) steps, at most O(n/d) vertices
stay uninformed. We now analyze the reverse. The question here is how many vertices
have to be uninformed at time t − O(log n) if there is an uninformed vertex at time
t. We show that this is at least ω(n/d). To formalize this, recall that U[t1,t2](w) is the
set of vertices that reach the vertex w within the time interval [t1, t2] (using the usual
meaning of “reach” as defined on page 7). We prove the following theorem.

THEOREM 5.7. Let γ � 1 be a constant. If the quasirandom rumor-spreading process
does not inform a fixed vertex w until some time t, then there are ω(n/d) uninformed
vertices at time t − O(log n) with probability at least 1 − n−γ .

To prove Theorem 5.7, we fix an arbitrary vertex w and a time t. Ignoring some
technicalities, our aim is to prove a lower bound on the number of vertices that have to
be uninformed at times before t to keep w uninformed at time t. We first show that the
set of uninformed vertices at time t − O(log n) is at least of logarithmic size.

For d = O(log n), this follows from (P1) because all vertices of �O(log log n/ log d)(w) (and
there are at least �(log n) of these) reach w within O(log n) steps. For d = ω(log n), a
simple Chernoff bound shows that enough vertices of �(w) contact w within O(log n)
steps. This is summarized in the following lemma. The proofs of all three lemmas of
this section can be found in Section 5.4.

LEMMA 5.8. Let γ � 1 and C � 1 be constants, w a vertex, and t2 = �(log n) a time
step. Then, with probability 1 − 2 n−γ there is a time step t1 = t2 − O(log n) such that

|U[t1,t2](w)| � C log n.

We now know that within a logarithmic number of time steps there are at least c log n
vertices that have reached w. Very similarly to Lemmas 5.4 and 5.5 in the forward
analysis, we can increase the set of vertices that reach w by a multiplicative factor by
going back a constant number of time steps. The following lemma again mainly uses
(P1). For the very dense case of d = �(n/ log n), there is nothing to show.

LEMMA 5.9. For any constant γ � 1 there is a constant K such that for all vertices w
and time steps t1, t2, if

log n � |U[t1,t2](w)| = O(n/d),
then with probability 1 − n−γ ,

|U[t1−K,t2](w)| � 4 |U[t1,t2](w)|.
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Using Lemma 5.9 at most O(log n) times, we obtain a set of vertices that reach w of size
�(n/d). If these are ω(n/d) vertices, we are done. Otherwise, Lemma 5.10 shows that a
phase consisting of O(log n) steps suffices to get to this point. This is the only lemma
that substantially uses (P3’).

LEMMA 5.10. Let γ � 1 be a constant, w a vertex, and t1, t2 time steps such that

|U[t1,t2](w)| = �(n/d).

Then, with probability 1 − n−γ ,

|U[t1−O(log n),t2](w)| = ω(n/d).

This finishes the backward analysis and shows that ω(n/d) vertices have to be un-
informed to keep a single vertex uninformed for O(log n) steps. Together with the for-
ward analysis, which proved that only O(n/d) vertices remain uninformed after O(log n)
steps, this finishes the proof of Theorem 5.1 for d = ω(1).

5.4. Proofs of the Lemmas Used in the Backward Analysis

PROOF OF LEMMA 5.8. Consider first the case that d = O(log n). In this case, we choose,
as in the proof of Lemma 5.3, a constant Cα such that Cαn/d � C log n and apply (P1).
By Equation (2) from page 19, there exists a k = O(log log(n)/ log d) such that

|��k(w)| � |�k(w)| � C log n.

Since within � rounds each vertex has contacted all neighbors, we have ��i(w) ⊆
U[t2−i�,t2](w) for i � 1 and therefore ��k(w) ⊆ U[t2−k�,t2](w). As k� = O(log n), we see
that |U[t2−O(log n),t2]| � C log n with probability 1.

In the remaining case d = ω(log n), we estimate the number of neighbors of w that
reach w in the previous K := �4C2γ� log(n)/δ steps. Note that K = O(log n) by (P3).
For each neighbor u ∈ �(w), define a random variable X(u), which is 1 if u contacts
v within the time interval [t2 − K, t2] and zero otherwise. Then, for each u ∈ �(w),
Pr
[
X(u) = 1

]
� K/�. We define X :=∑u∈�(w) Xu. Linearity of expectation gives E

[
X
]

�
K δ/� � 4C2γ log n. Since {X(u) : u ∈ �(w)} is a set of independent random variables,
we obtain by a Chernoff bound that

Pr
[
X � C log n

]
� Pr

[
X � 1

4
E
[
X
]]

� exp(−(3/4)2 E
[
X
]
/2)

= exp(−(9/32) 4C2γ log n) � n−γ ,

where we used the assumption C � 1. This implies that with probability 1 − n−γ , we
have ∣∣U[t2−O(log n),t2](w)

∣∣ � C log n.

PROOF OF LEMMA 5.9. Let S := U[t1,t2](w) and let |S| � Cα (n/d) for a constant Cα.
Because S is a connected set, (P1) gives

|�(S) \ S| � Cβ d |S|
for a suitable constant Cβ . Let K = � 8 γ

Cβ

�
d  = O(1) (by (P3)). Because every vertex

u ∈ �(S)\ S has at least one edge to a vertex v ∈ S, the probability that a vertex
u ∈ �(S) \ S contacts a v ∈ S in the interval [t1 − K, t1 − 1] is at least K/� and
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S′ := U[t1−K,t2](w). By linearity of expectation, the expected number of vertices in S′ \ S
is at least

E
[|S′ \ S|] � K|�(S) \ S|/� � Cβ Kd |S|/�.

A simple application of the Chernoff bound gives

Pr
[
|S′ \ S| � Cβ Kd |S|

2�

]
� exp

(
−Cβ Kd |S|

8�

)
� n− Cβ Kd

8� .

Hence, with probability 1 − n−γ ,

|S′| � Cβ Kd |S|
2�

� 4γ |S| � 4 |S|.

PROOF OF LEMMA 5.10. Let S := U[t1,t2](w) with |S| � Cα (n/d) for a constant Cα. Also
let K := � 8γ

Cβ

�
d

n
|S| d log n and S′ := U[t1−K,t2](w). Note that K = O(log n) by (P3). We

examine a phase of K steps.
Because S is a connected set, (P1) gives, as in the proof of Lemma 5.9, |�(S) \ S| �

Cβ d |S|. If K � �, the lemma immediately follows from the observation

|S′| = |��1(S)| = �(d |S|) = �(n) = ω(n/d).

The last equality is based on d = ω(1), as given by (P3’).
We now assume K � �. Because every vertex u ∈ �(S) \ S has at least one edge

to a vertex v ∈ S, the probability that a vertex u ∈ �(S) \ S contacts a v ∈ S in the
interval [t1 − K, t1 −1] is at least K/�. By linearity of expectation, the expected number
of vertices in S′ \ S is at least

K
�

|�(S) \ S| � Cβ Kd |S|
�

� 8γ n log n
d

Again, a Chernoff bound gives

Pr
[
|S′ \ S| � 4γ n log n

d

]
� exp

(
−γ n log n

d

)
� n−γ .

Hence, |S′| � |S′ \ S| = �(n log(n)/d) = ω(n/d) with probability 1 − n−γ for K � �.

5.5. Analysis for Graphs with Constant Degree

It remains to show that the quasirandom model also works well on expanding graphs
with constant degree d = O(1). To do this, we apply Theorem 3.1 to see that, for any
graph, the quasirandom model succeeds in � ·diam(G) steps. The corresponding bound
for the fully random model is O(� (diam(G)+ log n)) with probability 1−n−1 Feige et al.
[1990, Theorem 2.2].

Naturally, the diameter of expanding graphs can be bounded easily as follows (cf.
Hoory et al. [2006, p. 455] for a related result). Plugging Lemma 5.11 into the upper
bound of � · diam(G) yields Theorem 5.1 for d = O(1).

LEMMA 5.11. For any expanding graph G with d = O(1), diam(G) = O(log n).

PROOF. Fix two vertices v and w. We show that ��O(log n)(v)∪��O(log n)(w) �= ∅. Because
G is connected, |��3(v)| � 3. Now we choose Cα = d/2 (which is valid since d is a
constant) and proceed as in the proof of Lemma 5.3. By (P1) we again get Equation (1)
for k > 3, and therefore by induction

|��k(v)| � 3 (1 + Cβd)k−3
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Table II. Summary of the Broadcast Times for Almost All Random Graphs
G(n, p) with p n = log n + ω(1) and p n = log n + O(log log n).

Broadcast Time
Random Model Quasirandom Model

O(log2 n) with probability � 1 − n−1 [Feige et al. 1990] O(log n) with probability � 1 − n−γ ∀γ = O(1)
�(log2 n) with probability � n−1 [Feige et al. 1990] (Thm. 4.2 and 5.1)
�(log(n) log log n) with probability � 1 − o(1) (Thm. 6.2)

for all kwith k > 3 and |��k−1(v)| � n/2. Therefore we can choose a ksuch that |��k(v)| �
n/2 and k = O(log n). Because analogously |�O(log n)(w)| � n/2, we can conclude that
there is a path of length O(log n) from v to w.

6. LOWER BOUNDS FOR THE FULLY RANDOM MODEL ON SPARSE RANDOM GRAPHS

In this section, we discuss lower bounds for the fully random model on sparse random
graphs. They show that the quasirandom model is superior on such graphs. Feige et al.
[1990] proved the following bound.

THEOREM 6.1 ([FEIGE ET AL. 1990, THEOREM 4.1]). Let p = (log n + f (n))/n, where
f (n) = ω(1) and f (n) = O(log log n). Then, for almost all random graphs G(n, p), the
broadcast time of the fully random model is �(log2 n) with probability at least n−1.

Theorem 6.1 stems simply from the fact that with high probability such graphs
contain a vertex having constant degree with all neighbors having logarithmic degree.
Although the expected time to inform such a vertex, given that all its neighbors are
informed, is logarithmic, we need �(log2 n) rounds to do so with probability at least
n−1. The following result shows that we need ω(log n) rounds with probability 1 − o(1)
(see also Table II for a survey).

THEOREM 6.2. Let p = (log n + f (n))/n, where f (n) = ω(1) and f (n) � C log log n for
some constant C � 1. Then, for almost all random graphs G(n, p), the broadcast time of
the fully random model is �(log(n) log log n) with probability 1 − o(1).

PROOF. Fix an arbitrary vertex v. Then, for any x � 1 we have,

Pr
[
deg(v) � x

]
� Pr

[
deg(v) = x

]
=
(

n − 1
x

)
px (1 − p)n−1−x

�
(

n − 1
x

)x ( log n
n

)x (
1 − log n + C log log n

n

)n−1

.

Now, using the fact that (1 − 1
n)n−1 � e−1 twice gives

Pr
[
deg(v) � x

]
�
(

n − 1
n

)x ( log n
x

)x

e− log n−C log log n

� e−1
(

log n
x

)x

e− log n−C log log n.

We now argue that, with high probability, we have sufficiently many vertices of this
small degree. The basic idea is to inspect the degree of the vertices in a careful manner.
First, in order to verify whether a vertex v1 has degree larger than x or not, we only
have to expose at most x + 1 edges incident to v1. Then, the next vertex we pick will
be a vertex for which we have not exposed any edge so far. Using this way of exposing
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the vertices allows us to use a Chernoff bound and to conclude that there are enough
vertices of small degree.

More precisely, start with an arbitrary vertex v1 ∈ V . In the first iteration, we
check sequentially for all vertices u ∈ V whether {v1, u} ∈ E until we know whether
deg(v1) � x holds or not. Although we may have to check for up to n − 1 vertices u
whether {v1, u} exists, we will never expose more than x + 1 edges. This holds because
after we have found x + 1 edges incident to v1, the event deg(v1) � x does not hold.
Then, in the second iteration, we pick a new vertex v2 �= v1 for which we have not
exposed the existence of any edge (but we may already know that {v2, v1} /∈ E). Again,
we sequentially check for all vertices u ∈ V whether {v2, u} ∈ E holds until we know
whether deg(v2) � x holds or not. Observe that we can continue in this manner as long
as there is a new vertex vi for which we have not exposed the existence of any edge.
Since in each iteration at most x + 1 edges are exposed, the number of vertices with
no exposed edge is reduced by at most x + 2 per iteration. As a consequence, the whole
procedure can be run for at least n/(x +2) iterations. In each iteration 1 � i � n/(x +2),
we have

Pr
[
deg(vi) � x

]
� e−1

(
log n

x

)x

e− log n−C log log n,

by the same reasoning as given previously.
Let X be the number of vertices with degree at most x. By the preceding arguments, it

follows that X is stochastically larger (cf. Definition A.1 for a definition of stochastically
larger) than the sum of n/(x+2) independent Bernoulli-random variables, each of which
has success probability e−1 ( log n

x )x e− log n−C log log n. Therefore, it follows by a Chernoff
bound (Lemma A.1) that

Pr
[

X � 1
2

E
[
X
]]

� e−(1/2)2 E[X]/2. (5)

Now choose x := (log n)ε for an arbitrary constant 0 < ε < 1. By the previous
paragraph, we obtain

E
[
X
]

� n
(log n)ε + 2

e−1
(

log n
(log n)ε

)(log n)ε

e− log n−C log log n

� 1
3

(log n)−ε−C+(1−ε)(log n)ε = (log n)�((log n)ε)
.

Plugging this into Equation (5), we obtain

Pr
[
X � (log n)�((log n)ε)

]
= o(1).

By Cooper and Frieze [2007, Lemma 1, Property 2], we know that for almost all random
graphs, any two vertices with a degree of less than log n/20 have a distance of at least
log n/(log log n)2 from each other. Hence, all neighbors of vertices in X have a degree
of more than log n/20. In particular, the time until a vertex u ∈ X gets contacted by
a fixed neighbor v ∈ N(u) is stochastically larger than a geometric random variable
with parameter log n/20. Hence, the time until u gets contacted by any of its neighbors
is stochastically larger than the minimum of deg(u) � x = (log n)ε independent such
geometric variables. Since any two vertices in X have a distance of at least 3, these
times are independent for all u ∈ X.

Now recall that R(G) is the random variable describing the runtime of the fully
random model. Furthermore, let Geo(p) be the geometric distribution defined by
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Pr
[
Geo(p) = i

] = p · (1 − p)i for any integer i � 0. Denoting with � “stochastically
larger” and using Lemma A.4, we obtain

R(G) � max
u∈X

min
v∈N(x)

{
Geo(20/ log n)

}

� max
u∈X

⎧⎨
⎩Geo

⎛
⎝1 −

∏
v∈N(x)

(1 − 20/ log n)

⎞
⎠
⎫⎬
⎭

� max
u∈X

{
Geo

(
1 − (1 − 20/ log n)(log n)ε

)}

� (log n)�((log n)ε )

max
i=1

{
Geo

(
1 − e−20(log n)ε−1

)}
.

Hence

Pr
[
R(G) � t

]
� Pr

[
Geo

(
1 − e−20(log n)ε−1

)
� t
](log n)�((log n)ε )

=
(

1 −
(
e−20(log n)ε−1

)t
)(log n)�((log n)ε )

� exp
(
−e−20(log n)ε−1t (log n)�((log n)ε)

)
.

Setting t = c log n log log n with a sufficiently small constant c finally gives

Pr
[
R(G) � t

]
� exp

(
−(log n)−20c(log n)ε (log n)�((log n)ε)

)
= exp

(
−(log n)�((log n)ε)

)
.

7. QUASIRANDOM RUMOR SPREADING ON HYPERCUBES

In this section, we analyze the quasirandom model on hypercubes. We prove that the
quasirandom model informs all vertices in O(log n) rounds with high probability. This
extends a corresponding runtime bound of O(log n) for the fully random model in Feige
et al. [1990]. The difficulty in our analysis is that the hypercube is not an expanding
graph (cf. Theorem 4.13), and, also, an application of the bound of Theorem 3.1 yields
only a much weaker upper bound of O(log2 n).

We now state and prove our runtime bound for the quasirandom model on hyper-
cubes. Finally, we also examine the failure probability more closely to reveal that there
is again a slight superiority of the quasirandom model over the fully random model
(Section 7.4).

THEOREM 7.1. The broadcast time of the quasirandom model on the hypercube is
O(log n) with probability 1 − n−�(log n).

Similarly to the proof for expanding graphs in Section 5, the analysis consists of a
forward part and a backward part. Although the analysis of the forward part borrows
several concepts from the analysis of the fully random model [Feige et al. 1990], the
idea of analyzing the process in reversed order was not used in that work.

The forward part informs sufficiently many vertices in O(log n) time. The backward
part shows that if there is an uninformed vertex, then O(log n) steps earlier, every ball
of small radius in the hypercube contains at least one uninformed vertex. To prove
that one of these uninformed vertices gets informed eventually, we need a third part
in between, which we call coupling. A graphical illustration of our proof can be found
in Figure 1 on page 27.
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Fig. 1. The left side contains a sketch of the proof of Theorem 7.1. The black circles represent I′
3d,

, and
the triangles represent

⋃
v∈I′

3d,
�(v). The right side illustrates the analysis of the coupling part. We find two

vertices v′′ and u′′ such that every shortest path between them is included in a subcube of vertices whose
initially contacted neighbors are not exposed.

To formally prove Theorem 7.1, we assume that the following three lemmas hold. We
state them here and prove them in the remainder of this section. Recall that n = 2d.

LEMMA 7.2. The probability that the quasirandom rumor-spreading process started
in a fixed vertex s informs 2d/6 vertices in 3d, steps is at least 1 − n−�(log n).

Let s = 0d be initially informed. By Lemma 7.2, at least 2d/6 vertices get informed
in 3d, with probability at least 1 − n−�(log n). Now fix an arbitrary vertex w ∈ V . Recall
that U[t1,t2](w) is the set of vertices that reach the vertex w within the time interval
[t1, t2] (cf. definition on page 7).

LEMMA 7.3. For any vertex w and t2 = 1033d, with probability at least 1 − n−�(log n),
there is for every vertex v a vertex u(v) ∈ U[6d,t2](w) with dist(u, v) � d/256.

By applying Lemma 7.3, there is, with probability at least 1−n−�(log n) for each v ∈ I3d,

a vertex u(v) ∈ U[6d,t2](w) with dist(u, v) � d/256.

LEMMA 7.4. Let s be the initially informed vertex and w be an arbitrary vertex. Assume
that the following two conditions hold:

—there are at least 2d/6 informed vertices at step 3d, and
—there is for every vertex v a vertex u(v) ∈ U[6d,t2](w) with dist(u, v) � d/256 and

t2 = 1033d.

Then, with probability 1−e− poly(n), at least one vertex in U[6d,t2](w) is informed at step 6d.

Now, if the two former conditions hold, Lemma 7.4 implies that a vertex in U[6d,t2](w)
gets informed with (conditional) probability at least 1 − n−�(log n). By definition, this
implies that the vertex w gets informed at step t2. Taking the union bound over the
success of the forward and backward part (Lemma 7.2 and Lemma 7.3), it follows that
at step t2 the vertex w gets informed with probability at least 1 − n−�(log n). Taking the
union bound over all possible vertices w ∈ V yields Theorem 7.1.

7.1. Proof of the Forward Analysis

In this section, we prove Lemma 7.2.
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PROOF OF LEMMA 7.2. By symmetry, we may assume that s = 0d is initially informed.
Let Li be the set of vertices with ‖x‖1 = i. Note that after two phases of d steps each,
we have I2d = {s} ∪ L1 ∪ L2.

Consider some time-step t � 2d. Assume that all initially contacted neighbors of
It ∩ Li are still to be chosen uniformly at random for i � 2. Notice that the number of
edges between It ∩ Li and Li+1 is |E(It ∩ Li, Li+1)| =∑v∈Li+1

degIt∩Li
(v) = |It ∩ Li| (d − i).

Our goal is to show that a large set of vertices in Li+1 will be informed after a phase
of four additional steps. The probability that a vertex v ∈ Li+1 is still uninformed after
this phase is

Pr
[
v �∈ It+4

]
�

∏
u∈�(v)∩It∩Li

(
1 − 4

d

)
=
(

1 − 4
d

)degIt∩Li
(v)

.

By linearity of expectations we get

E
[|It+4 ∩ Li+1|

] =
∑

v∈Li+1

Pr
[
v ∈ It+4

]
�
∑

v∈Li+1

1 −
(

1 − 4
d

)degIt∩Li
(v)

�
∑

v∈Li+1

1 − exp
(

− 4 degIt∩Li
(v)

d

)
.

Let us now assume that 1 � i � d/4 − 1. Then, since degIt∩Li
(v) � i + 1 for v ∈ Li+1 and

1 + x
2 � ex for any −1 � x � 0, we get

E
[|It+4 ∩ Li+1|

]
�
∑

v∈Li+1

2 degIt∩Li
(v)

d
= 2

d
|It ∩ Li| (d − i) = 2

d − i
d

|It ∩ Li|.

Since any vertex of |It ∩ Li| can only inform at most four vertices within four steps, an
application of Azuma’s inequality (cf. Lemma A.2) gives, for any constant 0 < ε � 2/3,

Pr
[
|It+4 ∩ Li+1| � (2 − ε)

d − i
d

|It ∩ Li|
]

� exp
(

− (ε d−i
d |It ∩ Li|)2

16 |It ∩ Li|
)

= exp(−�(d2)) = n−�(log n),

as long as |It ∩ Li| � d (d−1)
2 holds. Observe that if the condition |It ∩ Li| � d (d−1)

2 holds
initially, then |It+4 ∩ Li+1| � (2 − ε) d−i

d |It ∩ Li| implies that |It+4 ∩ Li+1| � d (d−1)
2 , since

(2 − ε) d−i
d � (2 − ε) 3

4 � 1 by definition of i and ε.
Recall that we first spent 2d steps in the first two phases to inform L2 completely.

Then, in the preceding analysis, we spent, for each level i with 2 � i � d/4 − 1, a phase
of exactly four steps. Hence, the total time consumption is

2d + (d/4 − 2) · 4 � 3d.

Now, taking the union bound over all levels 2 � i � d/4 − 1, with probability 1 − (d/4 −
1) n−�(log n) = 1 − n−�(log n) it holds that

|I4d ∩ Ld/4| � d (d − 1)
2

d/4−1∏
i=2

(
(2 − ε)

d − i
d

)

= d (d − 1)
2

(2 − ε)d/4−2
d/4−1∏

i=2

(
1 − i

d

)
.
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We now use the fact that (1− x)1/x is nonincreasing in 0 < x < 1, implying (1− x) � 4−x

for any x � 1/4. Plugging this into the previous inequality yields

|I4d ∩ Ld/4| � (2 − ε)d/4 4−∑d/4−1
i=2

i
d � (2 − ε)d/4 4−d/32 � 2d/6,

if ε > 0 is a sufficiently small constant.

7.2. Proof of the Backward Analysis

In this section, we prove Lemma 7.3. We use the notation that x[ j] denotes the j-th bit
of a vertex x ∈ V .

PROOF OF LEMMA 7.3. We now analyze the propagation of the rumor in the reverse
order. Due to the symmetry of H, we restrict our attention to the case w = 1d.

Let us first consider the case where v = 0d. So we have to show that U[6d,t2](w)
contains a vertex u such that dist(0d, u) � d/256 with probability at least 1 − n−�(log n).
In order to achieve such a large success probability, we construct d/512 vertex-disjoint
paths that start from a vertex in �(w) and move toward the vertex v. For each neighbor
of w that differs from w in one of the last d/512 bits, we associate a path starting
from that vertex and moving toward the vertex v. The disjointness is ensured by not
allowing the path to change any of the last d/512 bits.

First note that U[t2−d,t2](w) ⊇ �(w), since within a time interval of d steps, every
neighbor of w contacts w. Let J := [(511/512) d, d]. For each j ∈ J , we define a set of
vertices

V ( j) := {x ∈ {0, 1}d with x[ j] = 0 and x[i] = 1 for i ∈ [(511/512) d, d]\{ j}} .

For each j ∈ J we consider a path P( j) = (v1, v2, . . . , v) ⊆ V ( j) of length  :=
(255/256) d, which is defined inductively as follows:

—The first vertex of P( j) is defined by v1 ∈ �(w) ∩ V ( j).
—If si denotes the time-step when P( j) has reached the vertex vi, then P( j) is extended

to a vertex vi+1 ∈ �(vi) ∩ V ( j) with ‖vi+1‖1 = d− i − 1 such that vi+1 is the last vertex
before time-step si that contacts vi.

Fix an arbitrary j ∈ J and consider the path P( j). Recall that v1 ∈ U[t2−d,t2](w). Fix any
i with 1 � i �  and consider the vertex vi. Note that there are d− i − (1/512) d vertices
u ∈ �(vi) ∩ V ( j) with ‖u‖1 = ‖vi‖1 − 1. Let us denote by �i(vi) the waiting time (going
back in time) until such a fixed vertex u contacts vi, in symbols,

�i(u, vi) := si − max{s � si − 1 : u ∈ U[s,si ](vi)}.
Note that �i(u, vi) is a uniform random variable in {1, . . . , d}. In particular, the

distribution is the same for every u, and since the initially contacted neighbors are
chosen independently and uniformly at random, {�i(u, vi) : u ∈ �(vi) ∩ V ( j), ‖u‖1 =
‖vi‖1 −1} is a set of mutually independent random variables. The waiting time �i until
the first vertex u ∈ �(vi) ∩ V ( j) with ‖u‖1 = ‖vi‖1 − 1 contacts vi satisfies

�i := min
u ∈ �(vi ) ∩ V ( j) :
‖u‖1 = ‖vi‖1 − 1

�i(u, vi).

To bound this random variable, let Xi,u ∼ Geo(1/d); that is, a geometric random vari-
able with parameter 1/d. By Lemma A.4, the minimum of d− i − (1/512) d independent
geometric random variables with parameter 1/d is itself a geometric random variable
Xi with parameter

1 −
(

1 − 1
d

)d−i−(1/512) d

� 1 − exp (−1/512) � 1 − 1
1/512 + 1

= 1
513

.
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Hence, with “�” denoting “stochastically smaller than” we obtain by Lemma A.3 that

�i = min
u ∈ �(vi ) ∩ V ( j) :
‖u‖1 = ‖vi‖1 − 1

�i(u, vi) � min
u ∈ �(vi ) ∩ V ( j) :
‖u‖1 = ‖vi‖1 − 1

Xi,u = Xi.

Hence, the time �( j) :=∑
i=1 �i until we reach the end of P( j) is stochastically smaller

than
∑

i=1 Xi, where the Xi ’s are independent geometric random variables with param-
eter 1/513.

Let us first note that E
[
Xi
]

� 513 and therefore with X :=∑
i=1 Xi,

E
[
X
] =

∑
i=1

E
[
Xi
]

� 513 d.

Now we apply a Chernoff bound for a sum of independent geometric random variables
(Lemma A.5 with ε := 1) to obtain

Pr
[
X � 1026 d

]
� exp

(
−1

4


)
,

and since �( j) � X,

Pr
[
�( j) � 1026 d

]
� exp

(
−1

4


)
.

Hence, with probability 1−exp(− 1
4), the endpoint of a path P( j) for a fixed j contacts

w within the time interval [6d, t2].
Note that {�( j) : j ∈ J } is a set of independent random variables, since for any j1, j2 ∈

J with j1 �= j2, the vertex sets V ( j1) and V ( j2) are disjoint. Using this independence,
we can lower bound the probability that there is a vertex u with ‖u‖1 � d/256 and
u ∈ U[6d,t2](w) by

1 −
(

exp
(

−1
4



))|J |
� 1 − e−�(d2) = 1 − n−�(log n).

So far, we have considered the case where v = 0d. With the same arguments, we can
prove that for an arbitrary vertex v there is a vertex u(v) satisfying dist(u(v), v) � d/256
and u(v) ∈ U[6d,t2](w) with probability 1−n−�(log n). It follows by a union bound that with
probability 1 − n−�(log n), there is for every vertex v ∈ V (G) a vertex u(v) ∈ U[6d,t2](w)
with dist(v, u(v)) � d/256.

7.3. Proof of the Coupling Part

In this section, we prove Lemma 7.4.

PROOF OF LEMMA 7.4. Let w be an arbitrary, fixed vertex. By the first condition in
Lemma 7.4, we have |I3d,| � 2d/6. By definition of the hypercube, there are for every
vertex u exactly

∑d/64
k=0

(d
k

)
vertices with distance at most d/64 to u. Hence, there is

subset I′
3d,

⊆ I3d, such that two vertices in I′
3d,

have a distance at least d/64 from each
other which is of size

2d/6∑d/64
k=0

(d
k

) � 2d/6

(64e)d/64 � 2d/6(
28
)d/64 = 2d/24,

where we have used the inequality
∑m

i=0

(n
i

)
� ( e n

m )m.
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By our second condition in Lemma 7.4, there is for each vertex v ∈ I′
3d,

at least one
vertex u = u(v) ∈ U[6d,t2](w) such that dist(u, v) � d/256.

Let � : I′
3d,

→ U[6d,t2](w) be a function that assigns each vertex v ∈ I′
3d,

a vertex
u = u(v) ∈ U[6d,t2](w) such that dist(u, v) � d/256. Using the fact that two vertices in I′

3d,

have distance at least d/64 from each other, we observe that � is an injective function.
Let us now fix a pair of vertices v ∈ I′

3d,
and �(v) ∈ U[6d,t2](w). Note that the set of all

shortest paths between v and �(v) form a subcube H′ = H′(v,�(v)) whose dimension
is equal to the distance between v and �(v). Now choose a pair of vertices v′ ∈ H′ ∩ I3d,

and u′ ∈ H′ ∩ U[6d,t2](w) such that dist(v′, u′) is minimized. Our aim is to lower bound
the probability that v′ reaches u′ within the time interval [3d, 6d].

First, let us assume that dist(v′, u′) � 3. In this case, u′ is informed within 3d steps
with probability 1. Otherwise, we have dist(v′, u′) � 4. In this case, let v′′ ∈ �(v′) and
u′′ ∈ �(u′) be two vertices such that dist(v′′, u′′) = dist(v′, u′) − 2. Note that v′′ ∈ I4d and
u′′ ∈ U[5d,t2](w). By our construction, every vertex on a shortest path between v′′ and u′′
(except u′′) has distance at least 1 to I3d, and distance at least 2 to U[6d,t2](w). Hence,
for each vertex on such a shortest path, the initially contacted neighbor is still chosen
uniformly at random and independently of all other vertices.

Similarly to the proof of Lemma 7.3, we lower bound the probability that there exists
a path P = P(v) = (v1 = v′′, v2, . . . , vdist(v′′,u′′) = u′′), which satisfies the following two
conditions for any 1 � i < dist(v′′, u′′):

—vi+1 is closer to u′′ than vi and
—vi informs vi+1 at step 4d + i.

Note that once the rumor has reached a vertex vi for the first time, the vertex vi
forwards it to a vertex vi+1 closer to v′′ with probability at least (dist(v′′, u′′) − i + 1)/d.
Repeating this argument gives the following lower bound for the existence of P:

d/256∏
i=1

i
d

= (d/256)!
dd/256 � dd/256

(768 d)d/256 � (2−10)d/256 � 2−d/25,

where we have used the fact that n! � (n/3)n for any integer n in the left inequality.
Our next claim is that {P(v) exists : v ∈ I′

3d,
} is a set of mutually independent events.

In order to prove this, let us consider two arbitrary vertices v1, v2 ∈ I′
3d,

, v1 �= v2. Recall
that by definition of I′

3d,
, dist(v1, v2) � d/64. Because every vertex on a shortest path

between vi and �(vi) has a distance of at most d/256 to vi, it holds by the triangle
inequality that the two paths P(v1) and P(v2) always have a distance of at least d/128
from each other, which proves the claimed independence.

Using this, we can lower bound the probability that at least one P(v) exists by

1 −
(
1 − 2−d/25

)2d/24

� 1 − exp
(
−2d/(24·25)

)
= 1 − exp

(− poly(n)
)
.

If there is a v ∈ I′
3d,

for which P(v) exists, then we know that there is a vertex v′′(v) ∈ I′
4d

which reaches a vertex u′′(v) ∈ U[5d,t2](w) within the time interval [3d, 6d]. This implies
that u(v) ∈ U[6d,t2](w) is informed at step 6d, and, as a consequence, w will become
informed at step t2.

7.4. Failure Probability

We now examine the probabilities in the runtime bounds for the hypercube more
closely. Recall that the runtime bound of O(log n) for the quasirandom model holds
with probability at least 1 − n−�(log n). In the fully random model, however, a fixed
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vertex remains uninformed for x steps with probability at least (1 − 1/d)dx � 4−x.
Hence, the runtime of the fully random model is at least ρ · log2 n with probability at
least n−2ρ for any value of ρ � 1. Hence, if ρ = (c/2) log2 n for some constant c > 0, this
shows that the time for the fully random model to inform all n vertices with probability
at least 1 − n−c log2 n is at least (c/2)(log2 n)2 = �(log(n)2). This should be compared with
our upper bound of O(log n) for the quasirandom model, which holds with probability
at least 1 − n−�(log n).

8. CONCLUSION AND OUTLOOK

In this article, we proposed and investigated a quasirandom analogue of the classical
push model for spreading a rumor to all vertices of a network.

We showed that for many network topologies, after �(log n) iterations, all vertices
are informed with probability 1 − O(poly(n)). Hence, the quasirandom model achieves
asymptotically the same bounds as the random one, or even better ones (e.g., for random
graphs with p close to log(n)/n).

This work is also interesting from the methodological point of view. Our proofs show,
in particular, that the difficulties usually invoked by highly dependent random exper-
iments can be overcome. From the general perspective of using randomized methods
in computer science, our results, like a number of other recent results, can be viewed
as suggesting that choosing the right dose of randomness might be a fruitful topic for
further research.

An interesting open problem is to analyze the quasirandom push model on other
graph classes. A natural candidate would be the class of regular graphs with constant
conductance, for which it is known that the classical push model spreads a rumor in
O(log n) rounds [Giakkoupis 2011; Chierichetti et al. 2010a]. Another interesting tar-
get are preferential attachment graphs. Here, Doerr et al. [2011a] have shown that the
fully random push-pull model has a broadcast time of �(log n), whereas the variant
with contactees chosen uniformly at random from all neighbors except the previous
contactee has a broadcast time of only �(log n/ log log n). Since the quasirandom pro-
tocol automatically avoids the previous contactee, it seems likely that it also has this
superior broadcast time.

Note, however, that it is not true that the quasirandom model always performs at
least as good as the fully random model. For instance, consider the graph consisting of
two cliques of size n/2 − 1 and an extra vertex that is connected to all other n/2 − 2
vertices. On this graph, the fully random model spreads a rumor in O(log n) rounds with
high probability, whereas the quasirandom model needs �(n) rounds with probability
at least 1/4 for appropriately chosen lists.

A. PROBABILISTIC TAIL BOUNDS USED FOR OUR ANALYSIS

As our analysis heavily relies on probabilistic tails bounds, we summarize them here
for reference. The following bound can be found, e.g., in the textbook of Mitzenmacher
and Upfal [2005].

LEMMA A.1 (CHERNOFF BOUNDS FOR SUMS OF BERNOULLI VARIABLES). Let Xi, 1 � i � n, be
independent random variables. Let X =∑n

i=1 Xi, 0 < p < 1 and δ > 0. If Pr
[
Xi = 1

] = p
and Pr[Xi = 0] = 1 − p for all i ∈ {1, . . . , n}, then

Pr
[
X � (1 − δ) E

[
X
]]

� exp(−δ2 E
[
X
]
/2),

Pr
[
X � (1 + δ) E

[
X
]]

� exp(− min{δ, δ2} E
[
X
]
/3).
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We also use the following concentration bound, which is also called the method of
bounded differences McDiarmid [1989, Lemma 1.2].

LEMMA A.2 (AZUMA’S INEQUALITY). Let Xi : �i → R, 1 � i � n, be mutually independent
random variables. Let f :

∏n
i=1 �i → R satisfy the Lipschitz condition

| f (x) − f (x′)| � ci

where x and x′ differ only in the i-th coordinate, 1 � i � n. Let Y be the random variable
f (X1, . . . , Xn). Then for any t � 0,

Pr
[
Y > E

[
Y
]+ t

]
� exp

(
−2t2

/ n∑
i=1

c2
i

)
.

We shall also use the concept of stochastic domination between random variables.

Definition A.1. A random variable X is stochastically smaller than Y , if for all k ∈ R,
Pr
[
X � k

]
� Pr

[
Y � k

]
. In this case, we also write X � Y .

We list two obvious facts about stochastic domination.

LEMMA A.3. Let X1, X2 be two independent random variables and let Y1, Y2 be two
additional independent random variables with X1 � Y1 and X2 � Y2. Then,

—X1 + X2 � Y1 + Y2 and
—min{X1, X2} � min{Y1, Y2}.

We continue with a simple fact about the geometric distribution.

LEMMA A.4. Let X1, X2, . . . , Xn be n independent geometric random variables each
with parameter 0 < p < 1. Then X := minn

i=1 Xi is a geometric random variable with
parameter (1 − (1 − p)n).

We use the following standard Chernoff bound for sums of geometric random vari-
ables from Dubhashi and Panconesi [2009, Problem 3.6].

LEMMA A.5 (CHERNOFF BOUND FOR SUMS OF GEOMETRIC VARIABLES). Let Y1, Y2, . . . , Yn be
independent geometric random variables, each with parameter p > 0. Let Y :=∑n

i=1 Yi.
Then for any ε > 0,

Pr
[
Y � (1 + ε)

n
p

]
� exp

(
− ε2

2 (1 + ε)
n
)

.
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